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(Communicated by J. Pečarić)

Abstract. In this work we are concerned with Fefferman-Stein type inequalities. More precisely,
given an operator T and some p , 1 < p < ∞ , we look for operators M such that the inequality∫

|T f |pw � C
∫

| f |pM w,

holds true for any weight w . Specifically, we are interested in the case of T being any first or
second order Riesz transform associated to the Schrödinger operator L =−Δ+V , with V a non-
negative function satisfying an appropriate reverse-Hölder condition. For the Riesz-Schrödinger
transforms ∇L−1/2 and ∇2L−1 we make use of a result due to C. Pérez where this problem is
solved for classical Calderón-Zygmund operators.

1. Introduction

In the theory of weighted Lp -inequalities a relevant question is the following:
given an operator T and 1 < p < ∞ , to find a positive operator M such that inequalities
of the form ∫

|T f |pw �
∫

| f |pMw, (1)

hold for some reasonable set of functions f defined on R
d , d � 1, and a general weight

w , i.e. w ∈ L1
loc(R

d) , w � 0. However, the above inequality becomes more interesting
when Mw is finite a.e. and to that end it is desirable to get the operator M as small as
possible.

The first appearance of such inequality goes back to the classical result of Fefferman-
Stein ([7]) for T = M = M , the Hardy-Littlewood maximal operator, namely∫

Rd
|M f |pw �

∫
Rd

| f |pMw,

for 1 < p < ∞ .
When T is a singular integral operator, Córdoba and Fefferman showed in [4] that

inequality (1) holds taking M = Mr = (M(wr))1/r , for any 1 < r < ∞ . However, it is
known that for the Hilbert transform that inequality fails for r = 1.
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Later, Wilson in [11] obtained inequalities for 1 < p < 2 and M = M ◦M im-
proving the result in [4] since M ◦M(w) � (M(wr))1/r , for all r > 1.

In 1995, C. Pérez provided a full answer to this question with different techniques
including weak type inequalities for p = 1. He deals with maximal operators associated
to averages with respect to a Young function which can be smaller than Mr .

Below, we state the precise statements since they are essential to our work.
By a Young function A we mean A : [0,∞) → [0,∞) continuous, convex, increas-

ing and such that A(0) = 0. To define a maximal operator associated to a Young func-
tion A we introduce the A-average of a function f over a ball B as

‖ f‖A,B = inf

{
λ > 0 :

1
|B|
∫

B
A

( | f (t)|
λ

)
dt � 1

}
.

Then, the maximal operator associated to a Young function A is

MA f (x) = sup
B�x

‖ f‖A,B.

For 1 < p < ∞ , we define Dp as the class of Young functions such that

∫ ∞

c

(
t

A(t)

)p′−1 dt
t

< ∞ (2)

for some c > 0.
The following theorem appears as Theorem 1.5 in [9]. There it is stated for sin-

gular integral operators. But according to the comment in Section 3 there, it also holds
for Calderón-Zygmund operators as it is stated next.

THEOREM 1. Let 1 < p < ∞ , and let T be a Calderón-Zygmund operator. Sup-
pose that A ∈ Dp . Then there exists a constant C such that for each weight w

∫
|T f |pw � C

∫
| f |pMAw.

The following theorem deals with the endpoint case p = 1 and it is also due to C.
Pérez. Here we state a version that can be found in [5] as Theorem 9.31.

THEOREM 2. Let T be a Calderón-Zygmund operator and let A ∈ ⋃p>1 Dp .
Then there exists a constant C such that for each weight w and for all λ > 0 we
have

w({y ∈ R
d : |T f (y)| > λ}) � C

λ

∫
| f (y)|MAw(y)dy.

Some examples of functions on the class Dp are A(t) = t logp−1+ε(1 + t) or
A(t) = t logp−1(1+ t) logp−1+ε(log(1+ t)) for any ε > 0. As for the class

⋃
p>1 Dp ,

we can take A(t) = t logε(1+ t) for any ε > 0.
In this work we attempt to provide results of this type for the first and second order

Riesz transforms associated to the Schrödinger differential operator L = −Δ + V on
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R
d , d � 3 and with V satisfying a reverse Hölder inequality of order q , q > d/2, that

is, there exists C such that

(
1
|B|
∫

B
V q
)1/q

� C
1
|B|
∫

B
V, (3)

holds for every ball B in R
d . From now on, if a function V satisfies (3) above we will

say that V ∈ RHq .
The study of these operators under such assumptions on V , was started by Shen

in [10], where he proves Lp boundedness for most of the operators we will be concerned
with. As he observed, when q > d , the first order Riesz transforms ∇L−1/2 are standard
Calderón-Zygmund operators. Otherwise, they are not necessarily bounded on Lp for
all p , 1 < p < ∞ . The case of the second order Riesz transforms given by ∇2L−1 is
even worse since one can assure boundedness only for 1 < p < q . However, even in
the case that they are Calderón-Zygmund operators, we may expect in inequality (1)
a smaller operator M than those given by Pérez, since Schrödinger Riesz transforms
have kernels with a better decay at infinity. Also, in this context, kernels may have no
symmetry and hence we might obtain different results for T and its adjoint.

Essentially, we will consider two types of first and second order Riesz transforms:
one involving only derivatives ∇L−1/2 and ∇2L−1 , and the others involving the poten-
tial V , as V 1/2L−1/2 , VL−1 and V 1/2∇L−1 . In the first case we will get our results
by locally comparing with the classical Riesz transforms, allowing us to apply the re-
sults of C. Pérez. Let us point out that for ∇L−1/2 such comparison estimate appeared
already in [10] but that is not the case for ∇2L−1 , so it must be provided. We do that
in Lemma 7 and we believe that it might be useful for other purposes. As for those
operators involving V we shall require only estimates on the size of their kernels.

We would like to make a remark about the values of p for which inequalities like
(1) will be obtained. In all instances the operator M on the right hand side satisfies
M (1) � 1 and therefore our results would imply boundedness on Lp , so the range of
p should be limited as in the original work of Shen.

The paper is organized as follows. In the next section we state some general the-
orems in a somehow abstract framework but having in mind the Schrödinger Riesz
transforms mentioned above, leaving all the proofs and technical lemmas to Section 3.

The results include strong type (p, p) inequalities like (1) as well as weak type
(1,1) estimates for a suitable class of operators and their adjoints. Let us remark that
inequalities for the adjoint operators are not obtained by duality. In fact, if we proceed
in that way, we would not arrive to an inequality with an arbitrary weight on the left
hand side as we wanted.

Section 4 is devoted to apply the general theorems of Section 2 to specific operators
associated to Schrödinger semigroup: ∇L−1/2 , ∇2L−1 , VαL−α , Vα−1/2∇L−α , with
α in a range depending on the operator. In order to check that their kernels satisfy
the required assumptions, sometimes we make use of known estimates but in other
occasions we must prove them. In particular we prove a local comparison between the
kernels of ∇2(−Δ)−1 and ∇2L−1 stated in Lemma 7.

Finally in the last section we use the above results to get sufficient conditions on a
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function f to ensure local Lp integrability of T f , where T is any of the operators of
Section 4. Consequently we obtain a large class of functions f such that T f is finite
a.e.. In fact, f is allowed to increase polynomially. When these results are applied
to the Riesz-Schrödinger transforms they provide qualitative information about some
solutions of differential equations involving L .

2. General results

In this section we will consider the space R
d equipped with a critical radius func-

tion ρ : R
d → (0,∞) , that is, a function whose variation is controlled by the existence

of C0 and N0 � 1 such that

C−1
0 ρ(x)

(
1+

|x− y|
ρ(x)

)−N0

� ρ(y) � C0ρ(x)
(

1+
|x− y|
ρ(x)

) N0
N0+1

. (4)

It is worth noting that if ρ is a critical radius function , then for any γ > 0 the function
γρ is also a critical radius function. Moreover, if 0 < γ � 1 then γρ satisfies (4) with
the same constants as ρ .

Let us remark that in [10] a function ρ satisfying (4) was introduced related with
the potential V . But, once such a function ρ is defined, there is not need of any further
reference to V . So we choose to work in this frame in order to emphasize that fact.

Very often we will refer to critical balls, meaning balls of the type B(x0,ρ(x0)) ,
and we shall call subcritical balls to those B(x0,r) with r � ρ(x0) . Observe that from
(4), ρ(y) 	 ρ(x0) whenever y ∈ B(x0,ρ(x0)) .

The next lemma is a useful consequence of (4).

