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Abstract. Let x0 be an interior split point in the triangle T := [x1,x2,x3] . By αi j we denote the
angle ̂x0,xi,x j , i �= j . We show that

cosα12 cosα23 cosα31 + cosα21 cosα32 cosα13 > 0.

Additionally, we use this inequality to prove uniqueness and existence of a conforming quadratic
piecewise harmonic finite element on the Clough-Tocher split of a triangle.

1. Introduction

In the process of proving existence and uniqueness of a certain finite element for
the Laplace equation in two variables we came across an interesting geometric inequal-
ity that seemingly has nothing to do with harmonic functions. This inequality does not
appear in the most comprehensive reference [4] or, to the best of our knowledge, in
any other sources. Chapter XI of [4] entitled “Triangle and Point” would have been
an appropriate emplacement for this inequality. In the fields of multivariate piecewise
polynomials, also known as multivariate splines, and finite element analysis related to
numerical solutions of partial differential equations, the split of a triangle into three
subtriangles obtained by coning off an arbitrary interior point is known as the Cough-
Tocher split, see Fig. 1.1(a). This paper is organized as follows. In the introduction, we
review barycentric coordinates and Bernstein-Bézier framework for quadratic bivariate
polynomial splines. We also state the boundary value problem whose solution can be
approximated by our new finite element. The inequality itself is proved in Section 2. It
is used to show existence and uniqueness of a conforming finite element constructed in
Section 3. Comprehensive references for multivariate spines and finite element analysis
are [3] and [2], respectively.

Bernstein-Bézier techniques have become standard tools in analyzing multivariate
splines. We recall some of them in this section. Let

bi = bi(x) where i = 1,2,3,
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denote the barycentric coordinates of a point x = (x1,x2) relative to a triangle T =
[x1,x2,x3] ∈ R2 , where xi = (x1

i ,x
2
i ) . The barycentric coordinates are defined by the

equation ⎡
⎣

x1
1 x1

2 x1
3

x2
1 x2

2 x2
3

1 1 1

⎤
⎦

⎡
⎣

b1

b2

b3

⎤
⎦ =

⎡
⎣

x1

x2

1

⎤
⎦ .

In this paper we only use quadratic polynomials. Every such polynomial p can be
written uniquely in its Bernstein-Bézier (BB-) form as

p(x) = ∑
i+ j+k=2

ci jkBi jk, where Bi jk =
2!

i! j!k!
bi

1b
j
2b

k
3. (1)

The six coefficients ci jk are called the BB-coefficients of p . Each such coefficient is
uniquely associated with its domain point ξi jk = (ix1 + jx2 + kx3)/2, i + j + k = 2,
located either at a vertex or at a mid-edge of T . The points (ξi jk,ci jk) are called the
control points of p .

Let ΔCT (T ) be the Clough-Tocher split of T into three subtriangles T1,T2 , and
T3 as in Fig. 1.1(b). On each triangle Ti , i = 1,2,3, we define a quadratic polynomial
pi , i = 1,2,3, in two variables. Each pi has six domain points depicted as either black
dots or empty circles in Fig. 1.1(b). The black dots correspond to the BB-coefficients
that will be set to zero in the proof of Theorem 3.1. Since the three control points
associated with each edge ei := [x0,xi] are the same for the two polynomials p j and pk

corresponding to the two triangles Tj and Tk sharing ei , we conclude that p j|ei = pk|ei ,
where i, j,k are pairwise distinct. Indeed, each such restriction is a univariate quadratic
polynomial uniquely defined by these three BB-coefficients. Therefore, the dimension
of the continuous quadratic piecewise polynomial (or spline) space defined on ΔCT (T )
is equal to the total number of the control points, i.e., ten. In Section 3, we will impose
an additional condition on each pi , i = 1,2,3, namely Δpi = 0, see [1]. The new space
of piecewise harmonic splines is used in Section 3, where we show that its dimension
is seven.

T :

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�

��

��

����

��

��

x0

x3

x1

x2
α23

α21

α32

α31

α13α12

Figure 1.1(a)
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Figure 1.1(b)

The finite element constructed in Theorem 3.1 can be used to solve the following
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boundary value problem that has a harmonic solution:

−Δu = 0, in Ω, (2)

u = f , on ∂Ω,

where Ω is a bounded polygonal domain in R2 . The proof of the optimal order of
convergence for a special choice of the split point x0 can be found in [5]. It is easy to
see that the proof in [5] does not depend on the exact location of the split point.

2. The inequality

THEOREM 2.1. Let x0 be an interior point in the triangle T := [x1,x2,x3] . By
αi j we denote the angle ̂x0,xi,x j , i �= j , see Fig. 1.1(a). Then

Φ := cosα12 cosα23 cosα31 + cosα21 cosα32 cosα13 > 0.

