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ON A GENERALIZED EGNELL INEQUALITY

ADAMARIA PERROTTA

(Communicated by J. Pečarić)

Abstract. In this paper we prove an inequality which connects the Lp norm of the gradient of

a function u with its |x|ν -weighted L
p(N+ν)
N−p norm and its Lp∗ -weak norm. Here 1 < p < N,

−p < ν � 0 and p∗ = Np
N−p . As a consequence we can provide an alternative proof of the Egnell

inequality in R
N .

1. Introduction

The classical Sobolev inequality in R
N asserts that

(∫
RN

|∇u|p dx

) 1
p

� S(N, p)
(∫

RN
|u|p∗dx

) 1
p∗

, (1)

with 1 < p < N, p∗ = Np
N−p and u is a real-valued function in Lp∗(RN) such that

|∇u| ∈ Lp(RN) , where ∇u is the distributional gradient of u . The value of the sharp
constant S(N, p) in (1) is known to be

S(N, p) = π
1
2 2

1
N N

1
p (N− p)

p−1
p (p−1)

1
N − p−1

p p−
1
N

[
Γ(N

p )Γ(N− N
p )

Γ(N)Γ(N
2 )

] 1
N

,

where Γ is the standard Euler function. The equality sign holds when u is of the form

u(x) =
h[

1+ k |x| p
p−1

]N−p
p

, h,k > 0,

with h,k positive constants (see [6], [8] and [32]).
When R

N is replaced by a bounded domain Ω ⊂ R
N and u ∈ W 1,p

0 (Ω) , the
Sobolev inequality (1) still holds with S(N, p) as best constant, but the constant is
never achieved. For this reason, several authors studied the problem of improving the
inequality (1) for u ∈W 1,p

0 (Ω), by adding a right-hand-side remainder term. The first
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results in this direction are given in [10] and then in [9], where the authors prove several
improvements of (1) by adding the norm of u and of ∇u in suitable Lq spaces. Similar
results are still true when we consider u ∈W 1,p (Ω) vanishing on a fixed part Γ0 of the
boundary ∂Ω (see [19], [28], [29]).

Analogous questions can be studied in relation to the celebrated Hardy-Sobolev
inequality (see [26] and [25])

∫
RN

|∇u|p dx � A(N, p)
∫

RN

|u|p
|x|p dx, (2)

with u ∈W 1,p
(
R

N
)

and

A(N, p) =
(

N− p
p

)p

. (3)

This inequality and its various improvements are used in many contexts, as in the
study of stability of solutions to semi-linear elliptic and parabolic equations (see [11],
[12], [33]), or in the analysis of the asymptotic behaviour of the heat equation with
singular potentials (see [34]). When R

N is replaced by a bounded domain Ω of R
N

and u ∈W 1,p
0 (Ω) , the Hardy-Sobolev inequality (2) still holds.

The constant A(N, p) in (3) is the best one in both cases but there is no function
u ∈ W 1,p

(
R

N
)

(or u ∈ W 1,p
0 (Ω)) for which it is achieved. For this reason several

authors have improved inequality (2) by adding at the right-hand side a non-negative
correction term (see e.g. [1], [2], [5], [7], [11], [15], [17], [20], [21], [22], [23], [30]).

The Sobolev and Hardy-Sobolev inequalities described so far represent a special
case of a more general inequality, known as Egnell inequality (see [28]).
Let us consider 1 < p < N , −p < ν � 0 and

q =
p(N + ν)
N− p

. (4)

If we denote by Lq(RN , |x|ν) the space of measurable functions u such that

‖u‖q,|x|ν :=
(∫

RN
|u|q |x|ν dx

) 1
q

< ∞,

then the Egnell inequality states that

(∫
RN

|∇u|p dx

) 1
p

� C(p,ν)
(∫

RN
|u|q |x|ν dx

) 1
q

. (5)

The optimal value of C(p,ν) is obtained in [18] by means of methods similar to
the ones used by Talenti in [32] to get the best constant in Sobolev inequality (see also
[27]).

To write down the value of C(p,ν) , let us consider for any u ∈W 1,p
(
R

N
)
, u �≡ 0

the functional

F(u) :=
‖|∇u|‖Lp

‖u‖q,|x|ν
;
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then the best constant C(p,ν) is defined as

C(p,ν) := inf
u∈W1,p(RN)

u �≡0

F(u).

