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Abstract. This work has as starting point an inequality involving Bernstein polynomials and
convex functions. Applications of the main results are given for Mastroianni type operators. The
results obtained here represent a continuation of what was done in [3] and are strongly connected
to the work done in [1].

1. Introduction

Let n ∈ N and let Πn denote the set of all polynomials of degree � n . The
fundamental Bernstein polynomials of degree n are given by:

bn,k(x) =
(

n
k

)
xk(1− x)n−k, k = 0,1, ...,n.

In ([8], Problem 2, pp. 164), I. Raşa ([8], Problem 2, pp. 164), came up with the
following problem: Prove or disprove the following inequality:

n

∑
i=0

n

∑
j=0

[bn,i(x)bn, j(x)+bn,i(y)bn, j(y)−2bn,i(x)bn, j(y)] f

(
i+ j
2n

)
� 0, (1)

for any convex function f ∈C[0,1] and any x,y ∈ [0,1] . In [7], by using a probabilistic
approach, J. Mrowiec, T. Rajba and S. Wasowicz, gave a positive answer to the above
problem and proved the following generalization of inequality (1).

THEOREM 1. ([7], Theorem 12) Let m,n ∈ N with m � 2 . Then,

n

∑
i1,...,im=0

[bn,i1(x1)...bn,im(x1)+ ...+bn,i1(xm)...bn,im(xm)

−mbn,i1(x1)...bn,im(xm)] f

(
i1 + ...+ im

mn

)
� 0, (2)

for any convex function f ∈C[0,1] and any x1, ...,xm ∈ [0,1] .
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An elementary proof of (1), was given recently by Abel in [2], where it is shown that a
type (1) inequality holds also for the Mirakyan-Favard-Szász ([2], Theorem 5) and for
the Baskakov operators ([2], Theorem 6).

In [3], we proved a type (1) inequality for a large class of operators defined in
the following way. Let I be one of the intervals [0,∞) or [0,1] . Let gn : I ×D → C ,
D = {z ∈ C | |z| � R} , R > 1 be a function with the property that for any fixed x ∈ I ,
the function gn(x, ·) is an analytic function on D ,

gn(x,z) =
∞

∑
k=0

an,k(x)zk

an,k(x) � 0,∀k � 0 (3)

gn(x,1) = 1,∀x ∈ I.

In what follows, let I = [0,∞) . The case I = [0,1] follows in the same way. Let F be
a linear set of functions defined on the interval I and let {At}t∈I be a set of real linear
positive functionals defined on F with the property that for any f ∈ F , the series

Ln,A( f )(x) :=
∞

∑
k=0

an,k(x)A k
n
( f ). (4)

is convergent for any x ∈ I . The identity (4) defines a positive linear operator. The
function gn will be referred to as the generating function for the operator Ln,A relative
to the set of functionals {At}t∈I .

In what follows , we assume that the linear positive functionals {At}t∈I are such
that Ln,A is well defined for any f ∈ F and any x ∈ I , the set of all real polynomials
Π ⊆ F and every functional At has the following properties:

i) At(e0) = 1, t ∈ I .

ii) At(e1) = at +b,t ∈ I , where a and b are two real numbers independent of t and
ei(x) = xi , x ∈ I , i ∈ N .

In [3], we obtained the following result: if[
k
n
,
k+1

n
,
k+2

n
;At( f )

]
� 0 (5)

and
dk

dzk

[
gn(x,z)−gn(y,z)

z−1

]2
∣∣∣∣∣
z=0

� 0, (6)

for any k ∈ N and all x,y ∈ I , then A( f ) � 0 . Here, for x,y ∈ I fixed, the functional
A is defined by

A( f ) =
∞

∑
i=0

∞

∑
j=0

[an,i(x)an, j(x)+an,i(y)an, j(y)−2an,i(x)an, j(y)]A i+ j
2n

( f ).
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The following result ([3], Corollary 3.2) is useful to verify inequality (6).
Let x,y ∈ I be two distinct numbers. Assume that conditions i) and ii) above hold,

gn(x,z)−gn(y,z)
z−1

=
∞

∑
k=0

βn,k(x,y)zk (7)

and sgn βn,k(x,y) is the same for all k ∈ N , then (6) is satisfied.
For m ∈ N , m � 2 and x ∈ Im , x = (x1, ...,xm) , we define the functionals:

Cm( f ) =
∞

∑
i1,...,im=0

[an,i1(x1)...an,im(x1)+ ...+an,i1(xm)...an,im(xm)

− man,i1(x1)...an,im(xm)]A i1+...+im
mn

( f ). (8)

In [3], Theorem 4.1, we have proved the following result:
If (5) and (6) hold, then