LEMMA 1. (see [3], Corollary 1 ) Let y ∈ B(x0,R) . Then, there exists a constant
C > 0 such that

1+
R

ρ(y)
� C

(
1+

R
ρ(x0)

)N0+1

.

Proof. From (4) and the fact that y ∈ B(x0,R) we have

1
ρ(y)

� C0

ρ(x0)

(
1+

R
ρ(x0)

)N0

.

Multiplying by R and adding 1, we get

1+
R

ρ(y)
� C0

(
R

ρ(x0)

(
1+

R
ρ(x0)

)N0

+1

)
� C

(
1+

R
ρ(x0)

)N0+1

,

where we used that C0 � 1. �
Associated to a critical radius function ρ we can define the following maximal

operators. First, let us denote Fρ the set of all balls B(x,r) such that r � ρ(x) . Then,
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for f a locally integrable function, and A a Young function, we set

Mloc
A f (x) = sup

B�x
B∈Fρ

‖ f‖A,B,

and for θ � 0,

Mθ
A f (x) = sup

B(x0,r0)�x

(
1+

r0

ρ(x0)

)−θ
‖ f‖A,B.

As usual, when A(t) = tr we use the notation Mloc
r and Mθ

r respectively.
Now, we are in position to state our main theorems.

THEOREM 3. Let T be a linear operator with associated kernel K . Suppose that
for some s > 1 , K satisfies the following estimates.

(as) For each N > 0 there exists CN such that

(∫
R<|x0−x|<2R

|K(x,y)|sdx

)1/s

� CNR−d/s′
(

1+
R

ρ(x0)

)−N

,

whenever |y− x0| < R/2 .

(bs) There exists a Calderón-Zygmund operator T0 with kernel K0 such that, for some
C and δ > 0 ,(∫

R<|x0−x|<2R
|K(x,y)−K0(x,y)|sdx

)1/s

� CR−d/s′
(

R
ρ(x0)

)δ
,

whenever |y− x0| < R/2 with R � ρ(x0) .

Then, for each θ � 0 , the operator T and its adjoint T � satisfy the following inequal-
ities for any weight w, ∫

|T f |pw � Cθ

∫
| f |pMθ

r w, (5)

for 1 < p < s and r = (s/p)′ ,∫
|T � f |pw � Cθ

∫
| f |p(Mloc

A +Mθ )w, (6)

for s′ < p < ∞ and any Young function A ∈ Dp .

REMARK 1. Assumption (as)can be seen as a size condition with a kind of “de-
cay at infinity”, while condition (bs) tells us that K has the same singularity as a
Calderón-Zygmundkernel. Nevertheless, both conditions on K are not symmetric since
integration is always made in the first variable. Consequently we do not get the same
kind of estimates for T and T � .

If the kernel K satisfies point-wise estimates we obtain a sharper result for T , as
a corollary of the previous theorem.
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COROLLARY 1. Let T be a linear operator with associated kernel K and T0 be
a Calderón-Zygmund operator with kernel K0 . Suppose that K and K0 satisfy the
following estimates.

(a∞) For each N > 0 there exists CN such that

|K(x,y)| � CN

|x− y|d
(

1+
|x− y|
ρ(x)

)−N

.

(b∞) There exist C and δ > 0 such that

|K(x,y)−K0(x,y)| � C
|x− y|d

( |x− y|
ρ(y)

)δ
.

Then, T and its adjoint T � satisfy (6) for 1 < p < ∞ and any Young function A ∈ Dp .

Corollary 1 follows immediately from Theorem 3 since conditions (a∞)and (b∞)
imply conditions (as)and (bs)for all 1 < s < ∞ , and they can be made symmetric in x
and y due to Lemma 1. For the limiting case p = 1 we obtain the following weak-type
inequalities.

THEOREM 4. Let T be a linear operator with associated kernel K and let T0 be
a Calderón Zygmund operator with kernel K0 . Suppose that for some s > 1 , K satisfies
conditions (as)and (bs) .Then, for θ � 0 and w ∈ L1

loc , w � 0 , T satisfies

w({|T f | > λ}) � Cθ
λ

∫
| f |Mθ

s′ (w), for λ > 0. (7)

Further, if T satisfies (a∞)and (b∞) , then, for any Young function A ∈⋃p>1 Dp ,

w({|T f | > λ}) � Cθ
λ

∫
| f |
(
Mloc

A +Mθ
)

w, for λ > 0. (8)

Moreover, inequality (8) also holds for T � .

The associated kernels of some operators related to L satisfy condition (bs)without
subtracting K0 and hence condition (as) and (bs) can be unified. For this type of op-
erators we can get sharper inequalities stated in the following theorem.

THEOREM 5. Let T be a linear operator with associated kernel K . Suppose that
for some s > 1 and δ > 0 , K satisfies the following condition.

(cs) For each N > 0 , there exists CN such that for any x0 ∈ R
d and R > 0 ,

(∫
R<|x0−x|<2R

|K(x,y)|sdx

)1/s

� CNR−d/s′
(

1+
ρ(x0)

R

)−δ (
1+

R
ρ(x0)

)−N

,

whenever |y− x0| < R/2 .
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Then, for any θ � 0 and any weight w, there exists Cθ such that T satisfies (5) for
1 � p < s and ∫

|T � f |pw � Cθ

∫
| f |pMθ w, (9)

for s′ < p < ∞ .

3. Proofs

Before giving the proofs of the theorems above we need to state some technical
lemmas that will be useful in the sequel. The first one gives a nice covering of R

d with
critical balls. It is a consequence of inequality (4) and can be found in [6].

In some proofs we will use the notation � instead of � to denote that the right
hand side of the inequality is greater up to multiplicative constants that may depend on
some parameters specified when necessary.

PROPOSITION 1. There exists a sequence of points {x j} j∈N such that the family
of critical balls Qj = B(x j,ρ(x j)) satisfies:

i)
⋃
j∈N

Qj = R
d .

ii) There exist constants C and N1 such that for any σ � 1 , ∑
j∈N

χσQj � CσN1 .

In general, maximal operators can not be controlled point-wisely by localized
ones. Nevertheless, this is possible if we are considering functions supported on sub-
critical balls and for points close enough to the support. In the next lemma we determine
how much a critical ball must be contracted in order to have that kind of control. Such
contraction of critical balls is needed to arrive to inequality (6) of Theorem 3.

LEMMA 2. Let A be a Young function and B0 any critical ball. There exists
γ0 > 0 such that if 0 < γ � γ0 then for any measurable function f ,

MA( f χγB0)(x) � CMloc
A ( f )(x),

for all x ∈ 2γB0 . Here, the constant C only depends on the dimension d and the Young
function A.

Proof. Assume x ∈ 2γB0 with γ to be determined later. It is enough to consider
balls centered at x ; in fact, it is not difficult to see that if Mc

A is the centered maximal
function, then MA( f )(x) � CMc

A( f )(x) for any function f with C that only depends
on d and A . Let x0 be the center of B0 and suppose first that r > 3γρ(x0) . Therefore
B(x,r) ⊃ B(x,3γρ(x0)) ⊃ γB0 and thus, for any non-negative function g ,

1
|B(x,r)|

∫
B(x,r)∩γB0

g � 1
|B(x,3γρ(x0))|

∫
γB0

g � 1
|B(x,3γρ(x0))|

∫
B(x,3γρ(x0))

g.
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Now, if λ > 0, applying the above inequality to g = A(| f |/λ ) we have, for r �
3γρ(x0) ,

‖ f χγB0‖A,B(x,r) � ‖ f‖A,B(x,3γB0).

Therefore, if x ∈ 2γB0 ,

Mc
A( f χγB0)(x) � sup

r�3γρ(x0)
‖ f‖A,B(x,r).

To complete the proof, it is enough to take γ such that 3γρ(x0) � ρ(x) for all
x ∈ 2γB0 .

From inequality (4), we have ρ(x0) � ρ(x)C0(1 + 2γ)N0 and thus γ should be
taken such that

3γC0(1+2γ)N0 � 1. (10)

Since the left hand side goes to 0 when γ goes to 0, there exists γ0 such that for
0 < γ � γ0 the above inequality holds. �

Conditions (as)and (bs)are written in a suitable way to prove inequalities con-
cerning T � . To prove the inequalities for T it will be easier to use the following equiv-
alent conditions.

LEMMA 3. For any s > 1 , conditions (as)and (bs) are equivalent, respectively,
to the following conditions.

(a′s) For each N > 0 there exists CN such that

(∫
B(x0,R/2)

|K(x,y)|sdx

)1/s

� CNR−d/s′
(

1+
R

ρ(x0)

)−N

,

whenever R < |y− x0| < 2R.

