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BOUNDEDNESS AND COMPACTNESS OF THE HARDY TYPE OPERATOR

WITH VARIABLE UPPER LIMIT IN WEIGHTED LEBESGUE SPACES

AKBOTA MUHAMEDIYAROVNA ABYLAYEVA

(Communicated by S. Varošanec)

Abstract. Let 0 < α < 1 . The operator of the form

Kα,ϕ f (x) =

ϕ(x)∫
a

f (t)w(t)dt

(W(x)−W (t))(1−α) , x > 0,

is considered, where the real weight functions v(x) and w(x) are locally integrable on I :=
(a,b) , 0 � a < b � ∞ and dW(x)

dx ≡ w(x) . In this paper we derive criteria for the operator Kα,ϕ ,
0 < α < 1 , 0 < p;q < ∞ , p > 1

α to be bounded and compact from the spaces Lp,w to the spaces
Lq,v .

1. Introduction

Let 0 < p,q < ∞ , I = (a,b) , 0 � a < b � ∞ , 0 < α < 1 and 1
p + 1

p′ = 1. Let
W : I → R be a strictly increasing and locally absolutely continuous function on I .
Suppose that dW (x)

dx ≡ w(x) almost every x ∈ I and W (a) = lim
t→a+

W (t) > −∞ .

Let v : I → I be a non-negative locally integrable function on I and ϕ : I → I be a
strictly increasing locally absolutely continuous function with the property:

lim
x→a+

ϕ(x) = a, lim
x→b−

ϕ(x) = b, ϕ(x) � x, ∀x ∈ I.

Kα ,ϕ f (x) =

ϕ(x)∫
a

f (s)w(s)ds
(W (x)−W(s))1−α , x ∈ I, (1)

from Lp,w = Lp,w(I) to Lq,v = Lq,v(I) , where Lp,w is the space of measurable functions
f : I → R for which the functional

‖ f‖p,w =

⎛
⎝ b∫

a

| f (x)|pw(x)dx

⎞
⎠

1
p

, 0 < p < ∞,
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is finite. Let
W0(x) = W (x)−W (a). (2)

Then W0(x) � 0, W0(a) = 0, and the operator (1) can be written as

Kα ,ϕ f (x) =

ϕ(x)∫
a

f (s)w(s)ds
(W0(x)−W0(s))1−α , x ∈ I.

Therefore, unless otherwise stated, further on we will assume that in (1) W (·) � 0 and
W (a) = 0.

In the case ϕ(x) ≡ x the operator (1) is studied in the papers [1, 3], similar op-
erators are also considered in the work [2] and in the case ϕ(x) ≡ x, W (x) = x the
operator (1) is the Riemann-Liouville operator and its various aspects are considered in
many papers and books, for example in [4, 9, 10, 11, 12].

Together with operator (1) we consider the operator

K′
α ,ϕg(s) =

b∫
ϕ−1(s)

g(x)v(x)dx
(W (x)−W (s))1−α , s ∈ I (3)

from Lp,w to Lq,v , where ϕ−1 is an inverse function to ϕ .
Throughout this paper expressions of the form 0

0 , 0 ·∞ are supposed be equal
to zero. The relation A � B (A 	 B) means that A � CB (B � CA) with a constant
C depending only on p,q,α which can be different in different places. If A � B and
A 	 B , then we write A ≈ B . By Z we denote the set of all integer numbers and χE

denotes the characteristic function of the set E .
Besides the operator (1) we also consider the operator

Hϕ f (x) =
1

W 1−α(x)

ϕ(x)∫
a

f (s)w(s)ds, x ∈ I. (4)

From (1), (4) it is easy to see that

Kα ,ϕ f � Hϕ f (5)

for f � 0.
In assumptions about the function ϕ the boundedness of the operator (4) from

Lp,w to Lq,v is equivalent (see [8]) to the boundedness of the Hardy type operator

H f (x) =
1

W 1−α(ϕ−1(x))

x∫
a

f (s)w(s)ds, x ∈ I,

from Lp,w to Lq,ṽ , where ṽ(t) = v(ϕ−1(t))(ϕ−1(t))′ . Therefore, from the results of the
study the Hardy inequality (see, for example, [7]), we have
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LEMMA 1. Let 1 < p � q < ∞ . Then the operator (4) is bounded from Lp,w to
Lq,v if and only if A = sup

t∈I
A(t) < ∞ , where

A(t) =

⎛
⎝ b∫

t

Wq(α−1)(x)v(x)dx

⎞
⎠

1
q

W
1
p′ (ϕ(t)).