In [18] Egnell proves that the value of C(p,ν) is given by

C(p,ν) =π
N
2

p+ν
p(N+ν) 2

p+ν
p(N+ν) (N + ν)

1
p (N− p)

p−1
p (p−1)−

p−1
p + p+ν

p(N+ν) (6)

× (p+ ν)−
p+ν

p(N+ν)

⎡
⎣Γ

(
(N+ν)(p−1)

p+ν

)
Γ

(
N+ν
p+ν

)
Γ

(
p(N+ν)

p+ν

)
Γ

(
N
2

)
⎤
⎦

p+ν
p(N+ν)

,

and the infimum of F(u) is attained when

u(x) =
h[

1+ k |x| p+ν
p−1

] N−p
p+ν

, (7)

with h e k positive constants.
We highlight that the Egnell inequality becomes the Sobolev inequality when

ν = 0 and C(p,0) = S(N, p). In terms of embedding between functional spaces, the
Egnell inequality represents the continuous embedding of the Sobolev space W 1,p

(
R

N
)

in the weighted Lebesgue space Lq(RN , |x|ν ) , where q is given in (4). We finally re-
mark that the Egnell inequality can be read as a particular case of a class of interpolation
inequalities known as Caffarelli-Kohn-Nirenberg inequalities (see [13] and [14]). Im-
proved Caffarelli-Kohn-Nirenberg inequalities are widely studied in the literature.

In this paper we prove an inequality which connects the Lp(RN) norm of the
gradient a function u with the weighted Lq(RN , |x|ν) and Lp∗ -weak norms of u .
Namely, we prove the following inequality:

‖u‖rp∗
p∗,∞ ‖|∇u|‖p

Lp � A(N, p)‖u‖q
q,|x|ν +B(N, p)‖u‖sp∗

p∗,∞ , (8)

where A(N, p) and q are given by (3) and (4) respectively,

r =
p+ ν

N
, s =

N + ν
N

, (9)

and

B(N, p) = 2π
N
2 (N− p)p−1(p−1)2−p− (N−p)(p−1)

p+ν p
p(N−p)

p+ν

⎡
⎣Γ

(
(N+ν)(p−1)

p+ν

)
Γ

(
N+ν
p+ν

)
Γ

(
p(N+ν)

p+ν

)
Γ

(N
2

)
⎤
⎦ . (10)

Finally, we show that Egnell inequality can be easily deduced by (8) as corollary.
In order to prove the main result, we firstly apply a symmetrization procedure by

replacing u with its rearrangement u# , which is spherically symmetric and decreases
with respect to |x| . Then, the Pólya-Szego principle (see [32]) and Hardy-Littlewood
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inequality (see [26]) ensure that the previous assumption is not restrictive. Finally,
we apply classical arguments of one-dimensional Calculus of Variations (see [31]) and
techniques similar to the ones used in [4] for the Sobolev inequality, which straightfor-
wardly lead to inequality (8).

2. Definitions and main result

The main result of this paper is a generalized Egnell inequality which links the
Lp(RN) norm of the gradient a function u with the weighted Lq(RN , |x|ν) and Lp∗ -
weak norm of u , where 1 < p < N, −p < ν � 0, p∗ = Np

N−p and q is given in (4). The
Egnell inequality (5) with its optimal value (6) easily follows as corollary.

We firstly recall the definition of spherically decreasing rearrangement of a func-
tion u and some related properties.

DEFINITION 1. Let Ω be a measurable subset of R
N and u : Ω → R a mea-

surable function in Ω. The distribution function of u is the decreasing map μ from
[0,+∞[ into [0,+∞[ defined at any point t � 0 as the measure of a level set of u ,
{x ∈ Ω : |u(x)| > t} . The decreasing rearrangement u∗ of u is the distribution function
of μ

u∗ (s) := sup{t � 0 : μ(t) > s} , s ∈ (0, |Ω|) .

The main property of rearrangements is the fact that the distribution of u∗ is μ , in
other words u and u∗ are equidistribuited.

