ON A CONVEXITY PROBLEM WITH APPLICATIONS TO MASTROIANNI TYPE OPERATORS

Bogdan Gavrea

（Communicated by J．Jakšetić）

Abstract

This work has as starting point an inequality involving Bernstein polynomials and convex functions．Applications of the main results are given for Mastroianni type operators．The results obtained here represent a continuation of what was done in［3］and are strongly connected to the work done in［1］．

1．Introduction

Let $n \in \mathbb{N}$ and let Π_{n} denote the set of all polynomials of degree $\leqslant n$ ．The fundamental Bernstein polynomials of degree n are given by：

$$
b_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}, k=0,1, \ldots, n
$$

In（［8］，Problem 2，pp．164），I．Raşa（［8］，Problem 2，pp．164），came up with the following problem：Prove or disprove the following inequality：

$$
\begin{equation*}
\sum_{i=0}^{n} \sum_{j=0}^{n}\left[b_{n, i}(x) b_{n, j}(x)+b_{n, i}(y) b_{n, j}(y)-2 b_{n, i}(x) b_{n, j}(y)\right] f\left(\frac{i+j}{2 n}\right) \geqslant 0 \tag{1}
\end{equation*}
$$

for any convex function $f \in C[0,1]$ and any $x, y \in[0,1]$ ．In［7］，by using a probabilistic approach，J．Mrowiec，T．Rajba and S．Wasowicz，gave a positive answer to the above problem and proved the following generalization of inequality（1）．

Theorem 1．（［7］，Theorem 12）Let $m, n \in \mathbb{N}$ with $m \geqslant 2$ ．Then，

$$
\begin{align*}
\sum_{i_{1}, \ldots, i_{m}=0}^{n} & {\left[b_{n, i_{1}}\left(x_{1}\right) \ldots b_{n, i_{m}}\left(x_{1}\right)+\ldots+b_{n, i_{1}}\left(x_{m}\right) \ldots b_{n, i_{m}}\left(x_{m}\right)\right.} \\
& \left.-m b_{n, i_{1}}\left(x_{1}\right) \ldots b_{n, i_{m}}\left(x_{m}\right)\right] f\left(\frac{i_{1}+\ldots+i_{m}}{m n}\right) \geqslant 0 \tag{2}
\end{align*}
$$

for any convex function $f \in C[0,1]$ and any $x_{1}, \ldots, x_{m} \in[0,1]$ ．
Mathematics subject classification（2010）：26D15，26D10，46N30．
Keywords and phrases：Linear positive operators，convex functions，Bernstein operators，Mastroianni operators．

An elementary proof of (1), was given recently by Abel in [2], where it is shown that a type (1) inequality holds also for the Mirakyan-Favard-Szász ([2], Theorem 5) and for the Baskakov operators ([2], Theorem 6).

In [3], we proved a type (1) inequality for a large class of operators defined in the following way. Let I be one of the intervals $[0, \infty)$ or $[0,1]$. Let $g_{n}: I \times D \rightarrow \mathbb{C}$, $D=\{z \in \mathbb{C}| | z \mid \leqslant R\}, R>1$ be a function with the property that for any fixed $x \in I$, the function $g_{n}(x, \cdot)$ is an analytic function on D,

$$
\begin{align*}
g_{n}(x, z) & =\sum_{k=0}^{\infty} a_{n, k}(x) z^{k} \\
a_{n, k}(x) & \geqslant 0, \forall k \geqslant 0 \tag{3}\\
g_{n}(x, 1) & =1, \forall x \in I
\end{align*}
$$

In what follows, let $I=[0, \infty)$. The case $I=[0,1]$ follows in the same way. Let \mathscr{F} be a linear set of functions defined on the interval I and let $\left\{A_{t}\right\}_{t \in I}$ be a set of real linear positive functionals defined on \mathscr{F} with the property that for any $f \in \mathscr{F}$, the series

$$
\begin{equation*}
L_{n, A}(f)(x):=\sum_{k=0}^{\infty} a_{n, k}(x) A_{\frac{k}{n}}(f) \tag{4}
\end{equation*}
$$

is convergent for any $x \in I$. The identity (4) defines a positive linear operator. The function g_{n} will be referred to as the generating function for the operator $L_{n, A}$ relative to the set of functionals $\left\{A_{t}\right\}_{t \in I}$.

