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A NOTE ON SUMS OF POWERS

PENG GAO

(Communicated by M. Praljak)

Abstract. We improve a result of Bennett concerning certain sequences involving sums of pow-
ers of positive integers.

1. Introduction

Estimations of sums of powers of positive integers have important applications
in the study of l p norms of weighted mean matrices, we leave interested readers [7]
and [5] for more details in this direction. There are many inequalities for sequences
involving sums of powers of positive integers in the literature and we shall also refer
the interested readers to the papers [5], [6], [8] as well as the references therein for
some results in this area.

In this note, we are interested in certain inequalities involving the following se-
quence: {Pn(r)|n = 1,2,3, . . .} , where r is any real number and

Pn(r) =

(
1
n

n

∑
i=1

ir
/

1
n+1

n+1

∑
i=1

ir
)1/r

, r �= 0; Pn(0) =
n
√

n!
n+1
√

(n+1)!
.

We note that for r > 0, the following inequalities are valid:

n
n+1

= lim
r→+∞

Pn(r) < Pn(r) < Pn(0). (1)

The left-hand side inequality above is known as Alzer’s inequality [1], and the right-
hand side inequality above is known as Martins’ inequality [10]. Alzer also considered
inequalities satisfied by Pn(r) for r < 0 in [2] and he showed [2, Theorem 2.3]:

Pn(0) � Pn(r) � lim
r→−∞

Pn(r) = 1. (2)

Bennett [4] proved that for r � 1,

Pn(r) � Pn(1) =
n+1
n+2

(3)
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with the above inequality reversed when 0 < r � 1. This inequality and inequalities
(1)-(2) suggest that Pn(r) is a decreasing function of r . In [6], Bennett proved this for
r � 1 and the author gave another proof in [8]. Bennett further asked, using his notation
in [6], to decide whether the sequence (1r,2r,3r, . . .) is meaningful for any r > 1 or
not ([6, Problem 1]), which is equivalent to determining whether Pn(r) is a decreasing
function of r for any r > 1 or not. It is our goal in this note to give a weaker result
related to Bennett’s question above by proving the following:

THEOREM 1. The sequence(
∑n

i=1 ir
)α

∑n
i=1 iα(r+1)−1

, n = 1,2,3, . . . ,

is decreasing for r � 1,α � 2 .

We note here that Theorem 1 improves a result of Bennett [5, Theorem 12], which
established the case α = 2 of Theorem 1. We also note that one can readily deduce
from Theorem 1 using an argument similar to the discussion in the paragraph below
Corollary 3.1 in [8] the following

COROLLARY 1. For any fixed integer n � 1 , Pn(r) � Pn(r′) for r′ � 2r+1,r � 1 .

2. Lemmas

LEMMA 1. ([11, Lemma 2.1]) Let {Bn}∞
n=1 and {Cn}∞

n=1 be strictly increasing
positive sequences with B1/B2 � C1/C2 . If for any integer n � 1 ,

Bn+1−Bn

Bn+2−Bn+1
� Cn+1−Cn

Cn+2−Cn+1
.

Then Bn/Bn+1 � Cn/Cn+1 for any integer n � 1 .

LEMMA 2. For r � 2,x > 0,y > 0 , let

Dr(x,y) =
xr − yr

x− y
, x �= y; Dr(x,x) = rxr−1.

Then for positive numbers a,b,c,d satisfying a � max(b,c,d) and a+ b � c+ d , we
have

Dr(a,b) � Dr(c,d).

Proof. We may assume c � d here and note that Dr(x,y) is an increasing function
of x (or y) for fixed y (or x ). It follows from this that if b � d , then Dr(a,b) �
Dr(c,b) � Dr(c,d) . Otherwise by our assumption, one can find a positive number a′
such that a � a′ � max(b,c,d) and a′ +b = c+d .
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We now recall from the theory of majorization that for two positive real finite
sequences x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) , x is said to be majorized by y
if for all convex functions f , we have

n

∑
j=1

f (x j) �
n

∑
j=1

f (y j).

We write x �ma j y if this occurs and the majorization principle states that if (x j)
and (y j) are decreasing, then x �ma j y is equivalent to

x1 + x2 + . . .+ x j � y1 + y2 + . . .+ y j (1 � j � n−1),
x1 + x2 + . . .+ xn = y1 + y2 + . . .+ yn (n � 0).

We refer the reader to [3, Sect. 1.30] for a simple proof of this.
Now let I ⊂ (0,+∞) be an open interval and denote In = I× I×·· ·× I ( n copies).