Moreover, ‖Hϕ‖ ≈ A.

REMARK 1. Here and below ‖T‖ denotes the norm of the operator T : Lp,w →
Lq,v , where the operator T either T = Hϕ or T = Kα ,ϕ .

LEMMA 2. Let 0 < q < p < ∞, p > 1 . Then the operator (4) is bounded from
Lp,w to Lq,v if and only if

B =

⎛
⎜⎝

b∫
a

⎛
⎝ b∫

t

Wq(α−1)(x)v(x)dx

⎞
⎠

q
p−q

W
q(p−1)

p−q (ϕ(t))
v(t)dt

Wq(1−α)(t)

⎞
⎟⎠

p−q
pq

< ∞.

Moreover, ‖Hϕ‖ ≈ B.

We also need the following Lemma:

LEMMA 3. Let 0 < β < 1 and the function γ(·) defined on I, such that 0 < γ(x) �
1, ∀x ∈ I . Then

γ(x)∫
0

dz

(1− z)1−β � γ(x)
β

, ∀x ∈ I.

Indeed, using the inequality (1− γ(x))β � 1− γ(x) , we have

γ(x)∫
0

dz

(1− z)1−β =
1
β

[1− (1− γ(x))β ] � 1
β

[1− (1− γ(x))] =
γ(x)

β
.

2. The main results

Our first main result reads:

THEOREM 1. Let 1 < p � q < ∞ , 1
p < α < 1 and A be defined as in Lemma 1.

Then the operator (1) is bounded from Lp,w to Lq,v if and only if A < ∞ . Moreover,

‖Kα ,ϕ‖ ≈ A. (6)
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Our next main result reads:

THEOREM 2. Let 0 < q < p < ∞, p > 1
α , 0 < α < 1 and B be defined as in

Lemma 2. Then the operator (1) is bounded from Lp,w to Lq,v if and only if B < ∞ .
Moreover,

‖Kα ,ϕ‖ ≈ B. (7)

In the case 0 �=W (a) >−∞ , in accordance with Remark 1 the following theorems
follows from Theorems 1 and 2, respectively:

COROLLARY 1. Let 1 < p � q < ∞, 1
p < α < 1 and W0 be defined by (2). Then

the operator (1) is bounded from Lp,w to Lq,v if and only if

A0 = sup
a<z<b

⎛
⎝ b∫

z

Wq(α−1)
0 (x)v(x)dx

⎞
⎠

1
q

W
1
p′

0 (ϕ(z)) < ∞.

Moreover, ‖Kα ,ϕ‖ ≈ A0 .

COROLLARY 2. Let 0 < q < p < ∞, p > 1
α , 0 < α < 1 and W0 be defined by

(2). Then the operator (1) is bounded from Lp,w to Lq,v if and only if

B0 =

⎛
⎜⎝

b∫
a

⎛
⎝ b∫

t

Wq(α−1)
0 (x)v(x)dx

⎞
⎠

q
p−q

W
q(p−1)

p−q
0 (ϕ(t))

v(t)dt

Wq(1−α)
0 (t)

⎞
⎟⎠

p−q
pq

< ∞.

Moreover, ‖Kα ,ϕ‖ ≈ B0.

For the operator (3) we have the following results:

THEOREM 3. Let 1 < p � q < 1
1−α , 0 < α < 1 and W0 be defined by (2). Let

W (a) > −∞ . Then the operator K′
α ,ϕ defined by (3) is bounded from Lp,w to Lq,v if

and only if

A′ = sup
a<z<b

⎛
⎝ b∫

z

W p′(α−1)
0 (x)v(x)dx

⎞
⎠

1
p′

W
1
q

0 (ϕ(z)) < ∞.