In what follows, we assume that the linear positive functionals $\left\{A_{t}\right\}_{t \in I}$ are such that $L_{n, A}$ is well defined for any $f \in \mathscr{F}$ and any $x \in I$, the set of all real polynomials $\Pi \subseteq \mathscr{F}$ and every functional A_{t} has the following properties:
i) $A_{t}\left(e_{0}\right)=1, t \in I$.
ii) $A_{t}\left(e_{1}\right)=a t+b, t \in I$, where a and b are two real numbers independent of t and $e_{i}(x)=x^{i}, x \in I, i \in \mathbb{N}$.

In [3], we obtained the following result: if

$$
\begin{equation*}
\left[\frac{k}{n}, \frac{k+1}{n}, \frac{k+2}{n} ; A_{t}(f)\right] \geqslant 0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{d^{k}}{d z^{k}}\left[\frac{g_{n}(x, z)-g_{n}(y, z)}{z-1}\right]^{2}\right|_{z=0} \geqslant 0 \tag{6}
\end{equation*}
$$

for any $k \in \mathbb{N}$ and all $x, y \in I$, then $A(f) \geqslant 0$. Here, for $x, y \in I$ fixed, the functional A is defined by

$$
A(f)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left[a_{n, i}(x) a_{n, j}(x)+a_{n, i}(y) a_{n, j}(y)-2 a_{n, i}(x) a_{n, j}(y)\right] A_{\frac{i+j}{2 n}}(f)
$$

The following result ([3], Corollary 3.2) is useful to verify inequality (6).
Let $x, y \in I$ be two distinct numbers. Assume that conditions i) and ii) above hold,

$$
\begin{equation*}
\frac{g_{n}(x, z)-g_{n}(y, z)}{z-1}=\sum_{k=0}^{\infty} \beta_{n, k}(x, y) z^{k} \tag{7}
\end{equation*}
$$

and $\operatorname{sgn} \beta_{n, k}(x, y)$ is the same for all $k \in \mathbb{N}$, then (6) is satisfied.
For $m \in \mathbb{N}, m \geqslant 2$ and $x \in I^{m}, x=\left(x_{1}, \ldots, x_{m}\right)$, we define the functionals:

$$
\begin{align*}
C_{m}(f)= & \sum_{i_{1}, \ldots, i_{m}=0}^{\infty}\left[a_{n, i_{1}}\left(x_{1}\right) \ldots a_{n, i_{m}}\left(x_{1}\right)+\ldots+a_{n, i_{1}}\left(x_{m}\right) \ldots a_{n, i_{m}}\left(x_{m}\right)\right. \\
& \left.-m a_{n, i_{1}}\left(x_{1}\right) \ldots a_{n, i_{m}}\left(x_{m}\right)\right] A_{\frac{i_{1}+\ldots+i_{m}}{m n}}(f) . \tag{8}
\end{align*}
$$

In [3], Theorem 4.1, we have proved the following result:
If (5) and (6) hold, then

$$
C_{m}(f) \geqslant 0
$$

for any $m \in \mathbb{N}, m \geqslant 2$.
Applications, such as Bernstein type operators, Mirakyan-Favard-Szász type operators, Meyer-König and Zeller type operators, were considered in [3].

Let us assume that the generating functions $g_{n}, n \in \mathbb{N}^{*}$ are of the form

$$
\begin{equation*}
g_{n}(t, z)=\phi^{n}(t, z) \tag{9}
\end{equation*}
$$

where $\phi: I \times D \rightarrow \mathbb{C}$ is such that $\phi(t, \cdot)$ is an analytic function and the function g_{n} given by (9) satisfies conditions (3). Under these assumptions, we have

$$
\begin{equation*}
\sum_{i_{1}+\ldots+i_{m}=k} a_{n, i_{1}}(t) \ldots a_{n, i_{m}}(t)=a_{n m, k}(t) \tag{10}
\end{equation*}
$$

The above identity implies that

$$
\begin{equation*}
C_{m}(f)=\sum_{k=1}^{m} L_{m n, A}(f)\left(x_{k}\right)-m \sum_{i_{1}, \ldots, i_{m}=0}^{\infty} a_{n, i_{1}}\left(x_{1}\right) \ldots a_{n, i_{m}}\left(x_{m}\right) A_{\frac{i_{1}+\ldots+i_{m}}{m n}}(f) \tag{11}
\end{equation*}
$$