Cm( f ) � 0

for any m ∈ N , m � 2.
Applications, such as Bernstein type operators, Mirakyan-Favard-Szász type op-

erators, Meyer-König and Zeller type operators, were considered in [3].
Let us assume that the generating functions gn , n ∈ N∗ are of the form

gn(t,z) = φn(t,z), (9)

where φ : I ×D → C is such that φ(t, ·) is an analytic function and the function gn

given by (9) satisfies conditions (3). Under these assumptions, we have

∑
i1+...+im=k

an,i1(t)...an,im(t) = anm,k(t). (10)

The above identity implies that

Cm( f ) =
m

∑
k=1

Lmn,A( f )(xk)−m
∞

∑
i1,...,im=0

an,i1(x1)...an,im(xm)A i1+...+im
mn

( f ). (11)

Let us assume that the sequence (Ln,A)n∈N∗ preserves convexity. More precisely, we
assume that for every convex function f ∈ F , Ln,A( f ) , n ∈ N∗ is convex too. Under
this assumption, we have

Lnm,A( f )
(

x1 + ...+ xm

m

)
�

m

∑
k=1

Lnm,A( f )(xk)
m

. (12)

For the Bernstein operators, in [1], the following problem was studied:
Prove that

B2n( f )
(

x1 + x2

2

)
�

n

∑
i=0

n

∑
j=0

bn,i(x1)bn, j(x2) f

(
i+ j
2n

)
, (13)

for all convex f ∈C[0,1] and x1,x2 ∈ [0,1] .
A probabilistic solution was found by A. Komisarski and T. Rajba, [5]. In [1], U. Abel
and I. Raşa gave an analytic proof to the following theorem.
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THEOREM 2. ([1], Theorem 1) Let n,m ∈ N . If f ∈ C[0,1] is a convex function,
then the inequality

Bmn( f )

(
1
m

m

∑
ν=1

xν

)
�

n

∑
i1=0

...
n

∑
im=0

(
m

∏
ν=1

bn,iν (xν )

)
f

(
1

mn

m

∑
ν=1

iν

)

is valid for all x1, ...,xm ∈ [0,1] .

The purpose of this paper is to give sufficient conditions for the generating functions
gn , n ∈ N , such that the functional Bm : F → R ,

Bm( f ) = Lmn,A( f )
(

x1 + ...+ xm

m

)
−

∞

∑
i1,...,im=0

an,i1(x1)...an,im(xm)A i1+...+im
mn

( f ) (14)

is nonnegative for any function f ∈ F for which[
k
n
,
k+1

n
,
k+2

n
;At( f )

]
� 0 (15)

and for any x = (x1, ...,xm) ∈ Im and any k ∈ N . It is immediate to see, from (11), that
if Bm( f ) � 0, then Cm( f ) � 0 as well.

2. Main results

THEOREM 3. Let f ∈ F be such that inequality (15) holds. If

dk

dzk

[
gnm
( x1+...+xm

m ,z
)−gn(x1,z)...gn(xm,z)
z−1

]2
∣∣∣∣∣∣
z=0

� 0 (16)

for any k ∈ N and any x = (x1, ...,xm) ∈ Im ,then

Bm( f ) � 0.

If (16) holds with opposite sign for any k ∈ N and any x = (x1, ...,xm) ∈ Im , then

Bm( f ) � 0.

Proof. We note that
Bm(e0) = Bm(e1) = 0.

On the other hand, we have

Bm( f ) = Lmn,A( f )
(

x1 + ....+ xm

m

)
−

∞

∑
k=0

αn,k(x)A k
mn

( f ),

where
αn,k(x) = ∑

i1+...+im=k

an,i1(x1)...an,im(xm).
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So

Bm( f ) =
∞

∑
k=0

[
amn,k

(
x1 + ...+ xm

m

)
− ∑

i1+...+im=k

an,i1(x1)...an,im(xm)

]
f

(
k

mn

)
.