(b′s) There exist C and δ > 0 such that

(∫
B(x0,R/2)

|K(x,y)−K0(x,y)|sdx

)1/s

� CR−d/s′
(

R
ρ(x0)

)δ

whenever R < |y− x0| < 2R and R � ρ(x0) .

REMARK 2. Observe that (as) holds true replacing the ring, R < |x− x0| < 2R
with R < |x− x0| < c0R for any constant c0 > 1, with the constant CN depending on
c0 . Similarly in (a′s) the ring R < |y−x0|< 2R may be replaced by R < |y−x0|< c0R .
In fact, it is only a matter of applying (as) or (a′s) a finite number of times depending
on c0 .

The same comment applies to (bs) and (b′s) .

Proof of Lemma 3. We will show first that (as) implies (a′s) . Let K be a kernel
satisfying (as)for some s > 1, and let x0 ∈ R

d , R > 0 and y such that R < |x0 − y| <
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2R . It is easy to check that B(x0,R/2) ⊂ {x : R/2 < |x− y| < 4R} . So, applying
condition (as)and the previous remark we get that

(∫
B(x0,R/2)

|K(x,y)|sdx

)1/s

�
(∫

R/2<|y−x|<4R
|K(x,y)|sdx

)1/s

� CNR−d/s′
(

1+
R

ρ(y)

)−N

� CNR−d/s′
(

1+
R

ρ(x0)

)−Ñ

,

where in the last inequality we used Lemma 1.
To see that (a′s) implies (as) let x0 ∈ R

d , R > 0 and y ∈ B(x0,R/2) . The ring
{x : R < |x− x0| < 2R} can be covered by M balls (depending on d ), of radius R/4
and centres xi , with R < |xi − x0| < 2R , for i = 1, . . . ,M . For each of these balls we
can check that R/2 < |xi − y| < 5R/2. Applying condition (a′s)and Remark 2 on each
ball,

(∫
R<|y−x|<2R

|K(x,y)|sdx

)1/s

�
M

∑
i=1

(∫
B(xi,R/4)

|K(x,y)|sdx

)1/s

�
M

∑
i=1

CNR−d/s′
(

1+
R

ρ(xi)

)−N

� CNR−d/s′
(

1+
R

ρ(x0)

)−Ñ

,

where we used again Lemma 1 in the last inequality.
We can omit the proof of the equivalence of (bs)and (b′s)since it follows the same

lines as above. �

Proof of Theorem 3. Let T be a linear operator with kernel K satisfying (as)
and (bs) , for some s > 1 and some Calderón-Zygmund operator T0 with kernel K0 .
Let w � 0, w ∈ L1

loc , θ � 0, 1 < p < s and let A be a Young function satisfying (2).
We will prove first inequality (5). Let γ0 be as in Lemma 2. For some γ � γ0 , to

be chosen later, let {Qn} be the decomposition of the space given in Proposition 1 for
the critical radius function γρ . Then we write

∫
|T f |pw � ∑

n∈N

∫
Qn

|T f |pw

= ∑
n∈N

∫
Qn

|T ( f χ2Qn)+T( f χ(2Qn)c)±T0( f χ2Qn)|pw

� ∑
n∈N

∫
Qn

|T ( f χ2Qn)−T0( f χ2Qn)|pw + ∑
n∈N

∫
Qn

|T ( f χ(2Qn)c)|pw

+ ∑
n∈N

∫
Qn

|T0( f χ2Qn)|pw = I + II + III.

(11)
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For III , since T0 is a Calderón-Zygmund operator, we apply Theorem 1 and
Lemma 2 to get

III = ∑
n∈N

∫
|T0( f χ2Qn)|pwχQn � ∑

n∈N

∫
| f χ2Qn |MA(wχQn) � ∑

n∈N

∫
2Qn

| f |pMloc
A w

�
∫
| f |pMloc

A w,

for any Young function A ∈ Dp .
For k∈Z we denote Qk

n = 2kQn . To estimate II we use Minkowski’s and Hölder’s
inequalities to obtain

II = ∑
n∈N

∫
Qn

|T ( f χ(2Qn)c)|pw = ∑
n∈N

∫
Qn

[∫
(2Qn)c

|K(x,y)|| f (y)|dy

]p

w(x)dx

� ∑
n∈N

[∫
(2Qn)c

| f (y)|
(∫

Qn

|K(x,y)|pw(x)dx

)1/p

dy

]p

� ∑
n∈N

[
∑
k∈N

∫
Qk+1

n \Qk
n

| f (y)|
(∫

Qn

|K(x,y)|sdx

)1/s(∫
Qn

wr(x)dx

)1/rp

dy

]p

,

where r = (s/p)′ .
Next we apply condition (a′s)for K since by Lemma 3 is equivalent to (as) . Then

for each N we have

II � ∑
n∈N

[
∑
k∈N

|Qk
n|−1/s′2−kN

∫
Qk

n

| f (y)|
(∫

Qn

wr
)1/rp

dy

]p

� ∑
n∈N

⎡
⎣∑

k∈N

|Qk
n|−1/s′+1/p′2−kN

(∫
Qk

n

| f (y)|p
(∫

Qk
n

wr
)1/r

dy

)1/p
⎤
⎦

p

� ∑
n∈N

⎡
⎣∑

k∈N

2−k(N−θ/p)

(∫
Qk

n

| f (y)|p 2−kθ
(

1
|Qk

n|
∫

Qk
n

wr
)1/r

dy

)1/p
⎤
⎦

p

� ∑
n∈N

[
∑
k∈N

2−k(N−θ/p)
(∫

Qk
n

| f (y)|p Mθ
r w(y)dy

)1/p
]p

,

with constants that may depend on N .
Finally, using Hölder’s inequality in the sum over k and choosing N = N1 +θ/p+

1, where N1 is the constant appearing in Proposition 1, we arrive to

II � ∑
n∈N

[
∑
k∈N

2−k(N1+1)
∫

Qk
n

| f |p Mθ
r w

][
∑
k∈N

2−k(N1+1)

]p/p′

� ∑
k∈N

2−k(N1+1)
∫

Rd

(
∑
n∈N

χQk
n

)
| f |p Mθ

r w �
∫

Rd
| f |p Mθ

r w,
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with constants depending on N1 and θ and p .
It only remains to estimate I . Let D(x,y) = K(x,y)−K0(x,y) . For x ∈ Qn , we

have 2Qn ⊂ B(x,ρ(x)) due to our choice of γ (see inequality (10)), therefore we may
write

I = ∑
n∈N

∫
Qn

|T ( f χ2Qn)−T0( f χ2Qn)|pw

� ∑
n∈N

∫
Qn

[∫
2Qn

|D(x,y)|| f (y)|dy

]p

w(x)dx

� ∑
n∈N

∫
Qn

[∫
B(x,ρ(x))

|D(x,y)|| f (y)|dy

]p

w(x)dx

�
∫

Rd
|h(x)|pw(x)dx = ‖h‖p

Lp(Rd ,w),

(12)

where
h(x) =

∫
B(x,ρ(x))

|D(x,y)|| f (y)|dy.

For a fixed k and for any n we can take 2dk disjoint balls of the form Bl
n,k =

B(xl
n,k,2

−kγρ(xn)) such that for σ >
√

d ,

Qn ⊂
2dk⋃
l=1

σBl
n,k ⊂ 2σQn.

Moreover, there exists a constant depending only on σ and d such that,

2dk

∑
l=1

χσBl
n,k

� Cd,σ χ2σQn .

Therefore, from Proposition 1, the family of balls {σBl
n,k}l,n covers R

d and

∑
l,n

χσBl
n,k

� Cd,σ ,ρ .

Let us fix σ = 2
√

d . It is possible to choose γ small enough such that if x∈ σBl
n,k

and 2−k−1ρ(x) � |y− x|� 2−kρ(x) then

y ∈ El
n,k = {y : 4

√
dγ2−kρ(xn) � |y− xl

n,k| � β γ2−kρ(xn)}.

for some constant β > 4
√

d depending only on ρ and d .1

Now, we write h in the following way

h(x) =
∞

∑
k=0

hk(x) =
∞

∑
k=0

∫
B(x,2−kρ(x))\B(x,2−k−1ρ(x))

|D(x,y)|| f (y)|dy.