DEFINITION 2. Let us denote by ωN the measure of the unit ball of R
N and by

Ω# the ball of R
N centred at the origin such that |Ω| = ∣∣Ω#

∣∣ . For every x ∈ Ω# , the
spherically decreasing rearrangement of u is defined as the decreasing rearrangement
u∗ valued in ωN |x|N

u# (x) := u∗
(

ωN |x|N
)

, x ∈ Ω#.

Obviously, u# is decreasing and spherically symmetric; moreover u and u# are
equidistributed, and the level set

{
x ∈ Ω# :

∣∣u#(x)
∣∣ > t

}
is the ball centred at the origin

and whose measure is μ(t). For an exhaustive treatment of rearrangements see, for
example, [16] and [24]. Here we just recall the Hardy-Littlewood inequality∫

Ω
|u(x)v(x)|dx �

∫
Ω#

u# (x)v# (x)dx, (11)

with u , v measurable functions (see [26]), and the Pólya-Szego principle (see [32])∫
RN

∣∣∇u# (x)
∣∣p

dx �
∫

RN
|∇u(x)|p dx (12)

where u ∈W 1,p
0

(
R

N
)
, 1 < p < N.
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Now we recall the definitions of the Marcinkiewicz Lp -weak space, of Lorentz
space and some of their elementary properties which will be used in the following
sections.

DEFINITION 3. Let Ω be an open subset of R
N and 0<p<∞. The Marcinkiewicz

Lp -weak space consists of all measurable functions u such that

‖u‖p,∞ := sup
t>0

ω
1
p

N

[
t

N
P u∗(t)

]
(13)

DEFINITION 4. Let Ω be an open subset of R
N and 0 < p,q � ∞. The Lorentz

space L(p,q) consists of all measurable functions u such that

‖u‖p,q :=

⎧⎪⎨
⎪⎩

(∫ +∞
0

[
u∗(t)t

1
p

]q
dt
t

) 1
q
, 0 < q < ∞

supt>0 u∗(t)t
1
p , q = ∞.

(14)

The Lorentz space L(p, p) coincides with the Lebesgue space Lp and

‖u‖p,p = ‖u‖p .

Moreover, it can be proved that the L(p,∞) space coincides with the Marcinkiewicz
Lp− weak space.

Inclusion relations among L(p,q) spaces, with p varying, are like those for the
Lebesgue Lp spaces, in that they depend on the structure of the underlying measure
space. The secondary exponent q is not involved. Thus, if 0 < p < r � ∞ and 0 <
q,s � ∞ then

L(r,s) ↪→ L(p,q). (15)

For what concerns the secondary exponent, we have that if if 0 < p � ∞ and
0 < q < s � ∞ , then

L(p,q) ↪→ L(p,s). (16)

REMARK 1. Thanks to the Sobolev inequality in the Lorentz space L(p∗, p) (see
[3]) and Lorentz spaces properties (15) and (16), we get that for 1 < p < N and −p <
ν � 0 then

W 1,p(RN) ↪→ L(p∗, p) ↪→ L

(
p∗,

p(N + ν)
N− p

)
↪→ L

p(N+ν)
N−p (RN , |x|ν),

hence we can conclude that the Egnell inequality is more refined than the Sobolev one.

The main result of the paper is stated in the following:

THEOREM 1. Let u ∈W 1,p(RN), 1 < p < N and −p < ν � 0. Then inequality
(8) holds:

‖u‖rp∗
p∗,∞ ‖|∇u|‖p

Lp � A(N, p)‖u‖q
q,|x|ν +B(N, p)‖u‖sp∗

p∗,∞ ,

where A(N, p) and B(N, p) are given in (3) and (10), while q, r , s are given in (4)
and (9) respectively.
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3. Proof of Theorem 1

In this section we provide a detailed proof of Theorem 1. As stated in the intro-
duction, Egnell inequality will then be deduced from inequality (8).

Proof. The first step consists in the reduction of the problem to a spherically sym-
metric one. We replace u with u# and for the sake of simplicity we keep calling it u .
By Hardy-Littlewood inequality (11) and Pólya-Szego principle (12), the left hand side
of (5) decreases, while the right side increases. This implies that it is enough to prove
Theorem 1 only in the radial case. Moreover without loss of generality we can assume
that u ∈C1

0(R
N) , since this assumption can be removed by density.