We recall a function f : In → R is said to be Schur convex if f (x) � f (y) for any two
sequences x,y ∈ In with x �ma j y . If f also has continuous partial derivatives on In ,
then f is Schur convex if and only if (see [9, p. 57])

(xi − x j)
(

∂ f
∂xi

− ∂ f
∂x j

)
� 0. (1)

Back to our situation, we apply the notion of majorization to write (c,d) �ma j

(a′,b) and we next show that Dr(x,y) satisfies the criterion (1) on (0,+∞)× (0,+∞) .
For this, we may assume x > y here and then it is easy to see that it suffices to show

xr − yr

x− y
=

r
x− y

∫ x

y
tr−1dt � xr−1 + yr−1

2
.

The inequality above now follows from Hadamard’s inequality which asserts that for a
continuous convex function h(x) on an interval [e, f ] ,

h(
e+ f

2
) � 1

f − e

∫ f

e
h(x)dx � h(e)+h( f )

2
.

It follows that Dr(x,y) is Schur convex on (0,+∞)× (0,+∞) so that Dr(a′,b) �
Dr(c,d) . As Dr(a,b) � Dr(a′,b) , this completes the proof.

LEMMA 3. For r � 1,α � 1 , let

gr(α) = 1+2α(r+1)−1− (1+2r)α .

Then gr(α) � 0 for r � 1,α � 2 .

Proof. We may assume r � 1 is being fixed and regard gr(α) as a function of α .
Then

g′r(α) = (ln2r+1)2α(r+1)−1− ln(1+2r)(1+2r)α .



722 P. GAO

From this we see that g′r(α) = 0 has at most one positive root. Note that gr(2) � 0 and
limα→+∞ gr(α) = +∞ , it thus suffices to show that g′r(2) > 0. Note that g′r(2) = f (2r) ,
where

f (x) = ln(2x)(2x2)− ln(1+ x)(1+ x)2.

As it is easy to check that f (2) > 0, f ′(2) > 0, it suffices to show that f ′′(x) � 0 for
x � 2. Calculation yields:

f ′′(x) = 3+4ln2+2
(

lnx2 − ln(1+ x)
)

> 0.

The last inequality follows from x2 > 1+ x when x � 2 and this completes the proof.

3. Proof of Theorem 1

We need to show that for n � 1, r � 1,α � 2,(
∑n

i=1 ir
)α

∑n
i=1 iα(r+1)−1

�

(
∑n+1

i=1 ir
)α

∑n+1
i=1 iα(r+1)−1

.

When n = 1, this follows from Lemma 3. Now by Lemma 1, it suffices to show for
n � 1, r � 1,α � 2,(

∑n+1
i=1 ir

)α −
(

∑n
i=1 ir

)α

(n+1)α(r+1)−1
�

(
∑n+2

i=1 ir
)α −

(
∑n+1

i=1 ir
)α

(n+2)α(r+1)−1
.

We can rewrite the above inequality as Dα(a,b) � Dα(c,d) , where

a =
∑n+1

i=1 ir

(n+1)r+1 ,b =
∑n

i=1 ir

(n+1)r+1 ,c =
∑n+2

i=1 ir

(n+2)r+1 ,d =
∑n+1

i=1 ir

(n+2)r+1 .

It is easy to see that a � max(b,d) and a � c is equivalent to Pn(r) � Pn(0) , which
follows from (1). Thus our theorem will follow from Lemma 2 provided that we show
a+b � c+d here, which is

∑n+1
i=1 ir + ∑n

i=1 ir

(n+1)r+1 � ∑n+2
i=1 ir + ∑n+1

i=1 ir

(n+2)r+1 . (1)

On setting Bn = nr+1 and Cn = ∑n
i=1 ir + ∑n−1

i=1 ir (where we take the empty sum to be
0) in Lemma 1, it is easy to see that B1/B2 � C1/C2 . Hence inequality (1) will follow
from Lemma 1 if we can show for n � 1,

(n+1)r +nr

(n+1)r+1−nr+1 � (n+2)r +(n+1)r

(n+2)r+1− (n+1)r+1 .

On setting x = n/(n+1) , it is easy to see that one can deduce the above inequality by
showing the following function is decreasing for 0 < x < 1:

f (x) =
(1− x)(1+ xr)

1− xr+1 .
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Calculation yields

f ′(x) =
x2r − rxr+1 + rxr−1−1

(1− xr+1)2 .

It is easy to see that the function x �→ x2r − rxr+1 + rxr−1 −1 is an increasing function
of 0 < x < 1 with value 0 when x = 1 for any fixed r � 1. This implies that f ′(x) � 0
for 0 < x < 1 and this completes the proof.
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