1For example, it works taking γ = 1
2C0(5

√
d)N0+1 and β = 2C2

0 (5
√

d)N0+2
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So, for the covering of the space described above, we may write

‖hk‖p
Lp(w) � ∑

n,l

∫
2
√

dBl
n,k

[∫
B(x,2−kρ(x))\B(x,2−k−1ρ(x))

|D(x,y)|| f (y)|dy

]p

w(x)dx

� ∑
n,l

∫
2
√

dBl
n,k

[∫
El

n,k

|D(x,y)|| f (y)|dy

]p

w(x)dx

� ∑
n,l

⎡
⎣∫

El
n,k

| f (y)|
(∫

2
√

dBl
n,k

|D(x,y)|pw(x)dx

)1/p

dy

⎤
⎦

p

� ∑
n,l

⎡
⎣∫

El
n,k

| f (y)|
(∫

2
√

dBl
n,k

|D(x,y)|sdx

)1/s(∫
2
√

dBl
n,k

wr(x)dx

)1/(rp)

dy

⎤
⎦

p

,

where we have used Minkowski’s and Hölder’s inequalities in the last two steps. Now,
using condition (b′s)for D(x,y) (see Remark 2), we arrive to

‖hk‖p
Lp(w) � ∑

n,l

(2−kρ(xn))−dp/s′2−kδ p

⎡
⎣∫

βBl
n,k

| f (y)|
(∫

βBl
n,k

wr(x)dx

)1/(rp)

dy

⎤
⎦

p

� 2−kδ p ∑
n,l

∫
βBl

n,k

| f (y)|p
(

1

|βBl
n,k|

∫
βBl

n,k

wr(x)dx

)1/r

dy

� 2−kδ p ∑
n,l

∫
βBl

n,k

| f (y)|pMθ
r w(y)dydy � 2−kδ p‖ f‖p

Lp(Mθ
r w).

Finally,

‖h‖Lp(w) � ∑
k�0

‖hk‖Lp(w) � ∑
k�0

2−kδ‖ f‖Lp(Mθ
r w) � ‖ f‖Lp(Mθ

r w). (13)

Using the estimates obtained for I , II and III we arrive to inequality (5).
Now, let us prove inequality (6). Proceeding as in (11) we get

∫
|T � f |pw � ∑

n∈N

∫
Qn

|T �( f χ2Qn)−T�
0 ( f χ2Qn)|pw + ∑

n∈N

∫
Qn

|T �( f χ(2Qn)c)|pw

+ ∑
n∈N

∫
Qn

|T �
0 ( f χ2Qn)|pw = I� + II� + III�,

and we can estimate III� in the same way as III , since T �
0 is also a Calderón-Zygmund

operator.
For II� , we write

II� = ∑
n∈N

∫
Qn

|T �( f χ(2Qn)c)|pw = ∑
n∈N

∫
Qn

(∫
(2Qn)c

|K(x,y)|| f (x)|dx

)p

w(y)dy.
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If y ∈ Qn we may use Hölder inequality and condition (as) to obtain

∫
(2Qn)c

|K(x,y)|| f (x)|dx � ∑
k�1

(∫
Qk+1

n \Qk
n

|K(x,y)|p′dx

)1/p′(∫
Qk+1

n

| f |p
)1/p

� ∑
k�1

(∫
Qk+1

n \Qk
n

|K(x,y|sdx

)1/s(∫
Qk+1

n

| f |p
)1/p

|Qk
n|1/s′−1/p

� ∑
k�1

2−kN
(

1

|Qk+1
n |

∫
Qk+1

n

| f |p
)1/p

�
[
∑
k�1

2−kN

|Qk+1
n |

∫
Qk+1

n

| f |p
]1/p[

∑
k�1

2−kN

]1/p′

�
[
∑
k�1

2−kN

|Qk+1
n |

∫
Qk+1

n

| f |p
]1/p

,

with constants independent of n .
Therefore,

II� � ∑
n∈N

∑
k∈N

2−kN 1

|Qk+1
n |

∫
Qk+1

n

| f |p
∫

Qk+1
n

w(y)dy � ∑
n∈N

∑
k∈N

2−k(N−θ)
∫

Qk+1
n

| f |pMθ w

� ∑
k∈N

2−k(N−θ)
∫

Rd

(
∑
n∈N

χQk+1
n

)
| f |pMθ w �

∫
Rd

| f |pMθ w,

choosing N = N1 + θ +1, where N1 is the exponent given in Proposition 1.
It only remains to estimate I� . Proceeding as in (12), we have

I� = ∑
n∈N

∫
Qn

|T �( f χ2Qn)−T �
0 ( f χ2Qn)|pw � ‖h�‖p

Lp(w),

where
h�(y) =

∫
B(y,ρ(y))

|D(x,y)|| f (x)|dx,

and write

h�(y) =
∞

∑
k=0

h�
k(y) =

∞

∑
k=0

∫
B(y,2−kρ(y))\B(y,2−k−1ρ(y))

|D(x,y)|| f (x)|dx.

Now, for a fixed k , using Hölder’s inequality and denoting B(y,2−kρ(y)) = Bk
y ,

we have

h�
k(y) � C

(∫
Bk

y\Bk−1
y

|D(x,y)|sdx

)1/s(∫
Bk

y

| f |p
)1/p

(2−kρ(y))d/((s/p′)′p′).

Again for a fixed k , we consider the covering {B(xl
n,k,2

√
dγ2−kρ(xn))}n,l . Using

condition (bs) , we obtain
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‖h�
k‖p

Lp(w) � ∑
n,l

∫
Bl

n,k

|h�
k(y)|pw(y)dy

� ∑
n,l

(∫
βBl

n,k

| f |p
)

(2−kρ(y j))dp(1/s′−1/p)
∫

Bl
n,k

(∫
El

n,k

|Q(x,y)|sdx

)p/s

w(y)dy

� ∑
n,l

(∫
βBl

n,k

| f |p
)

2−kpδ

(2−kρ(yn))d

∫
βBl

n,k

w

� ∑
n,l

2−kpδ
∫

βBl
n,k

| f (x)|p
(

1

|βBl
n,k|

∫
βBl

n,k

w

)
dx � 2−kpδ ∑

n,l

∫
βBl

n,k

| f |pMθ w

� 2−kpδ‖ f‖p
Lp(Mθ w).

So, as it was done in (13),

‖h�‖Lp(w) � Cθ ∑
k

‖h�
k‖Lp(w) � ‖ f‖Lp(Mθ w).

Using the estimates obtained for I� , II� and III� we arrive to inequality (6). �

REMARK 3. It is worth noting that the estimates obtained for I and II also hold
for the case p = 1. Following the same ideas as above we arrive to

∑
n∈N

∫
Qn

|T ( f χ(2Qn)c)|w � Cθ

∫
Rd

| f |Mθ
s′ (w),

∑
n∈N

∫
Qn

|T ( f χ2Qn)−T0( f χ2Qn)|w � Cθ

∫
Rd

| f |Mθ
s′ (w).

Now we prove the weak-type inequalities stated in Theorem 4.

Proof of Theorem 4. Let T be a linear operator with kernel K and w ∈ L1
loc ,

w � 0. Suppose first that K satisfies conditions (as)and (bs)for some 1 < s < ∞ and
δ > 0. Consider again {Qn}n∈N , the partition of the space associated to γρ , with γ
chosen as in the proof of Theorem 3. For λ > 0, we may write

w({|T f | > λ}) � ∑
n∈N

w({x ∈ Qn : |T f (x)| > λ})

� ∑
n∈N

w({x ∈ Qn : |T ( f χ2Qn)(x)−T0( f χ2Qn)(x)| > λ/3})

+ ∑
n∈N

w({x ∈ Qn : |T ( f χ(2Qn)c)(x)| > λ/3})

+ ∑
n∈N

w({x ∈ Qn : |T0( f χ2Qn)(x)| > λ/3})

= I + II + III.

(14)
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To estimate III we can use this time Theorem 2 together with Lemma 2 to get

III = ∑
n∈N

w({x ∈ Qn : |T0( f χ2Qn)(x)| > λ/3})

� ∑
n∈N

wχQn({x : |T0( f χ2Qn)(x)| > λ/3}) � 1
λ ∑

n∈N

∫
2Qn

| f |MA(wχQn)

� 1
λ ∑

n∈N

∫
2Qn

| f |Mloc
A (w) � 1

λ

∫
Rd

| f |Mloc
A (w),

for any Young function A ∈ ⋃p>1 Dp . In particular we can take A(t) = ts
′

since we
will not get anything better for the other terms.

As for I and II we use the strong type inequalities for p = 1 stated on Remark 3.
In this way we obtain (7).