We note that

gmn

(
x1 + ...+ xm

m
,z

)
−gn(x1,z)...gn(xm,z)

=
∞

∑
k=0

[
amn,k

(
x1 + ...+ xm

m

)
− ∑

i1+...+im=k

an,i1(x1)...an,im(xm)

]
zk. (17)

From (17), we get

amn,k

(
x1 + ...+ xm

m

)
− ∑

i1+...+im=k

an,i1(x1)...an,im(xm)

=
1
2π

∫ 2π

0

[
gmn

(
x1 + ...+ xm

m
,eiθ
)
−gn

(
x1,e

iθ
)

...gn

(
xm,eiθ

)]
e−ikθ dθ , (18)

for any k ∈ N . From (18), by using the same technique as in the proof of Theorem 4.1,
[3], we get

Bm( f ) =
2

nm

∞

∑
k=2

Bm

(∣∣∣∣·− k−1
nm

∣∣∣∣
)[

k−2
mn

,
k−1
mn

,
k

mn
;At( f )

]
, (19)

where

Bm

(∣∣∣∣·− k−1
mn

∣∣∣∣
)

=
1

nm
1

(k−2)!
dk−2

dzk−2

E2
m(x,z)

(z−1)2

∣∣∣∣
z=0

(20)

and

Em(x,z) = gmn

(
x1 + ...+ xm

m
,z

)
−gn(x1,z)...gn(xm,z). (21)

Equations (19), (20) and (7) conclude our proof. �
In what follows we are interested in whether there exists a large class of linear positive
operators for which A( f ) � 0, whenever (5) and (6) are satisfied and Bm( f ) � 0 or
Bm( f ) � 0.

Mastroianni type operators

We denote by C2([0,∞)) the function space

C2([0,∞)) :=
{

f ∈C([0,∞)) : ∃ lim
x→∞

f (x)
1+ x2 < ∞

}
.

Let (ϕn)n∈N
be a sequence of real functions defined on [0,∞) , ϕn ∈ C∞[0,∞) , n ∈ N

that are strictly monotone and satisfy the following conditions:

ϕn(0) = 1,n ∈ N and (−1)nϕ(k)
n (x) � 0,n ∈ N

∗,k ∈ N,x � 0,
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∀(n,k) ∈ N×N,∃ p(n,k) ∈ N,∃αn,k : [0,∞) → R such that ∀x � 0,∀i ∈ N
∗,

ϕ(i+k)
n (x) = (−1)kϕ(i)

p(n,k)(x)αn,k(x) and lim
n→∞

n
p(n,k)

= lim
n→∞

αn,k(x)
nk

= 1.

G. Mastroianni, in [6], introduced for any n ∈ N∗ , the operators Mn : C2([0,∞)) →
C([0,∞)) , defined by

Mn( f )(x) =
∞

∑
k=0

(−1)k

k!
xkϕ(k)

n (x) f

(
k
n

)
.

Let (At)t∈I be a set of linear positive functionals defined on the linear set of functions
F , satisfying conditions i) and ii) above and such that for every f ∈ F , the series

Mn,A( f )(x) :=
∞

∑
k=0

(−1)k xkϕ(k)
n (x)
k!

A k
n
( f ) (22)

converges. We will assume that Π2 ⊆ F .

REMARK 1. If F = C2([0,∞)) , then Mn,A( f ) is well defined, [6].

LEMMA 1. If for any x ∈ [0,∞) , the function gn(x, ·) = ϕn(x(1−·)) is analytic in
D = {z ∈ C : |z| < R} , R > 1 , then gn is a generating function for Mn,A .

Proof. We have

dk

dzk gn(x,z) = (−1)kxkϕ(k)
n (x(1− z))

and therefore

gn(x,z) =
∞

∑
k=0

(−1)kxk ϕ(k)
n (x)
k!

zk. �

THEOREM 4. Let x,y ∈ [0,∞) , x �= y. If

gn(x,z)−gn(y,z)
z−1

=
∞

∑
k=0

βn,k(x,y)zk,

then sgn βn,k(x,y) is the same for all k ∈ N .

Proof. We have

gn(x,z)−gn(y,z)
z−1

= −
∞

∑
p=0

(−1)pxpϕ(p)
n (x)− (−1)pypϕ(p)

n (y)
p!

zp
∞

∑
m=0

zm.
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It follows that

βn,k(x,y) = −
k

∑
p=0

(−1)pxpϕ(p)
n (x)− (−1)pypϕ(p)

n (y)
p!

. (23)

Let us consider the function hn,k : [0,∞) → R defined by

hn,k(t) = −
k

∑
p=0

(−1)pt pϕ(p)
n (t)

p!
.

We have

h′n,k(t) = −
k

∑
p=0

(−1)ppt p−1ϕ(p)
n (t)

p!
−

k

∑
p=0

(−1)pt pϕ(p+1)
n (t)

p!

=
k−1

∑
p=0

(−1)pt pϕ(p+1)
n (t)

p!
−−

k

∑
p=0

(−1)pt pϕ(p+1)
n (t)

p!

=
(−1)p+1t pϕ(p+1)

n (t)
p!

� 0,∀t ∈ [0,∞),∀p ∈ N.