Let us assume that the sequence $\left(L_{n, A}\right)_{n \in \mathbb{N}^{*}}$ preserves convexity. More precisely, we assume that for every convex function $f \in \mathscr{F}, L_{n, A}(f), n \in \mathbb{N}^{*}$ is convex too. Under this assumption, we have

$$
\begin{equation*}
L_{n m, A}(f)\left(\frac{x_{1}+\ldots+x_{m}}{m}\right) \leqslant \sum_{k=1}^{m} \frac{L_{n m, A}(f)\left(x_{k}\right)}{m} \tag{12}
\end{equation*}
$$

For the Bernstein operators, in [1], the following problem was studied:
Prove that

$$
\begin{equation*}
B_{2 n}(f)\left(\frac{x_{1}+x_{2}}{2}\right) \geqslant \sum_{i=0}^{n} \sum_{j=0}^{n} b_{n, i}\left(x_{1}\right) b_{n, j}\left(x_{2}\right) f\left(\frac{i+j}{2 n}\right) \tag{13}
\end{equation*}
$$

for all convex $f \in C[0,1]$ and $x_{1}, x_{2} \in[0,1]$.
A probabilistic solution was found by A. Komisarski and T. Rajba, [5]. In [1], U. Abel and I. Raşa gave an analytic proof to the following theorem.

THEOREM 2. ([1], Theorem 1) Let $n, m \in \mathbb{N}$. If $f \in C[0,1]$ is a convex function, then the inequality

$$
B_{m n}(f)\left(\frac{1}{m} \sum_{v=1}^{m} x_{v}\right) \geqslant \sum_{i_{1}=0}^{n} \ldots \sum_{i_{m}=0}^{n}\left(\prod_{v=1}^{m} b_{n, i_{v}}\left(x_{v}\right)\right) f\left(\frac{1}{m n} \sum_{v=1}^{m} i_{v}\right)
$$

is valid for all $x_{1}, \ldots, x_{m} \in[0,1]$.
The purpose of this paper is to give sufficient conditions for the generating functions $g_{n}, n \in \mathbb{N}$, such that the functional $\mathbb{B}_{m}: \mathscr{F} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\mathbb{B}_{m}(f)=L_{m n, A}(f)\left(\frac{x_{1}+\ldots+x_{m}}{m}\right)-\sum_{i_{1}, \ldots, i_{m}=0}^{\infty} a_{n, i_{1}}\left(x_{1}\right) \ldots a_{n, i_{m}}\left(x_{m}\right) A_{\frac{i_{1}+\ldots+i_{m}}{m n}}(f) \tag{14}
\end{equation*}
$$

is nonnegative for any function $f \in \mathscr{F}$ for which

$$
\begin{equation*}
\left[\frac{k}{n}, \frac{k+1}{n}, \frac{k+2}{n} ; A_{t}(f)\right] \geqslant 0 \tag{15}
\end{equation*}
$$

and for any $x=\left(x_{1}, \ldots, x_{m}\right) \in I^{m}$ and any $k \in \mathbb{N}$. It is immediate to see, from (11), that if $\mathbb{B}_{m}(f) \geqslant 0$, then $C_{m}(f) \geqslant 0$ as well.

2. Main results

THEOREM 3. Let $f \in \mathscr{F}$ be such that inequality (15) holds. If

$$
\begin{equation*}
\frac{d^{k}}{d z^{k}}\left[\frac{g_{n m}\left(\frac{x_{1}+\ldots+x_{m}}{m}, z\right)-g_{n}\left(x_{1}, z\right) \ldots g_{n}\left(x_{m}, z\right)}{z-1}\right]_{z=0}^{2} \geqslant 0 \tag{16}
\end{equation*}
$$

for any $k \in \mathbb{N}$ and any $x=\left(x_{1}, \ldots, x_{m}\right) \in I^{m}$,then

$$
\mathbb{B}_{m}(f) \geqslant 0
$$

If (16) holds with opposite sign for any $k \in \mathbb{N}$ and any $x=\left(x_{1}, \ldots, x_{m}\right) \in I^{m}$, then