Moreover, ‖K′
α ,ϕ‖ ≈ A′ .

THEOREM 4. Let 1 < q < min{p, 1
1−α }, 0 < α < 1 and W0 be defined by (2). Let

W (a) > −∞ . Then the operator K′
α ,ϕ defined by (3) is bounded from Lp,w to Lq,v if

and only if

B′ =

⎛
⎜⎜⎝

b∫
a

⎛
⎝ b∫

t

W p′(α−1)
0 (x)v(x)dx

⎞
⎠

p(q−1)
p−q

W
p

p−q
0 (ϕ(t))

v(t)dt

W p′(1−α)
0 (t)

⎞
⎟⎟⎠

p−q
pq

< ∞.
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Moreover, ‖K′
α ,ϕ‖ ≈ B′ .

The boundedness of the operator (1) from Lp,w to Lq,v is equivalent to the bound-
edness of the adjoint operator

K∗
α ,ϕg(s) = w(s)

b∫
ϕ−1(s)

g(x)dx
(W (x)−W(s))1−α , s ∈ I

from Lq′,v1−q′ to Lp′,w1−p′ , which in turn is equivalent to the boundedness of the operator
K′

α ,ϕ defined by (3) from Lq′,w to Lp′,v . Therefore, by replacing q′ and p′ by p and
q , respectively, in Theorems 3 and 4, we obtain the assertions of Corollaries 1 and 2,
respectively.

Our main results concerning compactness of the operator Kα ,ϕ reads:

THEOREM 5. Let 0 < α < 1 and 1
α < p � q < ∞ . Then the following statements

are equivalent:

i) Kα ,ϕ : Lp,w → Lq,v is compact;

ii) A < ∞ and lim
t→a+

A(t) = lim
t→b−

A(t) = 0 .

THEOREM 6. Let b < ∞ , 0 < α < 1, 0 < q < p < ∞ and p > 1
α . Then the oper-

ator Kα ,ϕ is compact from Lp,w to Lq,v if and only if B < ∞ holds.

3. Proofs of the main results

Proof of Theorem 1.
Necessity. Let the operator (1) be bounded from Lp,w to Lq,v . Then from (1), (4),

(5) it follows that the operator Hϕ boundedly maps from Lp,w to Lq,v and ‖Kα ,ϕ‖ �
‖Hϕ‖ . Consequently, by virtue of Lemma 1,

‖Kα ,ϕ‖	 A. (8)

Sufficiency. Let A < ∞ . Consider the function W (ϕ(x)) . In view of the conditions
imposed on the function ϕ and W we have that the function W (ϕ(x)) is continuous,
strictly increasing and W (ϕ(a)) = W (a) = 0.

For any k ∈ Z we define xk = sup{x∈ I :W (ϕ(x)) � 2k} . Hence, a < xk � xk+1 �
b for any k ∈ Z and W (ϕ(xk))≡ lim

x→xk
W (ϕ(x)) � 2k , but if xk < b , then xk−1 < xk and

W (ϕ(xk)) = 2k.
Assume that ϕ(xk) = tk, Ik = [xk,xk+1), Jk = [tk, tk+1) and Z0 = {k ∈ Z : Ik �= /0} .

Then

I =
⋃

k∈Z0

Ik =
⋃

k∈Z0

Jk, (9)
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W (ϕ(xk)) =W (tk) = 2k, k ∈ Z0, (10)

2k � W (ϕ(x)) < 2k+1, with x ∈ Ik, k ∈ Z0. (11)

Let f ∈ Lp,w . By using (9) and the relation ϕ(xk−1) � xk−1 < xk , k ∈ Z0 we have

b∫
a

v(x)|Kα ,ϕ f (x)|qdx

�∑
k

xk+1∫
xk

v(x)