But
βn,k(x,y) = hn,k(x)−hn,k(y)

and therefore
sgnβn,k(x,y) = sgn(x− y),∀x,y ∈ [0,∞),

which concludes our proof. �

COROLLARY 1. Let Mn,A be a family of Mastroianni type operators and let f ∈
F . If [

k
n
,
k+1

n
,
k+2

n
;At( f )

]
� 0,∀k ∈ N,

then for all the functionals Cm , given by (8), with

an,ik(xi) =
(−1)ik xik

i ϕ(ik)
n (xi)

ik!
,

we have Cm( f ) � 0 .

Examples

1. Bernstein type operators are Mastroianni type operators with the functions
(ϕn)n∈N

defined by ϕn(x) = (1− x)n and the generating functions gn(x,t) given
by

gn(x,t) = (1− x+ tx)n.
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2. Mirakyan-Favard-Szász type operators, Sn,A ,

Sn,A( f )(x) = e−nx
∞

∑
k=0

(nx)k

k!
A k

n
( f )

are obtained for ϕn(x) = e−nx, x � 0 and gn(x,z) = e−nx(1−z).

3. Baskakov type operators, Vn,A ,

Vn,A( f )(x) = (1+ x)−n
∞

∑
k=0

(
n+ k−1

k

)(
x

1+ x

)k

A k
n
( f )

are obtained for ϕn(x) = (1+ x)−n , n ∈ N∗ and gn(x,z) = (1+ x− xz)−n .

4. Szász-Schurer type operators, Sn,p,A ,

Sn,p,A( f )(x) = e−(n+p)x
∞

∑
k=0

(n+ p)kxk

k!
A k

n
( f )

are obtained for ϕn(x) = e−(n+p)x and gn(x,z) = e−(n+p)x(1−z) .

We note that in the above examples the generating functions are of the following form:

gn(x,z) = φn+p(x,z),

where φ(x,z)=e−x(1−z) is the same with the g1 –function corresponding to the Mirakyan-
Favard-Szász type operators detailed above. Let p be a fixed natural number. Using
now Theorem 3, with n := n+ p and the results from [3] related to Mirakyan-Favard-
Szász operators, the next theorem follows.

THEOREM 5. Let f ∈ F be a function with the property that[
k
n
,
k+1

n
,
k+2

n
;At( f )

]
� 0,∀k ∈ N.

Then Bm( f ) � 0 .

Concluding remarks

We mention below a few consequences of Theorem 3.

1. The Bernstein type operators verify (16). In this case g1(x,z) = 1− x+ zx and
inequality (16) follows from Gusić, [4], Theorem 1 (see also [9], Equation (2)),
where the following representation is given(

m

∑
ν=1

aν

)m

−mm
m

∑
ν=1

aν = ∑
1�i< j�m

(ai −a j)2Pi, j(a1, ...,am). (24)

In (24), Pi, j are some homogeneous polynomials of degree n− 2 with non-
negative coefficients. Identity (24) was used by Abel and Raşa in [1] for the
classical Bernstein operators.
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2. For g1(x,z) = e−x(1−z) , we get

Bm( f ) = Cm( f ), m ∈ N
∗.

3. In the case of Baskakov type operators, we have

g1(x,z) =
1

1+ x− xz
.

Using now (24), it follows that the reverse of inequality (16) is satisfied. There-
fore, if f ∈ F and [

k
n
,
k+1

n
,
k+2

n
;At( f )

]
� 0,∀k ∈ N,

then the Baskakov type operators satisfy the following inequalities

Vn,A( f )
(

x1 + ...+ xm

m

)
�

∞

∑
i1=0

...
∞

∑
im=0

m

∏
ν=1

an,iν (xν)A∑m
ν=1 iν/m

and
∞

∑
i1,...,im=0

[an,i1(x1)..an,im(x1).+ ....+an,i1(x1m..an,im(xm)]A i1+...+im
nm

( f )

� m
∞

∑
i1,...,im=0

an,i1(x1)....an,im(xm)A i1+...+im
nm

( f ).
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[8] I. RAŞA, Problem 2 , pp. 164. In: Report of meeting in: Conference on Ulam’s Type Stability, Rytro,

Poland, June 2–6, 2014, Ann. Paedagog. Croc. Stud. Math. 13(2014), 139–169.
[9] T. TARARYKOVA, An explicit representation as quasi-sum of squares of a polynomial generated by

the AG inequality, Math. Inequal. Appl. 9(2006), 649–659.

(Received September 16, 2019) Bogdan Gavrea
Department of Mathematics

Technical University of Cluj-Napoca
Str. Memorandumului nr. 28, 400114, Cluj-Napoca, Romania

e-mail: Bogdan.Gavrea@math.utcluj.ro

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