$$
\mathbb{B}_{m}(f) \leqslant 0
$$

Proof. We note that

$$
\mathbb{B}_{m}\left(e_{0}\right)=\mathbb{B}_{m}\left(e_{1}\right)=0
$$

On the other hand, we have

$$
\mathbb{B}_{m}(f)=L_{m n, A}(f)\left(\frac{x_{1}+\ldots+x_{m}}{m}\right)-\sum_{k=0}^{\infty} \alpha_{n, k}(x) A_{\frac{k}{m n}}(f),
$$

where

$$
\alpha_{n, k}(x)=\sum_{i_{1}+\ldots+i_{m}=k} a_{n, i_{1}}\left(x_{1}\right) \ldots a_{n, i_{m}}\left(x_{m}\right)
$$

So

$$
\mathbb{B}_{m}(f)=\sum_{k=0}^{\infty}\left[a_{m n, k}\left(\frac{x_{1}+\ldots+x_{m}}{m}\right)-\sum_{i_{1}+\ldots+i_{m}=k} a_{n, i_{1}}\left(x_{1}\right) \ldots a_{n, i_{m}}\left(x_{m}\right)\right] f\left(\frac{k}{m n}\right) .
$$

We note that

$$
\begin{align*}
& g_{m n}\left(\frac{x_{1}+\ldots+x_{m}}{m}, z\right)-g_{n}\left(x_{1}, z\right) \ldots g_{n}\left(x_{m}, z\right) \\
= & \sum_{k=0}^{\infty}\left[a_{m n, k}\left(\frac{x_{1}+\ldots+x_{m}}{m}\right)-\sum_{i_{1}+\ldots+i_{m}=k} a_{n, i_{1}}\left(x_{1}\right) \ldots a_{n, i_{m}}\left(x_{m}\right)\right] z^{k} . \tag{17}
\end{align*}
$$

From (17), we get

$$
\begin{align*}
& a_{m n, k}\left(\frac{x_{1}+\ldots+x_{m}}{m}\right)-\sum_{i_{1}+\ldots+i_{m}=k} a_{n, i_{1}}\left(x_{1}\right) \ldots a_{n, i_{m}}\left(x_{m}\right) \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left[g_{m n}\left(\frac{x_{1}+\ldots+x_{m}}{m}, e^{i \theta}\right)-g_{n}\left(x_{1}, e^{i \theta}\right) \ldots g_{n}\left(x_{m}, e^{i \theta}\right)\right] e^{-i k \theta} d \theta \tag{18}
\end{align*}
$$

for any $k \in \mathbb{N}$. From (18), by using the same technique as in the proof of Theorem 4.1, [3], we get

$$
\begin{equation*}
\mathbb{B}_{m}(f)=\frac{2}{n m} \sum_{k=2}^{\infty} \mathbb{B}_{m}\left(\left|\cdot-\frac{k-1}{n m}\right|\right)\left[\frac{k-2}{m n}, \frac{k-1}{m n}, \frac{k}{m n} ; A_{t}(f)\right], \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{B}_{m}\left(\left|\cdot-\frac{k-1}{m n}\right|\right)=\left.\frac{1}{n m} \frac{1}{(k-2)!} \frac{d^{k-2}}{d z^{k-2}} \frac{E_{m}^{2}(x, z)}{(z-1)^{2}}\right|_{z=0} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{m}(x, z)=g_{m n}\left(\frac{x_{1}+\ldots+x_{m}}{m}, z\right)-g_{n}\left(x_{1}, z\right) \ldots g_{n}\left(x_{m}, z\right) \tag{21}
\end{equation*}
$$

Equations (19), (20) and (7) conclude our proof.
In what follows we are interested in whether there exists a large class of linear positive operators for which $A(f) \geqslant 0$, whenever (5) and (6) are satisfied and $\mathbb{B}_{m}(f) \geqslant 0$ or $\mathbb{B}_{m}(f) \leqslant 0$.