⎛
⎝ ϕ(x)∫

a

| f (s)|w(s)ds
(W (x)−W(s))1−α

⎞
⎠

q

dx

�2q−1

⎛
⎜⎝∑

k

xk+1∫
xk

v(x)

⎛
⎜⎝

ϕ(x)∫
ϕ(xk−1)

| f (s)|w(s)ds
(W (x)−W(s))1−α

⎞
⎟⎠

q

dx

+∑
k

xk+1∫
xk

v(x)

⎛
⎝ ϕ(xk−1)∫

a

| f (s)|w(s)ds
(W (x)−W (s))1−α

⎞
⎠

q

dx

⎞
⎟⎠ := 2q−1(F1 +F2). (12)

Here and in the sequal, the summation is taken over the set Z0 with respect to
index k .

We estimate the expressions F1 and F2 separately. Applying Hölder’s inequality,
we obtain

F1 =∑
k

xk+1∫
xk

v(x)

⎛
⎜⎝

ϕ(x)∫
ϕ(xk−1)

| f (s)|w(s)ds
(W (x)−W (s))1−α

⎞
⎟⎠

q

dx

�∑
k

xk+1∫
xk

v(x)

⎛
⎜⎝

ϕ(x)∫
ϕ(xk−1)

| f (s)|pw(s)ds

⎞
⎟⎠

q
p
⎛
⎜⎝

ϕ(x)∫
ϕ(xk−1)

w(s)ds

(W (x)−W(s))p′(1−α)

⎞
⎟⎠

q
p′

dx

�∑
k

⎛
⎜⎝

ϕ(xk+1)∫
ϕ(xk−1)

| f (s)|pw(s)ds

⎞
⎟⎠

q
p xk+1∫

xk

v(x)

⎛
⎝ ϕ(x)∫

a

w(s)ds

(W (x)−W(s))p′(1−α)

⎞
⎠

q
p′

dx. (13)

Making the change of the variable W (s) = W (x)z in the last integral and applying
Lemma 3, we find that

ϕ(x)∫
a

w(s)ds

(W (x)−W(s))p′(1−α) � W (x)
W p′(1−α)(x)

W(ϕ(x))
W(x)∫
0

dz

(1− z)1−p′(α− 1
p )

� 1

p′(α − 1
p )

W (ϕ(x))
W p′(1−α)(x)

.
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Substituting this in (13) and using (9) - (11), we obtain that:

F1 �∑
k

⎛
⎝ tk+1∫

tk−1

| f (s)|pw(s)ds

⎞
⎠

q
p xk+1∫

xk

Wq(α−1)(x)v(x)W
q
p′ (ϕ(x))dx

�∑
k

⎛
⎝ tk+1∫

tk−1

| f (s)|pw(s)ds

⎞
⎠

q
p

2
q
p′ (k+1)

xk+1∫
xk

Wq(α−1)(x)v(x)dx

�∑
k

⎛
⎝ tk+1∫

tk−1

| f (s)|pw(s)ds

⎞
⎠

q
p

W
q
p′ (ϕ(xk))

xk+1∫
xk

Wq(α−1)(x)v(x)dx (14)

�Aq∑
k

⎛
⎝ tk+1∫

tk−1

| f (s)|pw(s)ds

⎞
⎠

q
p

� Aq

⎛
⎝∑

k

tk+1∫
tk−1

| f (s)|pw(s)ds

⎞
⎠

q
p

�Aq‖ f‖q
p,w. (15)

In order to estimate F2 we use (9), (10) and the estimate W (x) �W (ϕ(x)), x∈ I ,
to deduce that

F2 := ∑
k

xk+1∫
xk

v(x)

⎛
⎝ ϕ(xk−1)∫

a

f (s)w(s)ds
(W (x)−W(s))1−α

⎞
⎠

q

dx

� ∑
k

xk+1∫
xk

v(x)

⎛
⎝ ϕ(xk−1)∫

a

f (s)w(s)ds
(W (x)−W(ϕ(xk−1)))1−α

⎞
⎠

q

dx

� ∑
k

xk+1∫
xk

v(x)dx

(W (x)−W(ϕ(xk−1)))q(1−α)

⎛
⎝ ϕ(xk−1)∫

a

f (s)w(s)ds

⎞
⎠

q

.