Now, suppose that the kernels K and K0 satisfy conditions (a∞)and (b∞) . Let
λ > 0, we use the same decomposition as in (14) to get

w({|T f > λ}) � I + II + III.

We deal with III in the same way, obtaining

III � 1
λ

∫
Rd

| f |Mloc
A (w),

for any A ∈⋃p>1 Dp .
For k ∈ Z we set Qk

n = B(x j,γ2kρ(x j)) . To estimate the term II by the Tchebysh-
eff’s inequality we may write

II = ∑
n∈N

w({x ∈ Qn : |T ( f χ(2Qn)c)(x)| > λ/3}) � ∑
n∈N

3
λ

∫
Qn

|T ( f χ(2Qn)c)|(x)w(x)dx

� ∑
n∈N

3
λ

∫
Qn

(
∑
k∈N

∫
Qk+1

n \Qk
n

|K(x,y)|| f (y)|dy

)
w(x)dx.

Now, using condition (a∞) ,

II � 1
λ ∑

n∈N

∫
Qn

∑
k∈N

2−kN

(2kρ(xn))d

(∫
Qk+1

n

| f (y)|dy

)
w(x)dx

� 1
λ ∑

n∈N

∑
k∈N

2−kN
∫

Qk+1
n

| f (y)|
(

1

|Qk+1
n |

∫
Qk+1

n

w(x)dx

)
dy

� 1
λ ∑

n∈N

∑
k∈N

2−k(N−θ)
∫

Qk+1
n

| f (y)|Mθ (w)dy

� ∑
k∈N

2−k(N−θ)
∫

Rd

(
∑
n∈N

χQk+1
n

)
| f (y)|Mθ (w)dy �

∫
Rd

| f (y)|Mθ (w)dy,

choosing N = N1 + θ +1.
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Next, to estimate I we use the Tchebysheff’s inequality and condition (b∞) .

I = ∑
j∈N

w({x ∈ Qn : |(T −T0)( f χ2Qn)(x)| > λ/3})

� ∑
n∈N

3
λ

∫
Qn

(∫
2Qn

|K(x,y)−K0(x,y)|| f (y)|dy

)
w(x)dx

� 1
λ ∑

j∈N

∫
Qn

(∫
2Qn

| f (y)|
|x− y|d

( |x− y|
ρ(x)

)δ
dy

)
w(x)dx

� 1
λ ∑

n∈N

ρ(xn)−δ
∫

2Qn

| f (y)|
∫

Qn

|x− y|δ−dw(x)dxdy.

Now, if y ∈ 2Qn , and calling By
n = B(y,3γρ(xn)) , then Qn ⊂ By

n and hence∫
Qn

|x− y|δ−dw(x)dx � ∑
k∈N

∫
2−k+1By

n\2−kBy
n

|x− y|δ−dw(x)dx

� ρ(xn)δ ∑
k∈N

2−kδ

(2−kρ(xn))d

∫
2−k+1By

n

w � ρ(xn)δ Mlocw(y),

since ρ(y) 	 ρ(xn) . Therefore, we obtain

I � 1
λ ∑

n

∫
2Qn

| f |Mlocw � 1
λ

∫
Rd

| f (y)|Mlocw.

Altogether we obtain inequality (8). The same estimate is obtained for T � since condi-
tions (a∞)and (b∞)are symmetric on x and y . �

Finally, we end this section with the proof of Theorem 5.

Proof of Theorem 5. Let T be a linear operator with associated kernel K satisfy-
ing (cs) . First, observe that condition (cs) implies both conditions (as)and (bs)with
K0 = 0. Then, proceeding as in equation (11) we can write∫

|T f |pw = ∑
n∈N

∫
Qn

|T ( f χ2Qn)+T ( f χ2Qc
n
)|pw

� ∑
n∈N

∫
Qn

|T ( f χ2Qn)|pw+ ∑
n∈N

∫
Qn

|T ( f χ2Qc
n
)|pw = I + II.

Then, inequality (5) holds for 1 � p < s following the same lines as in the proof of
Theorem 3 and taking into account Remark 3 for p = 1.

To obtain estimate (9) we proceed as above to get∫
|T � f |pw � ∑

n∈N

∫
Qn

|T �( f χ2Qn)|pw+ ∑
n∈N

∫
Qn

|T �( f χ2Qc
n
)|pw = I� + II�,

and we deal with I� and II� as in the proof of Theorem 3. �
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4. Application to Schrödinger operators

In this section we apply our general results to operators associated to the semi-
group generated by the Schrödinger differential operator L = −Δ +V on R

d with
d � 3. We will always suppose that the potential V is a non-negative function, non-
identically zero, satisfying a reverse Hölder condition of order q > d/2. Under these
assumptions the function ρ defined by

ρ(x) = sup

{
r > 0 :

1
rd−2

∫
B(x,r)

V � 1

}
, x ∈ R

d ,

is a critical radius function, that is, property (4) is satisfied for some constants C0 and
N0 .

It is known that V ∈ RHq , q > 1 implies that V is a doubling measure, i.e. there
exists C1 such that ∫

B(x,2r)
V � C1

∫
B(x,r)

V.

In fact, if V ∈ RHq , q > 1, then V belongs to the A∞ class of Muckenhoupt.
The following is an useful inequality for V ∈RHq with q > d/2 that follows easily

from Lemma 1.2 and Lemma 1.8 in [10].

LEMMA 4. Let V ∈ RHq for some q > d/2 . Let N2 = log2C1 +2−d , where C1

is the doubling constant of V . Then, for any x0 ∈ R
d , R > 0 ,

1
Rd−2

∫
B(x0,R)

V (y)dy � C

(
1+

R
ρ(x0)

)N2
(

1+
ρ(x0)

R

)d/q−2

.

REMARK 4. Observe that when R < ρ(x0) the leading term is the second factor
while the latter is bounded by a constant when R � ρ(x0) .

For the fundamental solution of L , the following estimate was shown in [10].

LEMMA 5. Let V ∈ RHq , with q > d/2 and Γ the fundamental solution of the
operator L in R

d . Then for each N > 0 , there exists a constant CN such that

|Γ(x,y)| � CN
1

|x− y|d−2

(
1+

|x− y|
ρ(x)

)−N

.

4.1. Riesz-Schrödinger transforms

We consider the operators R1 = ∇L−1/2 and R2 = ∇2L−1 , the Riesz-Schrödinger
transforms of order 1 and 2 respectively. Let K1 and K2 be their associated kernels.

The size condition (as)can be found in [1], for both K1 and K2 . In fact, (as)holds
for K1 with s = p0 , where 1

p0
= 1

q − 1
d , in the case d/2 < q < d (see page 28 in [1]),

and s = ∞ for q � d (see inequality (6.5) in [10]). Regarding K2 , it satisfies (as)for
s = q (see Proposition 8 in [1]).
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To prove that these kernels satisfy also condition (bs)we will compare them with
the classical Riesz transforms R1 = ∇(−Δ)−1/2 and R2 = ∇2(−Δ)−1 and their associ-
ated kernels K0,1 and K0,2 .

Before proving condition (bs)we present the following lemmas that provide us
point-wise estimates for the difference between the kernels associated to the Riesz-
Schrödinger transforms and the classical ones. For the Riesz-Schrödinger transform
of order 1 such result was already obtained by Shen. On the other hand, the estimate
corresponding to the second order operator is new and we believe is interesting in its
own right.

LEMMA 6. [See [10], inequality (5.9)] Let V ∈ RHq for d/2 < q < d . There
exists C such that

|K1(x,y)−K0,1(x,y)| � C
|x− y|d−1

(
G(x,y)+

1
|x− y|

( |x− y|
ρ(x)

)2−d/q
)

,

where

G(x,y) =
∫

B(x,|x−y|/4)

V (u)
|u− x|d−1du. (15)

LEMMA 7. Let x , y0 ∈ R
d and R > 0 such that R � |y− x0| � ρ(x0) . Let x ∈

B(x0,R/8) . Then there exists a constant C such that

|K2(x,y)−K0,2(x,y)| � C|R2(VΓ(y, ·)χB(x0,R/4))(x)|+
C
Rd

(
R

ρ(x0)

)δ
,

with δ = min{1,2−d/q} .

Proof. Let Γ and Γ0 be the fundamental solution of L and −Δ respectively. As
it was shown in [10], page 540,

Γ(x,y)−Γ0(x,y) = −
∫

Rd
Γ0(x,ξ )V (ξ )Γ(y,ξ )dξ .

From this we get the following expression for the difference of the kernels.