Mastroianni type operators

We denote by $C_{2}([0, \infty))$ the function space

$$
C_{2}([0, \infty)):=\left\{f \in C([0, \infty)): \exists \lim _{x \rightarrow \infty} \frac{f(x)}{1+x^{2}}<\infty\right\}
$$

Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real functions defined on $[0, \infty), \varphi_{n} \in C^{\infty}[0, \infty), n \in \mathbb{N}$ that are strictly monotone and satisfy the following conditions:

$$
\varphi_{n}(0)=1, n \in \mathbb{N} \text { and }(-1)^{n} \varphi_{n}^{(k)}(x) \geqslant 0, n \in \mathbb{N}^{*}, k \in \mathbb{N}, x \geqslant 0
$$

$\forall(n, k) \in \mathbb{N} \times \mathbb{N}, \exists p(n, k) \in \mathbb{N}, \exists \alpha_{n, k}:[0, \infty) \rightarrow \mathbb{R}$ such that $\forall x \geqslant 0, \forall i \in \mathbb{N}^{*}$,

$$
\varphi_{n}^{(i+k)}(x)=(-1)^{k} \varphi_{p(n, k)}^{(i)}(x) \alpha_{n, k}(x) \text { and } \lim _{n \rightarrow \infty} \frac{n}{p(n, k)}=\lim _{n \rightarrow \infty} \frac{\alpha_{n, k}(x)}{n^{k}}=1 .
$$

G. Mastroianni, in [6], introduced for any $n \in \mathbb{N}^{*}$, the operators $M_{n}: C_{2}([0, \infty)) \rightarrow$ $C([0, \infty))$, defined by

$$
M_{n}(f)(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{k} \varphi_{n}^{(k)}(x) f\left(\frac{k}{n}\right) .
$$

Let $\left(A_{t}\right)_{t \in I}$ be a set of linear positive functionals defined on the linear set of functions \mathscr{F}, satisfying conditions i) and ii) above and such that for every $f \in \mathscr{F}$, the series

$$
\begin{equation*}
M_{n, A}(f)(x):=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k} \varphi_{n}^{(k)}(x)}{k!} A_{\frac{k}{n}}(f) \tag{22}
\end{equation*}
$$

converges. We will assume that $\Pi_{2} \subseteq \mathscr{F}$.
Remark 1. If $\mathscr{F}=C_{2}([0, \infty))$, then $M_{n, A}(f)$ is well defined, [6].
Lemma 1. If for any $x \in[0, \infty)$, the function $g_{n}(x, \cdot)=\varphi_{n}(x(1-\cdot))$ is analytic in $D=\{z \in \mathbb{C}:|z|<R\}, R>1$, then g_{n} is a generating function for $M_{n, A}$.

Proof. We have

$$
\frac{d^{k}}{d z^{k}} g_{n}(x, z)=(-1)^{k} x^{k} \varphi_{n}^{(k)}(x(1-z))
$$

and therefore

$$
g_{n}(x, z)=\sum_{k=0}^{\infty}(-1)^{k} x^{k} \frac{\varphi_{n}^{(k)}(x)}{k!} z^{k} .
$$

Theorem 4. Let $x, y \in[0, \infty), x \neq y$. If

$$
\frac{g_{n}(x, z)-g_{n}(y, z)}{z-1}=\sum_{k=0}^{\infty} \beta_{n, k}(x, y) z^{k},
$$

then $\operatorname{sgn} \beta_{n, k}(x, y)$ is the same for all $k \in \mathbb{N}$.
Proof. We have

$$
\frac{g_{n}(x, z)-g_{n}(y, z)}{z-1}=-\sum_{p=0}^{\infty} \frac{(-1)^{p} x^{p} \varphi_{n}^{(p)}(x)-(-1)^{p} y^{p} \varphi_{n}^{(p)}(y)}{p!} z^{p} \sum_{m=0}^{\infty} z^{m} .
$$

It follows that

$$
\begin{equation*}
\beta_{n, k}(x, y)=-\sum_{p=0}^{k} \frac{(-1)^{p} x^{p} \varphi_{n}^{(p)}(x)-(-1)^{p} y^{p} \varphi_{n}^{(p)}(y)}{p!} \tag{23}
\end{equation*}
$$

Let us consider the function $h_{n, k}:[0, \infty) \rightarrow \mathbb{R}$ defined by

$$
h_{n, k}(t)=-\sum_{p=0}^{k} \frac{(-1)^{p} t^{p} \varphi_{n}^{(p)}(t)}{p!} .
$$