Taking the following estimates

W (x)−W(ϕ(xk−1)) =W (x)− 1
2
·2k = W (x)− 1

2
W (ϕ(xk))

� W (x)− 1
2
W (xk) � W (x)− 1

2
W (x) =

1
2
W (x),

for xk � x � xk+1 , into account, we obtain that

F2 � 2q(1−α)∑
k

xk+1∫
xk

v(x)
Wq(1−α)(x)

⎛
⎝ ϕ(xk−1)∫

0

f (s)w(s)ds

⎞
⎠

q

dx

� ∑
k

xk+1∫
xk

v(x)

⎛
⎝ 1

W 1−α(x)

ϕ(x)∫
a

f (s)w(s)ds

⎞
⎠

q

dx � ‖Hϕ f‖q
q,v. (16)
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Hence, on the basis of Lemma 1,

F2 � Aq‖ f‖q
p,w. (17)

From (12), (15) and (17) it follows that the operator (1) is bounded from Lp,w

to Lq,v , Moreover, ‖Kα ,ϕ‖ � A , which together with (12) gives (6). The proof is
complete. �

Proof of Theorem 2.
Necessity. Let the operator (1) be bounded from Lp,w to Lq,v . Then, as in Theorem

1, from (5) and from Lemma 2, we have

‖Kα ,ϕ‖	 B. (18)

Sufficiency. Let B < ∞ . To estimate the norm of the operator (1), we proceed
from the relation (12). By virtue of (16) and Lemma 2, we have

F2 � Bq‖ f‖q
p,w. (19)

Estimating F1 in a similar way as in Theorem 1, we obtain the relation (14) and
applying Hölder’s inequality with exponents p

q and p
p−q , we have

F1 �∑
k

⎛
⎝ tk+1∫

tk−1

| f (s)|pw(s)ds

⎞
⎠

q
p

W
q
p′ (ϕ(xk))

xk+1∫
xk

Wq(α−1)(x)v(x)dx

�

⎛
⎝∑

k

tk+1∫
tk−1

| f (s)|pw(s)ds

⎞
⎠

q
p

×

⎛
⎜⎝∑

k

W
q(p−1)

p−q (ϕ(xk))

⎛
⎝ xk+1∫

xk

Wq(α−1)(x)v(x)dx

⎞
⎠

p
p−q

⎞
⎟⎠

p−q
p

�2
q
p ‖ f‖q

p,w

⎛
⎝ p

p−q ∑
k

W
q(p−1)

p−q (ϕ(xk))

×
xk+1∫
xk

⎛
⎝ xk+1∫

t

Wq(α−1)(x)v(x)dx

⎞
⎠

q
p−q

Wq(α−1)(t)v(t)dt

⎞
⎟⎠

p−q
p

�

⎛
⎜⎝∑

k

xk+1∫
xk

⎛
⎝ b∫

t

Wq(α−1)(x)v(x)dx

⎞
⎠

q
p−q

W
q(p−1)

p−q (ϕ(t))
v(t)dt

Wq(1−α)(t)

⎞
⎟⎠

p−q
p

‖ f‖q
p,w

�Bq‖ f‖q
p,w. (20)
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From (12), (19) and (20) it follows that the operator (1) is bounded from Lp,w to Lq,v

and, moreover, ‖Kα ,ϕ‖ � B , which together with (18) gives (7). The proof is com-
plete. �

Proofs of Theorems 3 and 4. The proof are similar to those of Theorems 1 and 2,
respectively, so we omit the details. �

Proof of Theorem 5.
Necessity. Suppose that the operator (1) is compact from Lp,w(I) to Lq,v(I) . We

show that (ii) is true.
Since the operator Kα ,ϕ is compact we get that the operator (1) is bounded. Then,

from Theorem 1 its follows that A < ∞.
To prove lim

t→a+
A(t) = lim

t→b−
A(t) = 0 we use the well known fact that a compact

operator maps a weakly convergent sequence into a strongly convergent one. For a <
s < b consider the family of functions

fs(x) = χ(a,ϕ(s)](x)W
− 1

p (ϕ(s)), x ∈ I. (21)