K2(x,y)−K0,2(x,y) = ∇2
1Γ(x,y)−∇2

1Γ0(x,y) = −∇2
1

∫
Rd

Γ0(x,ξ )V (ξ )Γ(y,ξ )dξ .

Next, we define the domains J1 = B(x0,R/4) , J2 = B(y,R/4) and J3 = (J1∪J2)c . The
term corresponding to the integral over J1 is, upon a sign, the classical second order
Riesz transform applied to function in Lq with compact support, that is

|∇2
1

∫
J1

Γ0(x,ξ )V (ξ )Γ(y,ξ )dξ | = |R2(VΓ(y, ·)χB(x0,R/4))(x)|.
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On J2 , since we are away from the singularity of Γ0 , we can use the size estimate
for Γ given in Lemma 5, together with Hölder’s inequality to obtain∣∣∣∣
∫

J2
∇2

1 Γ0(x,ξ )V (ξ )Γ(y,ξ )dξ

∣∣∣∣∣� C
Rd

∫
B(y,R/4)

V (ξ )
|y− ξ |d−2 dξ

� C
Rd

(∫
B(y,R/4)

Vq(ξ )dξ
) 1

q
(∫

B(y,R/4)

dξ
|y−ξ |(d−2)q′

) 1
q′

.

For the first integral we can use the reverse Hölder condition for V together with
Lemma 4, while on the second integral q > d/2 implies that (d−2)q′ < d . Then∣∣∣∣

∫
J2

∇2
1Γ0(x,ξ )V (ξ )Γ(y,ξ )dξ

∣∣∣∣� 1
Rd

(
R

ρ(x0)

)2−d/q

,

since y ∈ B(x0,ρ(x0)) .
To estimate the integral on J3 we divide J3 = J31 ∪ J32 , where J31 = {ξ ∈ R

d :
R/4 � |y− ξ |< 2R ∧ |x0 − ξ |� R/4} and J32 = {ξ ∈ R

d : |y− ξ |� 2R}. On J31 we
are away from the singularities of both Γ y Γ0 , then∣∣∣∣
∫

J31

∇2
1Γ0(x,ξ )V (ξ )Γ(y,ξ )dξ

∣∣∣∣�
∫

J31

V (ξ )
|x− ξ |d|y− ξ |d−2 dξ � 1

R2d−2

∫
B(y,2R)

V (ξ )dξ

� 1
Rd

(
R

ρ(x0)

)2−d/q

,

where in the last inequality we have used again Lemma 4.
Regarding J32 it is easy to check that |x−ξ |� 3|y−ξ |/8. Then, using Lemma 5

again,∣∣∣∣
∫

J32

∇2
1Γ0(x,ξ )V (ξ )Γ(y,ξ )dξ

∣∣∣∣� CN

∫
J32

V (ξ )
|x− ξ |d|y− ξ |d−2

(
1+

|y− ξ |
ρ(y)

)−N

dξ

� CN

∫
J32

V (ξ )
|y− ξ |2d−2

(
1+

|y− ξ |
ρ(y)

)−N

dξ .

(16)

Assume first that 2R < ρ(y) . We split the integral in J321 = {ξ ∈ R
d : 2R � |y−

ξ | < ρ(y)} and J322 = {ξ ∈ R
d : |y− ξ | � ρ(y)} . For the integral on J321 , let k0 ∈ N

such that 2k0−1R � ρ(y) � 2k0R . Then using again Lemma 4 and that d > 2−d/q ,

∫
2R�|y−ξ |<ρ(y)

V (ξ )
|y− ξ |2d−2dξ �

k0

∑
k=2

∫
2k−1R�|y−ξ |<2kR

V (ξ )
|y− ξ |2d−2

�
k0

∑
k=1

1
(2kR)d

1
(2kR)d−2

∫
B(y,2kR)

V (ξ )dξ

� 1
Rd

k0

∑
k=1

2−kd
(

2kR
ρ(y)

)2−d/q

� 1
Rd

(
R

ρ(x0)

)2−d/q

,
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since y ∈ B(x0,ρ(x0)) , and hence ρ(y) 	 ρ(x0) .
On J322 , let μ = log2C1 , where C1 is the doubling constant of the potential V .

Then we bound the right hand side of (16) by a constant (that may depend on N ) times

∫
|x−ξ |�ρ(y)

V (ξ )
|y− ξ |2d−2

(
ρ(y)
|y− ξ |

)N

dξ �
∞

∑
k=1

1
2kN

∫
2k−1ρ(y)|y−ξ |<2k+ρ(y)

V (ξ )
|y− ξ |2d−2

�
∞

∑
k=1

1

2k(2d−2+N)ρ(y)2d−2

∫
B(y,2kρ(y))

V (ξ )dξ

� 1
ρ(y)d

∞

∑
k=1

1

2k(2d−2+N−μ)ρ(y)d−2

∫
B(y,ρ(y))

V (ξ )dξ � 1
ρ(y)d

� 1
Rd

(
R

ρ(x0)

)2−d/q

,

choosing N big enough and using that ρ(y)	 ρ(x0) , R < ρ(x0) and 2−d/q < d . �
For R1 different inequalities hold true depending on q . For q > d , Shen showed

in [10] that R1 and R�
1 are Calderón-Zygmund operators. Moreover, their associated

kernels satisfy the stronger size condition (a∞)(see inequality (6.5) there). Later on,
condition (b∞)was proved for the difference between K1 and K1,0 (see [2] Lemma 3).

Therefore, as an application of Theorem 3, Corollary 1 and Theorem 4 we obtain
the following result.

THEOREM 6. Let V ∈RHq with q > d/2 , θ � 0 and p0 such that 1/p0 = (1/q−
1/d)+ . Then for any weight w the following inequalities hold.∫

|R1 f |pw � Cθ

∫
| f |pMθ

r w, (17)

when d/2 < q < d , for 1 < p < p0 and r = (p0/p)′ .∫
|R�

1 f |pw � Cθ

∫
| f |p(Mloc

A w+Mθw), (18)

when q > d/2 , for p′0 < p < ∞ , and any Young function A ∈ Dp , and

w({|R1 f | > λ}) � Cθ
λ

∫
| f |Mθ

p′0
w, (19)

for any q > d/2 .
Moreover, if q > d , we have∫

|R1 f |pw � Cθ

∫
| f |p(Mloc

A w+Mθ w), (20)

for 1 < p < ∞ and any Young function A ∈ Dp . Also

w({|R1 f | > λ}) � Cθ
λ

∫
| f |Mθ

Aw, (21)

and

w({|R�
1 f | > λ}) � Cθ

λ

∫
| f |Mθ

Aw, (22)

for any Young function A ∈⋃p>1 Dp .
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Proof. Let V ∈ RHq for q > d/2. Suppose first that q < d . As we said, condition
(as)was proved in [1] for s = p0 with 1/p0 = (1/q−1/d) . Therefore it is enough to
check (b′p0

) which is equivalent to (bp0) .
Let x0 ∈ R

d , 0 < R � ρ(x0) and R < |y− x0| < 2R . First, we make use of
Lemma 6. Due to the boundedness of the classical fractional integral operator I1 and
the reverse Hölder property of V we get that, for G defined in (15),

(∫
B(x0,R/2)

(
G(x,y)

|x− y|d−1

)p0

dx

)1/p0

� C
Rd−1

(∫
B(x0,R/2)

(∫
B(x0,R)

V (u)
|u− x|du

)p0

dx

)1/p0

� C
Rd−1

(∫
Rd

|I1(χB(x0,R)V )|p0

)1/p0

� C
Rd−1

(∫
B(x0.R)

Vq
)1/q

� C
Rd/q−d

Rd−1

∫
B(x0,R)

V

� CR−d/p′0
(

R
ρ(x0)

)2−d/q

,

(23)

where, in the last inequality, we have used Lemma 4. As for the second term appearing
in Lemma 6, the same estimate holds easily. Therefore, inequalities (17), (18) and (19)
follow as an application of Theorems 3 and 4.

Next, suppose that q > d . In this case, as we mentioned it is known that K1 sat-
isfy the point-wise estimates (a∞)and (b∞) . For the size condition we refer to inequal-
ity (6.5) in [10]. Condition (b∞)was stated and proved in [2], Lemma 3. Thus, apply-
ing now Corollary 1 and Theorem 4 we obtain inequalities (20), (21) and (22). �

As an application of Lemma 7, Theorem 3 and Theorem 4 we obtain the following
inequalities for R2 .