Let us consider the functional

J(u) :=
ωN

p

∫ ∞

0

∣∣u′∣∣p
rN−1dr− ωN

p
(N− p)p

(p−1)p−1ap+ν
∫ ∞

0
u

p(N+ν)
N−p rN−1+νdr, (17)

and the related Euler equation

−
pu =
(

N− p
p−1

)p−1

ap+ν(N + ν)u
p(N+ν)
N−p −1rν . (18)

It can be proved that the following one-parameter family of functions

uε(r) := uε(|x|) =
ε

N−p
p[

1+(aε |x|) p+ν
p−1

]N−p
p+ν

, ε > 0, (19)

satisfy (18). The constant a > 0 in (19) is a free constant that will be properly chosen
in the following.

If we compute the Lq(RN , |x|ν )-norm of these extremals, we get that

‖uε‖q
q,|x|ν = 2π

N
2

p−1
p+ ν

a−N−ν
Γ

(
(N+ν)(p−1)

p+ν

)
Γ

(
N+ν
p+ν

)
Γ

(
p(N+ν)

p+ν

)
Γ

(
N
2

) , (20)

so all the functions of the family (19) have the same Lq(RN |x|ν)-norm, which is inde-
pendent of ε .

The curve

y = γa(r) =
(p−1)

(p−1)(N−p)
p(p+ν)

p
N−p
p+ν

(ar)−
N−p

p , r > 0, (21)

is the envelope of the graphs y = uε(r) ; these cover the region T of the first quadrant
which lies below the curve (21).
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Let u be a sufficiently smooth, compactly supported radial function, and let us
consider its norm in the Marcinkiewicz space of the functions weakly Lp∗ :

‖u‖p∗,∞ = sup
r>0

[
r

N−p
p v(r)

]
.

If we choose

a =
(p−1)

p−1
p+ν

p
p

p+ν
‖u‖−

p
N−p

p∗,∞ , (22)

then we get that it is the minimum value such that u(r) � γa(r) for all r > 0; the
corresponding envelope (21) is given by:

γ(r) = ‖u‖p∗,∞ r−
N−p

p . (23)

For each ε > 0 the graph of the extremal y = uε(r) defined in (19) touches the
envelope γ(r) defined in (23) at a point which splits it into two curves, denoted with
C1(ε) and C2(ε) . By varying ε , C1(ε) and C2(ε) define two families of curves that
are the trajectories of two different fields of extremals of the functional (17), and are
both defined in the same region T . Let us denote by (1,q1(r,y)) the first field and by
(1,q2(r,y)) the second one. We explicitly stress that q1(r,y) represents the slope of the
extremal of the first family passing through (r,y) ; q2(r,y) has an analogous meaning.
The dashed lines in Figure 1 (and Figure 2) represent some arcs of extremals C1(ε)
(and C2(ε)), obtained by varying ε .
Moreover, the envelope in (23) touches the graph of u at least in a point P = (α,γ(α)) ,
which splits the graph of u itself into two arcs Γ1 and Γ2 , as in Figure 1 and Figure
2. Finally, we denote by C1 , C2 , respectively, the arcs of the families C1(ε) and C2(ε)
passing through such P = (α,γ(α)) . In Figure 1 and 2 the graphs of the envelope
y = y(r) and the arcs Γ1 and Γ2 , C1 and C2 are sketched in full lines.
At this stage we apply classical arguments of one-dimensional Calculus of Variations
(see [31]). Let us denote with

f (r,u,u′) :=
ωN

p
rN−1

(∣∣u′∣∣p− (N− p)p

(p−1)p−1ap+νuqrν
)

,

then the functional J(u) defined in (17) can be rewritten as

J(u) =
∫ α

0
f (r,u,u′)dr+

∫ ∞

α
f (r,u,u′)dr = J1(u)+ J2(u).

Our target is to show that the one parameter family of extremals y = uε(r) minimizes
the functional J(u) . We begin by estimating J1(u) from below and we embed it in the
first field (1,q1(r,y)) .