It is easy to see that { fs}s∈(a,b) ∈ Lp,w.
Indeed,

‖ fs‖p,w =

⎛
⎝ b∫

a

| fs(x)|pw(x)dx

⎞
⎠

1
p

= W− 1
p (ϕ(s))

⎛
⎝ ϕ(s)∫

a

w(x)dx

⎞
⎠

1
p

= 1. (22)

We show that the family of functions (21) converges weakly to zero in Lp,w .
By using properties of ϕ(x) and the Hölder inequality together with (22) we find

that

b∫
a

fs(x)g(x)dx =

ϕ(s)∫
a

fs(x)g(x)dx

�

⎛
⎝ b∫

a

| fs(x)|pw(x)dx

⎞
⎠

1
p
⎛
⎝ s∫

a

|g(x)|p′w1−p′(x)dx

⎞
⎠

1
p′

=

⎛
⎝ s∫

a

|g(x)|p′w1−p′(x)dx

⎞
⎠

1
p′

(23)

for all g ∈ Lp′,w1−p′ .

Since g ∈ Lp′,w1−p′ , then last integral in (23) tends to zero when s → a+ , which

means weak convergence fs → 0 at s → a+ . Since a compact operator in a Banach
space every weakly convergent sequence translates into a strongly convergent one, then
we get that

lim
s→a+

‖Kα ,ϕ fs‖q,v = 0. (24)
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On the other hand, by using properties of functions W (x) and ϕ(x) we have

‖Kα ,ϕ fs‖q,v =

⎛
⎝ b∫

a

v(x)

∣∣∣∣∣∣
ϕ(x)∫
a

fs(t)w(t)dt
(W (x)−W(t))1−α

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

�

⎛
⎝ b∫

s

v(x)

∣∣∣∣∣∣
ϕ(s)∫
a

W− 1
p (ϕ(s))w(t)dt

(W (x)−W (t))1−α

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

� W− 1
p (ϕ(s))

⎛
⎝ b∫

s

v(x)Wq(α−1)(x)dx

⎞
⎠

1
q ϕ(s)∫

a

w(t)dt

= W
1
p′ (ϕ(s))

⎛
⎝ b∫

s

v(x)Wq(α−1)(x)dx

⎞
⎠

1
q

= A(s). (25)

By combining (24) and (25) we find that lim
s→a+

A(s) = 0.

Next we show that lim
t→b−

A(t) = 0. The compactness of the operator Kα ,ϕ implies

compactness of the dual operator

K∗
α ,ϕg(t) = w(t)

b∫
ϕ−1(t)

g(x)dx
(W (x)−W(t))1−α , t ∈ I, (26)

from Lq′,v1−q′ to Lp′,w1−p′ .

For a < s < b we consider the family of functions

gs(x) = χ[s,b)(x)

⎛
⎝ b∫

s

v(t)Wq(α−1)(t)dt

⎞
⎠

− 1
q′

W (q−1)(α−1)(x)v(x), x ∈ I. (27)

These functions are properly defined, since the integrals in the definition of the
functions gs(x) , are finite because A < ∞ .

In addition, gs ∈ Lq′,v1−q′ , for any s ∈ (a,b) . Indeed,

‖gs‖q′,v1−q′ =

⎛
⎝ b∫

a

|gs(x)|q′v1−q′(x)dx

⎞
⎠

1
q′

=

⎛
⎝ b∫

s

Wq(α−1)(t)v(t)dt

⎞
⎠

− 1
q′

⎛
⎝ b∫

s

|W (q−1)(α−1)(x)v(x)|q′v1−q′(x)dx

⎞
⎠

1
q′

=

⎛
⎝ b∫

s

Wq(α−1)(t)v(t)dt

⎞
⎠

− 1
q′

⎛
⎝ b∫

s

Wq(α−1)(t)v(t)dt

⎞
⎠

1
q′

= 1. (28)
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From (28) it follows that