We have

$$
\begin{aligned}
h_{n, k}^{\prime}(t) & =-\sum_{p=0}^{k} \frac{(-1)^{p} p t^{p-1} \varphi_{n}^{(p)}(t)}{p!}-\sum_{p=0}^{k} \frac{(-1)^{p} t^{p} \varphi_{n}^{(p+1)}(t)}{p!} \\
& =\sum_{p=0}^{k-1} \frac{(-1)^{p} t^{p} \varphi_{n}^{(p+1)}(t)}{p!}--\sum_{p=0}^{k} \frac{(-1)^{p} t^{p} \varphi_{n}^{(p+1)}(t)}{p!} \\
& =\frac{(-1)^{p+1} t^{p} \varphi_{n}^{(p+1)}(t)}{p!} \geqslant 0, \forall t \in[0, \infty), \forall p \in \mathbb{N} .
\end{aligned}
$$

But

$$
\beta_{n, k}(x, y)=h_{n, k}(x)-h_{n, k}(y)
$$

and therefore

$$
\operatorname{sgn} \beta_{n, k}(x, y)=\operatorname{sgn}(x-y), \forall x, y \in[0, \infty)
$$

which concludes our proof.
Corollary 1. Let $M_{n, A}$ be a family of Mastroianni type operators and let $f \in$ \mathscr{F}. If

$$
\left[\frac{k}{n}, \frac{k+1}{n}, \frac{k+2}{n} ; A_{t}(f)\right] \geqslant 0, \forall k \in \mathbb{N},
$$

then for all the functionals C_{m}, given by (8), with

$$
a_{n, i_{k}}\left(x_{i}\right)=\frac{(-1)^{i_{k}} x_{i}^{i_{k}} \varphi_{n}^{\left(i_{k}\right)}\left(x_{i}\right)}{i_{k}!}
$$

we have $C_{m}(f) \geqslant 0$.

Examples

1. Bernstein type operators are Mastroianni type operators with the functions $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ defined by $\varphi_{n}(x)=(1-x)^{n}$ and the generating functions $g_{n}(x, t)$ given by

$$
g_{n}(x, t)=(1-x+t x)^{n} .
$$

2. Mirakyan-Favard-Szász type operators, $S_{n, A}$,

$$
S_{n, A}(f)(x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} A_{\frac{k}{n}}(f)
$$

are obtained for $\varphi_{n}(x)=e^{-n x}, x \geqslant 0$ and $g_{n}(x, z)=e^{-n x(1-z)}$.
3. Baskakov type operators, $V_{n, A}$,

$$
V_{n, A}(f)(x)=(1+x)^{-n} \sum_{k=0}^{\infty}\binom{n+k-1}{k}\left(\frac{x}{1+x}\right)^{k} A_{\frac{k}{n}}(f)
$$

are obtained for $\varphi_{n}(x)=(1+x)^{-n}, n \in \mathbb{N}^{*}$ and $g_{n}(x, z)=(1+x-x z)^{-n}$.
4. Szász-Schurer type operators, $S_{n, p, A}$,

$$
S_{n, p, A}(f)(x)=e^{-(n+p) x} \sum_{k=0}^{\infty} \frac{(n+p)^{k} x^{k}}{k!} A_{\frac{k}{n}}(f)
$$

are obtained for $\varphi_{n}(x)=e^{-(n+p) x}$ and $g_{n}(x, z)=e^{-(n+p) x(1-z)}$.
We note that in the above examples the generating functions are of the following form:

$$
g_{n}(x, z)=\phi^{n+p}(x, z)
$$

where $\phi(x, z)=e^{-x(1-z)}$ is the same with the g_{1}-function corresponding to the Mirakyan-Favard-Szász type operators detailed above. Let p be a fixed natural number. Using now Theorem 3, with $n:=n+p$ and the results from [3] related to Mirakyan-FavardSzász operators, the next theorem follows.

THEOREM 5. Let $f \in \mathscr{F}$ be a function with the property that

$$
\left[\frac{k}{n}, \frac{k+1}{n}, \frac{k+2}{n} ; A_{t}(f)\right] \geqslant 0, \forall k \in \mathbb{N} .
$$

Then $\mathbb{B}_{m}(f) \geqslant 0$.

Concluding remarks

We mention below a few consequences of Theorem 3.