THEOREM 7. Let V ∈ RHq for q > d/2 , and θ � 0 . Then, for any weight w the
following inequalities hold. ∫

|R2 f |pw � Cθ

∫
| f |pMθ

r w, (24)

for 1 < p < q and r = (q/p)′ ,∫
|R�

2 f |pw � Cθ ,A

∫
| f |p(Mloc

A +Mθ )w, (25)

for q′ < p < ∞ and any Young function A ∈ Dp ,

w({|R2 f | > λ}) � Cθ
λ

∫
| f |Mθ

q′w. (26)

Proof. As we said before, it only remains to check condition (b′s)for the kernel
K2 . Let x0 , y ∈ R

d and R > 0 such that R < |y− x0| < 2R and R � ρ(x0) . We are
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going to check condition (b′s)with s = q using Lemma 7,

(∫
B(x0,R/2)

|K2(x,y)−K2,0(x,y)|qdx

)1/q

�
(∫

B(x0,R/2)

(
|R2(VΓ(y, ·)χB(x0,R/4))(x)|+

C
Rd

(
R

ρ(x0)

)δ
)q

dx

)1/q

.

Dividing the integral in two terms it is straightforward that the second one gives
us the desired estimate. For the first one, recalling that R2 is a bounded operator on Lq

for 1 < q < ∞ , and applying Lemma 4,

(∫
B(x0,R/2)

|R2(VΓ(y, ·)χB(x0,R/4))(x)|qdx

)1/q

�
(∫

B(x0,R/4)
Vq(x)|Γ(y,x)|qdx

)1/q

� 1
Rd−2

(∫
B(x0,R/4)

Vq
)1/q

� R−d/q′
(

R
ρ(x0)

)2−d/q

. �

REMARK 5. Observe that except for R1 in the case q > d , the maximal operators
on the right hand side are better for the adjoints R�

1 , R�
2 , even for common values of

p . Also, the maximal operators appearing in (17) and (24), get closer to those in (18)
and (25) as q goes to d or infinity, respectively.

4.2. Operators V γL−γ

We consider, for V ∈ RHq , q > d/2, the family of operators of type V γL−γ for
0 < γ < d/2. For each γ , we can write Kγ , the kernel of V γL−γ , as

Kγ (x,y) = V γ(x)Jγ (x,y),

where Jγ is the corresponding kernel of the fractional integral operator L−γ . For Jγ we
have the following estimate that can be found in [8], page 587. For each N > 0 there
exists CN such that

|Jγ(x,y)| � 1
|x− y|d−2γ CN

(
1+

|x− y|
ρ(x)

)−N

. (27)

We will show next that the size estimate for Jγ gives us condition (cs)for Kγ with
s = q/γ . In fact, let x0 , y ∈ R

d and R such that |y− x0| < R/2. Applying Lemma 1
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and Lemma 4 we get

(∫
R<|x−x0|<2R

|Kγ (x,y)|q/γdx

)γ/q

� CN

Rd−2γ

(
1+

R
ρ(x0)

)−N/(N0+1)(∫
B(x0,2R)

Vq
)γ/q

�R−d/(q/γ)′
(

1+
R

ρ(x0)

)−N/(N0+1)+γN2(
1+

ρ(x0)
R

)−γ(2−d/q)

.

(28)

The above estimate together with Theorem 5 give us the following result.

THEOREM 8. Let V ∈ RHq for q > d/2 , 0 < γ < d/2 and θ � 0 . Then, for any
weight w, ∫

|V γL−γ f |pw � Cθ

∫
| f |pMθ

r w,

for 1 � p < q/γ , r = (q/(γ p))′ and
∫
|L−γV γ f |pw � Cθ

∫
| f |pMθ w,

for (q/γ)′ < p < ∞ .

4.3. Operators V γ−1/2∇L−γ

We consider the family of operators V γ−1/2∇L−γ for 1/2 < γ � 1 that includes
the operator L−1∇V 1/2 which appeared first in [10]. As a consequence of the results in
Section 4.2 in [1], the associated kernel K γ can be written as the product K γ(x,y) =
V γ−1/2(x)K2γ−1(x,y) , with K2γ−1 a fractional kernel of order 2γ − 1, satisfying for
each N ,

|K2γ−1(x,y)| � CN

|x− y|d−2γ+1

(
1+

|x− y|
ρ(y)

)−N

, (29)

as long as V ∈ RHq with q > d , and

(∫
R<|x−y|<2R

|K2γ−1(x,y)|p0dx

)1/p0

� CR−d/p′0+2γ−1
(

1+
R

ρ(y)

)−N

, (30)

when d/2 < q < d , with p0 such that 1/p0 = 1/q− 1/d . In fact, estimates of this
type were shown in [1] (see estimates (66) and (67) there) for the kernel of the adjoint
operator L−γ ∇V γ−1/2 .

We will show now that these inequalities imply condition (cs)for s = pγ such that

1
pγ

=
(

1
q
− 1

d

)+

+
2γ −1

2q
. (31)
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Let x0 , y∈R
d and R > 0 such that |y−x0|<R/2. If q> d , and hence 1

pγ
= 2γ−1

2q ,
we may use estimate (29), Lemma 4 and the reverse Hölder inequality to get, as in (28),

(∫
R<|x−x0|<2R

|Kγ (x,y)V γ−1/2(x)| 2q
2γ−1 dx

) 2γ−1
2q

� CN

Rd−2γ+1

(∫
B(x0,2R)

Vq
) 2γ−1

2q
(

1+
R

ρ(x0)

)−N/(N0+1)

�R−d/p′γ
(

1+
ρ(x0)

R

)−(γ−1/2)(2−d/q)(
1+

R
ρ(x0)

)−N/(N0+1)+N2(γ−1/2)

.

If d/2 < q < d , now we have 1
pγ

= 1
p0

+ 2γ−1
2q . Then, by Holder’s inequality

together with (30) and Lemma 4 as above we obtain

(∫
R<|x−x0|<2R

|Kγ (x,y)V γ−1/2(x)|pγ dx

)1/pγ

�
(∫

R<|x−x0|<2R
|Kγ (x,y)|p0dx

)1/p0(∫
B(x0,2R)

Vq
) 2γ−1

2q

�R−d/p′γ
(

1+
ρ(x0)

R

)−(γ−1/2)(2−d/q)(
1+

R
ρ(x0)

)−N+N1(γ−1/2)

.

Applying the above estimates and Theorem 5 we obtain the following result.

THEOREM 9. Let V ∈ RHq for q > d/2 , 1/2 < γ � 1 , and θ � 0 . Then if pγ is
given by (31), for any weight w we have

∫
|V γ−1/2∇L−γ f |pw � Cθ

∫
| f |pMθ

r w,

for 1 � p < pγ with r = (pγ/p)′ , and

∫
|L−γ ∇V γ−1/2 f |pw � Cθ

∫
| f |pMθ w,

for p′γ < p < ∞ .

5. On local integrability of T f and T � f

In this section we are going to apply the general results of Section 2 to weights of
the form w = χB . Studying maximal operators like Mθ

φ acting on such weights we are
going to get sufficient conditions on f to assume some local integrability of T f . We
do that in the next lemma.
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LEMMA 8. Let θ � 0 , φ a Young function and Q = B(x0,ρ(x0)) a critical ball.
Then there exist positive constants c1 , c2 , such that

c1

(
1+

|x− x0|
ρ(x0)

)−θ
� Mθ

φ χQ(x) � c2

(
1+

|x− x0|
ρ(x0)

)−θ/(N0+1)

(32)

where N0 is the exponent appearing in (4).

Proof. Let Q = B(x0,ρ(x0)) be a critical ball, θ � 0 and φ a Young function. We
may suppose without loss of generality that φ(1) = 1. Recalling that

Mθ
φ χQ(x) = sup

B(xB,rB)�x

(
1+

rB

ρ(xB)

)−θ
‖χQ‖φ ,B,

it is enough to consider B such that Q∩B �= /0 , otherwise ‖χQ‖φ ,B = 0, since

‖χQ‖φ ,B = inf

{
λ :

1
|B|
∫

B
φ
(χQ

λ

)
� 1

}
= inf

{
λ :

1
|B|
∫

B∩Q
φ
(

1
λ

)
� 1

}
.

Let us consider first a ball B = B(xB,rB) with rB � ρ(xB) , and take x ∈ B . Then
choosing y ∈ B∩Q ,

|x− x0| � |x− y|+ |y− x0| � 2rB + ρ(x0) � 2ρ(xB)+ ρ(x0).