Proof. Let vi := xi − x0 , and let ui be the side of T opposite xi , oriented coun-
terclockwise, i = 1,2,3. Then u1 = v3−v2 , u2 = v1−v3 , u3 = v2−v1 , and

Φ×
3

∏
i=1

(‖vi‖‖ui‖) =(v1 ·u2)(v2 ·u3)(v3 ·u1)− (v1 ·u3)(v3 ·u2)(v2 ·u1)

=(v1 · (v1−v3))(v2 · (v2−v1))(v3 · (v3−v2))
− (v1 · (v2−v1))(v3 · (v1−v3))(v2 · (v3−v2)).

Finally, we use barycentric coordinates to write x0 = b1x1 +b2x2 +b3x3 , where b1 +
b2 + b3 = 1, and bi > 0, i = 1,2,3, since x0 is an interior point of T . Then direct
substitution shows that b1v1 +b2v2 +b3v3 = 0. Thus, v3 = −αv1−βv2 , where both
α and β are positive. Substituting v3 into the formula above we obtain

Φ
3

∏
i=1

(‖vi‖‖ui‖) =(α + β +1)
(
v2

1v
2
2− (v1 ·v2)2)(

(αv1 + βv2)2 + αv2
1 + βv2

2)
)
.

Thus, Φ is positive, and moreover

Φ =
(α + β +1)

(
v2

1v
2
2− (v1 ·v2)2

)(
(αv1 + βv2)2 + αv2

1 + βv2
2)

)
‖v1‖‖v2‖‖v3‖‖u1‖‖u2‖‖u3‖ .

REMARK 2.1. Note that when x0 approaches the boundary of T , the Cauchy-
Schwarz term in the numerator of Φ makes the inequality of Theorem 2.1 sharp.

REMARK 2.2. We conjecture that some analog of Theorem 2.1 holds for a sim-
plex and an interior point in Rn .
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3. An application

Let ΔCT (T ) be the Clough-Tocher split of T into three subtriangles T1,T2 , and T3

as in Fig. 1.1(b). Let P2 be the space of quadratic polynomials in two variables. On T
the conforming harmonic P2 finite element space is defined as a subspace of continuous
quadratic splines:

PT := {s ∈C0(T ) | s|Ti ∈ P2 and Δpi = 0, i = 1,2,3}.

THEOREM 3.1. The Clough-Tocher conforming P2 harmonic finite element space
PT has dimension seven, and is unisolvent by the seven nodal values:

s(xi), i = 0, . . . ,3, s((xi +xi+1)/2), i = 1,2,3, where x4 := x1. (3)

Proof. Let s be a continuous quadratic spline on ΔCT (T ) . Using the Bernstein-
Bézier (BB) basis for a continuous spline s , see (1), the seven nodal values in (3) can be
used to compute the BB-coefficients of s associated with the back dots in Fig. 1.1(b).
The remaining three coefficients c1 , c2 , and c3 associated with the midpoints of the
interior edges need to be computed using the fact that s is piecewise harmonic. This
yields a system of three linear equations with three unknowns. By Lemma 4.1 in [1],
the following three conditions are necessary and sufficient for s to be harmonic on each
triangle Ti , i = 1,2,3, in the triangle T :

ci‖xi+1−x0‖cosαi+1,i + ci+1‖xi−x0‖cosαi,i+1 = fi, x4 := x1, (4)

where fi is a known right-hand side determined by the nodal values in (3). The deter-
minant of the system (4) is given by

Det

⎡
⎣
‖x2 −x0‖cosα21 ‖x1−x0‖cosα12 0

0 ‖x3−x0‖cosα32 ‖x2−x0‖cosα23

‖x3 −x0‖cosα31 0 ‖x1−x0‖cosα13

⎤
⎦

=
3

∏
i=1

‖xi−x0‖Det

⎡
⎣

cosα21 cosα12 0
0 cosα32 cosα23

cosα31 0 cosα13

⎤
⎦

3

∏
i=1

‖xi −x0‖(cosα21 cosα32 cosα13 + cosα12 cosα23 cosα31) �= 0,

by Theorem 2.1. This completes the proof.
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[4] D. S. MITRINOVIĆ, J. E. PEČARIĆ AND V. VOLENEC, Recent Advances in geometric Inequalities,
Kluwer Academic Publishers, The Netherlands, 1989.

[5] S. ZHANG AND T. SOROKINA, Conforming harmonic finite elements on the Hsieh-Clough-Tocher
split of a triangle, submitted.

(Received March 18, 2019) Tatyana Sorokina
Department of Mathematics

Towson University
7800 York Road, Towson, MD 21252, USA

e-mail: tsorokina@towson.edu

Shangyou Zhang
Department of Mathematical Sciences

University of Delaware
Newark, DE 19716, USA

e-mail: szhang@udel.edu

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