b∫
a

gs(x) f (x)dx =
b∫

s

gs(x) f (x)dx �

⎛
⎝ b∫

s

|gs(x)|qv−
q′
q (x)dx

⎞
⎠

1
q′

⎛
⎝ b∫

s

| f (x)|qv(x)dx

⎞
⎠

1
q

�

⎛
⎝ b∫

s

| f (x)|qv(x)dx

⎞
⎠

1
q

‖gs‖q′,v1−q′ =

⎛
⎝ b∫

s

| f (x)|qv(x)dx

⎞
⎠

1
q

for all f ∈ Lq,v .
Since f ∈ Lq,v , the last integral tends to zero at s → b− . Hence, the family of

functions {gs}s∈(a,b) converge weakly to zero in Lq′,v1−q′ when s → b− .
The dual operator K∗

α ,ϕ is compact from Lq′,v1−q′ to Lp′,w1−p′ . Therefore,

lim
s→b−

‖K∗
α ,ϕgs‖p′,w1−p′ = 0. (29)

However, the following estimate holds:

‖K∗
α ,ϕgs‖p′,w1−p′

=

⎛
⎜⎜⎝

b∫
a

w(t)

∣∣∣∣∣∣∣
b∫

ϕ−1(t)

gs(x)dx
(W (x)−W(t))1−α

∣∣∣∣∣∣∣
p′

dt

⎞
⎟⎟⎠

1
p′

�

⎛
⎜⎜⎝

ϕ(s)∫
a

w(t)

∣∣∣∣∣∣∣
b∫

ϕ−1(t)

gs(x)dx
(W (x)−W (t))1−α

∣∣∣∣∣∣∣
p′

dt

⎞
⎟⎟⎠

1
p′

�

⎛
⎜⎝

ϕ(s)∫
a

w(t)

∣∣∣∣∣∣
b∫

s

W (q−1)(α−1)(x)v(x)dx
(W (x))1−α

∣∣∣∣∣∣
p′

dt

⎞
⎟⎠

1
p′ ⎛

⎝ b∫
s

Wq(α−1)(t)v(t)dt

⎞
⎠

− 1
q′

=

⎛
⎝ b∫

s

Wq(α−1)(t)v(t)dt

⎞
⎠

− 1
q′ b∫

s

Wq(α−1)(t)v(t)dt

⎛
⎝ ϕ(s)∫

a

w(t)dt

⎞
⎠

1
p′

= A(s).

Consequently, by using (29) we have that lim
s→b−

A(s) = 0. Thus, the implication (i)

⇒ (ii) holds.

Sufficiency. Now we will prove (ii)⇒ (i).
Let a < c < d < b . We take d such that ϕ(d) > c and put Pc f = χ(a,c] f , Pcd f =

χ(c,d] f , Qd f = χ(d,b) f .
Then f = χ(a,c] f + χ(c,d] f + χ(d,b) f = Pc f +Pcd f +Qd f .
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We find that

Kα ,ϕ f =(Pc +Pcd +Qd)Kα ,ϕ f = (Pc +Pcd)Kα ,ϕ(Pc +Pcd +Qd) f +QdKα ,ϕ f

=PcKα ,ϕPc f +PcKα ,ϕPcd f +PcKα ,ϕQd f +PcdKα ,ϕPc f

+PcdKα ,ϕPcd f +PcdKα ,ϕQd f +QdKα ,ϕ f .