Also, since B is sub-critical, Q is critical and B∩Q �= /0 we have that ρ(xB) 	 ρ(y) 	
ρ(x0) . Then,

|x− x0| � C̃ρ(x0),

for some C̃ > 0. Then if x /∈ Q̃ = B(x0,C̃ρ(x0)) we have

Mloc
φ (χQ)(x) = sup

B�x
rB�ρ(xB)

‖χQ‖φ ,B = 0.

Now if x ∈ Q̃ and B∩Q �= /0 ,

‖χQ‖φ ,B = inf

{
λ :

|B∩Q|
|B| φ

(
1
λ

)
� 1

}
� inf

{
λ : φ

(
1
λ

)
� 1

}
= 1/φ−1(1) = 1.

So, taking the supremum over all balls we have for x ∈ Q̃ ,

Mloc
φ (χQ)(x) �

(
1+

rB

ρ(xB)

)−σ
,

for any σ > 0.
Next, we consider the operator

Mθ ,glob
φ (χQ)(x) = sup

B�x
rB�ρ(xB)

(
1+

rB

ρ(xB)

)−θ
‖χQ‖φ ,B.
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We take a ball B with rB � ρ(xB) and such that Q∩B �= /0 . For y ∈ Q∩B , we
have ρ(y) 	 ρ(x0) . Using also Lemma 1,

(
1+

rB

ρ(xB)

)−θ
� C

(
1+

rB

ρ(y)

)−θ/(N0+1)

� C

(
1+

rB

ρ(x0)

)−θ/(N0+1)

.

Let x ∈ B and suppose first that x /∈ 2Q , then

|x− x0| � |x− y|+ |y− x0| � 2rB + ρ(x0) � 2rB + |x− x0|/2,

and hence |x− x0| � 4rB . Therefore,

(
1+

rB

ρ(xB)

)−θ
� C

(
1+

|x− x0|
ρ(x0)

)−θ/(N0+1)

.

As before, we have ‖χQ‖φ ,B � 1. Then, if x /∈ 2Q

Mθ ,glob
φ (χQ)(x) � C

(
1+

|x− x0|
ρ(x0)

)−σ
,

where σ = θ/(N0 +1) .
On the other hand, if x ∈ 2Q ,

Mθ ,glob
φ (χQ)(x) � Mφ (χQ)(x) � 1.

Then, since |x− x0|/ρ(x0) � 2

Mθ ,glob
φ (χQ)(x) � C

(
1+

|x− x0|
ρ(x0)

)−σ
.

Using that Mθ
φ � Mloc

φ +Mθ ,glob and collecting the obtained estimates we arrive
to the right hand side of (32). For the boundedness by below, given x we consider
Bx = B(x, |x− x0|+ ρ(x0)) . Then x ∈ Bx and ‖χQ‖φ ,Bx = 1. Therefore,

Mθ
φ (x) �

(
1+

|x− x0|+ ρ(x0)
ρ(x0)

)−θ
‖χQ‖φ ,Bx � 2θ

(
1+

|x− x0|
ρ(x0)

)−θ
. �

REMARK 6. We observe that in particular Lemma 8 holds for all maximal oper-
ators appearing in Theorem 3 and Theorem 4. Hence they satisfy inequality (32) for
some constants c1 , c2 , σ1 and σ2 when applied to the function χB , with B a critical
ball.

PROPOSITION 2. Let p � 1 and φ a Young function. There exists θ � 0 such
that for any ball Q = B(x0,ρ(x0))∫

| f |pMθ
φ (χQ) < ∞ (33)
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if and only if there exists σ > 0 such that

∫ | f |p
(1+ |x|)σ < ∞. (34)

Proof. Let p � 1 and φ a Young function. Let Q = B(x0,ρ(x0)) a critical ball. It
is a straightforward verification that there are constants c and c̃ depending on x0 and
ρ such that

c

1+ |x−x0|
ρ(x0)

� 1
1+ |x| � c̃

1+ |x−x0|
ρ(x0)

. (35)

Then, the equivalence between conditions (33) and (34) follows from equation (35)
above and Lemma 8. �

THEOREM 10. Let 1 � p < ∞ and T an operator such that for some Young func-
tion φ and for all θ there exists a constant C such that∫

|T f |pw � C
∫

| f |pMθ
φ w, (36)

for any weight w. Then, if a function f satisfies (34), T f ∈ Lp
loc . In particular T f is

finite almost everywhere.

Proof. Let 1 � p < ∞ and T as stated. Let f be a function satisfying (34) for
some σ > 0. Then, applying Proposition 2, there exists some θ � 0 such that (33)
holds for any critical ball Q .

Let B be a ball in R
d . According to Proposition 1 we can cover B by a finite

number of critical balls B1, . . .BN . Using the hypothesis on the operator for such θ ,

∫
B
|T f |p �

N

∑
i=1

∫
|T f |pχBi � C

N

∑
i=1

∫
| f |pMθ

φ χBi < ∞. �

For operators that satisfy a weak type inequality for p = 1 we obtain an analogous
result following the same lines as in the proof of Theorem 10.

THEOREM 11. Let T be an operator such that for some Young function φ and
for all θ there exists a constant C such that

w({|T f | > λ}) � C
∫

| f |Mθ
φ w, for all λ > 0,

for all weight w. Then, if a function f satisfy (34) with p = 1 , T f ∈ L1,∞
loc . In particular

T f is finite almost everywhere.

The above results can be applied to all operators considered in Section 4 since, as
it was shown there, theorems of Section 2 hold in those cases. In particular we point
out that for R1 and R�

1 we can apply Theorem 10, for 1 < p < ∞ , and Theorem 11, if
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V ∈ RHq with q > d . As for the case d/2 < q < d , the conclusion holds for 1 < p < p0

and p > p′0 respectively. On the other hand, Theorem 10 and Theorem 11 can be
applied to R2 for 1 < p < q , when q > d/2.

Similarly VL−1 , V 1/2∇L−1 and V 1/2L−1/2 fall under the scope of Theorem 10 for
1 � p < q , 1 � p � p1 and 1 � p < 2q , respectively (see Theorem 8 and Theorem 9).

In [10], Shen obtained Lp -estimates for derivatives of solutions of differential
equations related to Schrödinger operator as a consequence of Lp -continuity of Riesz-
Schrödinger Transforms (see Corollary 0.9 and Corollary 0.10). Here, with our results,
we can give qualitative information on their local integrability.

COROLLARY 2. Suppose V ∈RHq for some q > d/2 . Assume that −Δu+Vu= f
in R

d , with f satisfying (34) for some σ > 0 and some p � 1 . Then,

1. if 1 < p < q, ∇2u ∈ Lp
loc ,

2. if 1 � p < q, Vu ∈ Lp
loc ,

3. if 1 � p < p1 , V 1/2∇u ∈ Lp
loc ,

with p1 such that 1/p1 = (1/q−1/d)+ +1/2q.

Proof. If we set u = L−1 f we have ∇2u = ∇2L−1 f , Vu =VL−1 f and V 1/2∇u =
V 1/2∇L−1 f . Therefore we only have to apply Theorem 10 to the operators ∇2L−1 ,
VL−1 and V 1/2∇L−1 to get the result. �

COROLLARY 3. Suppose V ∈ RHq for some q > d/2 and let p′0 < p < p0 , with
p0 such that 1/p0 = (1/q−1/d)+ . Assume that −Δu+Vu= ∇ ·F in R

d , for a vector
field F with |F| satisfying (34) for some σ > 0 .

1. If p′0 < p < p0 , then u ∈ Lp
loc .

2. If p′0 < p < 2q, then V 1/2u ∈ Lp
loc .

Proof. We will show only item 1. The proof of 2 is similar. Let u = L−1∇Ḟ . Then
∇u = R1(R�

1 ·F) . Then in order to get that ∇u ∈ Lp
loc , due to Theorem 10, it will be

enough to check that the operators Tj = R1 ◦ (R�
1) j satisfy inequality (36). In fact, if

p′0 < p < p0 , then

∫
|Tj f |pw �

∫
|(R�

1) j f |pMθ
r w �

∫
| f |pMθ

ν Mθ
r w,

for any ν > 1. Choosing ν > r , it follows easily Mθ
ν (Mθ

r w) � Mθ
ν w , and then (36)

holds. �
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[6] J. DZIUBAŃSKI AND J. ZIENKIEWICZ, Hardy spaces H1 associated to Schrödinger operators with
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Instituto de Matemática Aplicada del Litoral CONICET-UNL

and Facultad de Ingenierı́a Quı́mica UNL
Colectora Ruta Nac. N 168, Paraje El Pozo, 3000 Santa Fe, Argentina

e-mail: pquijano@santafe-conicet.gov.ar

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