Since f is convex with respect to the last variable, then the Weierstass condition

E (r,w,ξ ,ξ1) = f (r,w,ξ )− f (r,w,ξ1)+ (ξ1− ξ ) fv′(r,w,ξ1) � 0,
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is satisfied. As a consequence

J1(u) �
∫ α

0
f (r,u,q1)+

(
u′ −q1

)
fu′(r,u,q1)dr. (24)

Moreover, the differential form

ζ1 = [ f (r,u,q1)−q1 fu′(r,u,q1)]dr+ fu′(r,u,q1)du, (25)

is exact (see [31]), so its integral along any closed path is equal to zero. We compute
the integral of ζ1 along the closed path represented in Figure 1 consisting of the graphs
of C1 and of Γ1 between the origin and α , and the segment τ of the vertical axis
delimited by the intersection points of C1 and Γ1 with the vertical axis.

1

C1

Figure 1

As a consequence, the integral of the right-hand side in (24) equals the line integral of
(25) along τ , which is null, plus the integral line along the curve C1 , therefore

∫ α

0
f (r,u,q1)+

(
u′ −q1

)
fu′(r,u,q1)dr =

∫ α

0
f (r,uε ,u

′
ε) = J1(uε).

This implies that
J1(u) � J1(uε). (26)

In a similar way we get an estimate from below of J2(u) and we embed it in the second
field (1,q2(r,y)) . Let us consider the exact differential form

ζ2 = [ f (r,u,q2)−q2 fu′(r,u,q2)]dr+ fu′(r,u,q2)du; (27)

we integrate ζ2 between α and β along the path sketched in Figure 2 delimited by
C2 , Γ2 , Sβ and the segment of the horizontal axis between the intersection points of
Γ2 and Sβ with the axis itself.
An asymptotic argument allows us to prove that the line integral of (27) along the
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2

C2

S

Figure 2

vertical segment Sβ in Figure 2 is infinitesimal when β goes to infinity. Therefore

J2(u) � J2(uε). (28)

From (26) and (28) we get
J(u) � J(uε).

Now we compute J(uε) . From Egnell inequality and (20) we deduce

J(uε) = ‖|∇uε |‖p
Lp − (N− p)p

(p−1)p−1 ap+ν ‖uε‖q
q,|x|ν =

= C(p,ν)‖uε‖p
q,|x|ν −

(N− p)p

(p−1)p−1ap+ν ‖uε‖q
q,|x|ν =

=
2
p

π
N
2 ap−N (N− p)p−1

(p−1)p−2

Γ
(

(N+ν)(p−1)
p+ν

)
Γ

(
N+ν
p+ν

)
Γ

(
p(N+ν)

p+ν

)
Γ

(
N
2

) .

Since J(u) � J(uε), then

∫
RN

|∇u|p dx � (N− p)p

(p−1)p−1ap+ν ‖u‖q
q,|x|ν +

+2π
N
2 ap−N (N− p)p−1

(p−1)p−2

Γ
(

(N+ν)(p−1)
p+ν

)
Γ

(
N+ν
p+ν

)
Γ

(
p(N+ν)

p+ν

)
Γ

(
N
2

) . (29)

Taking into account the value of a in (22) and using a density argument we get the
result (8) with A(N, p) and B(N, p) given by (3) and (10) respectively.

4. Conclusions

The inequality (8) can be read as a generalization of the Egnell inequality (5),
which can be deduced from it by a minimization argument as follows.
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Proof. We start from inequality (29) with a > 0 free constant and we rewrite the
right-hand side in a more concise way setting x = ap+ν ; the inequality becomes:∫

RN
|∇u|p dx � Kx+Hx−

N−p
p+ν = φ(x),

where

K =
(N− p)p

(p−1)p−1 ‖u‖
q
q,|x|ν

and

H = 2π
N
2
(N− p)p−1

(p−1)p−2

Γ
(

(N+ν)(p−1)
p+ν

)
Γ

(
N+ν
p+ν

)
Γ

(
p(N+ν)

p+ν

)
Γ

(
N
2

) .

Since φ(x) reaches its minimum when

x =
[
H(N− p)
K(p+ ν)

] p+ν
N+ν

,

then we obtain the (5) and the optimal value of the Egnell constant (6).
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