1. The Bernstein type operators verify (16). In this case $g_{1}(x, z)=1-x+z x$ and inequality (16) follows from Gusić, [4], Theorem 1 (see also [9], Equation (2)), where the following representation is given

$$
\begin{equation*}
\left(\sum_{v=1}^{m} a_{v}\right)^{m}-m^{m} \sum_{v=1}^{m} a_{v}=\sum_{1 \leqslant i<j \leqslant m}\left(a_{i}-a_{j}\right)^{2} P_{i, j}\left(a_{1}, \ldots, a_{m}\right) \tag{24}
\end{equation*}
$$

In (24), $P_{i, j}$ are some homogeneous polynomials of degree $n-2$ with nonnegative coefficients. Identity (24) was used by Abel and Raşa in [1] for the classical Bernstein operators.
2. For $g_{1}(x, z)=e^{-x(1-z)}$, we get

$$
\mathbb{B}_{m}(f)=C_{m}(f), m \in \mathbb{N}^{*}
$$

3. In the case of Baskakov type operators, we have

$$
g_{1}(x, z)=\frac{1}{1+x-x z}
$$

Using now (24), it follows that the reverse of inequality (16) is satisfied. Therefore, if $f \in \mathscr{F}$ and

$$
\left[\frac{k}{n}, \frac{k+1}{n}, \frac{k+2}{n} ; A_{t}(f)\right] \geqslant 0, \forall k \in \mathbb{N},
$$

then the Baskakov type operators satisfy the following inequalities

$$
V_{n, A}(f)\left(\frac{x_{1}+\ldots+x_{m}}{m}\right) \leqslant \sum_{i_{1}=0}^{\infty} \ldots \sum_{i_{m}=0}^{\infty} \prod_{v=1}^{m} a_{n, i_{v}}\left(x_{v}\right) A_{\sum_{v=1}^{m} i_{v} / m}
$$

and

$$
\begin{aligned}
& \sum_{i_{1}, \ldots, i_{m}=0}^{\infty}\left[a_{n, i_{1}}\left(x_{1}\right) . . a_{n, i_{m}}\left(x_{1}\right) .+\ldots .+a_{n, i_{1}}\left(x_{1} m . . a_{n, i_{m}}\left(x_{m}\right)\right] A_{\frac{i_{1}+\ldots+i_{m}}{n m}}(f)\right. \\
\geqslant & m \sum_{i_{1}, \ldots, i_{m}=0}^{\infty} a_{n, i_{1}}\left(x_{1}\right) \ldots a_{n, i_{m}}\left(x_{m}\right) A_{\frac{i_{1}+\ldots+i_{m}}{n m}}(f) .
\end{aligned}
$$

REFERENCES

[1] U. Abel, I. RAŞA, A sharpening of a problem on Bernstein polynomials and convex functions, Math. Inequal. Appl., 21(2018), 773-777.
[2] U. Abel, An inequality involving Bernstein polynomials and convex functions, Journal of Approximation Theory 222(2017), 1-7.
[3] B. Gavrea, On a convexity problem in connection with some linear operators, J. Math. Anal. Appl., 461 (2018), 319-332.
[4] I. Gusić, A purely algebraic proof of AG inequality, Math. Inequal. Appl., 8(2005), 191-198.
[5] A. Komisarski, T. Rajba, Muirhead inequality for convex orders and a problem of I. Rassa on Bernstein polynomials, J. Math. Anal. Appl. 458(2018), 821-830.
[6] G. Mastroianni, Su una classe di operatori lineari e positivi, Rend. Acc. Sc. Fis. Mat., Napoli (4) 48(1980), 217-235.
[7] J. Mrowiec, T. Rajba, S. Wasowicz, A solution to the problem of Raşa connected with Bernstein polynomials, J. Math. Anal. Appl. 446(2016), 864-878.
[8] I. RAŞA, Problem 2, pp. 164. In: Report of meeting in: Conference on Ulam's Type Stability, Rytro, Poland, June 2-6, 2014, Ann. Paedagog. Croc. Stud. Math. 13(2014), 139-169.
[9] T. TARARYKOVA, An explicit representation as quasi-sum of squares of a polynomial generated by the AG inequality, Math. Inequal. Appl. 9(2006), 649-659.

[^0]
[^0]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