Thus, since PcKα ,ϕPcd ≡ 0, PcKα ,ϕQd ≡ 0, PcdKα ,ϕQd ≡ 0 we can conclude that

Kα ,ϕ f = PcKα ,ϕPc f +PcdKα ,ϕPc f +PcdKα ,ϕPcd f +QdKα ,ϕ f . (30)

We show that the operator PcdKα ,ϕPcd is compact from Lp,w(I) to Lq,v(I) . Since
PcdKα ,ϕPcd f (x) = 0 when x ∈ I\(c,d] , then it suffices to show that the operator
PcdKα ,ϕPcd is compact from Lp,w(c,d) to Lq,v(c,d) and this is equivalent to the com-

pactness from Lp,w(c,d) to Lq,v(c,d) of the operator K f (x) =
d∫
c
K(x,s) f (s)ds with the

kernel

K(x,t) =
v

1
q (x)χ(c,d](t)θ (ϕ(x)− t)w

1
p′ (t)

(W (x)−W(t))(1−α) ,

where θ (z) is Heaviside’s unit step function, (that is, θ (z) = 1 for z � 0 and θ (z) = 0
for z < 0).

From the proof of the Theorem 1 there are points xk,xi such that k− i = m � 1,
xk � d and c � xi . Therefore, making the change of the variable W (s) = W (x)z in the
integral below and applying Lemma 3, we have that

d∫
c

⎛
⎝ d∫

c

|K(x, t)|p′dt

⎞
⎠

q
p′

dx =
d∫

c

v(x)

⎛
⎝ ϕ(x)∫

c

χ(c,d](t)w(t)dt

(W (x)−W(t))p′(1−α)

⎞
⎠

q
p′

dx

�
d∫

c

v(x)

⎛
⎝ ϕ(x)∫

a

w(t)dt

(W (x)−W(t))p′(1−α)

⎞
⎠

q
p′

dx

�
xk∫

xi

v(x)Wq(α−1)(x)v(x)W
q
p′ (ϕ(x))dx

� W
q
p′ (ϕ(xk))

xk∫
xi

v(x)Wq(α−1)(x)dx

�W
q
p′ (ϕ(xi))

b∫
xi

v(x)Wq(α−1)(x)dx � Aq < ∞.

Therefore, on the basis of the theorem in Kantorovich and Akilov (see [5], page
420), the operator K is compact from Lp(c,d) to Lq(c,d) , which is equivalent to the
compactness of the operator PcdKα ,ϕPcd from Lp,w(I) to Lq,v(I).
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By using (30) we find that

‖Kα ,ϕ −PcdKα ,ϕ‖ � ‖PcKα ,ϕ‖+‖QdKα ,ϕ‖+‖PcdKα ,ϕPc‖. (31)

We will show that the right-hand side of (31) tends to zero as c→ a+ and d → b−.
This will imply that the operator Kα ,ϕ being a uniform limit of compact operators, is
compact from Lp,w(I) to Lq,v(I) .

Consider each of the operators in (31) separately. By Theorem 1 we have

‖PcKα ,ϕPc f‖q,v =

⎛
⎝ c∫

a

v(x)

∣∣∣∣∣∣
ϕ(x)∫
a

f (t)w(t)dt

(W (x)−W(t))(1−α)

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

� sup
a<t<c

W
1
p′ (ϕ(t))

⎛
⎝ c∫

t

Wq(α−1)(x)v(x)dx

⎞
⎠

1
q

‖ f‖p,w � sup
a<t<c

A(t)‖ f‖p,w.

Hence, ‖PcKα ,ϕPc‖� sup
a<t<c

A(t). Then

lim
c→a+

‖PcKα ,ϕPc‖� lim
t→a+

A(t) = 0. (32)

Let vd = Qdv . Then, by Theorem 1 we obtain that

‖QbKα ,ϕ f‖q,v = ‖Kα ,ϕ f‖q,vd � sup
a<t<b

W
1
p′ (ϕ(t))

⎛
⎝ b∫

t

Wq(α−1)(x)vd(x)dx

⎞
⎠

1
q

‖ f‖p,w

= sup
d<t<b

W
1
p′ (ϕ(t))

⎛
⎝ b∫

t

Wq(α−1)(x)v(x)dx

⎞
⎠

1
q

‖ f‖p,w = sup
d<t<b

A(t)‖ f‖p,w.

Consequently,
lim

d→b−
‖QdKα ,ϕ‖� lim

t→b−
A(t) = 0. (33)

Now we will prove that

lim
c→a+

‖PcdKα ,ϕPc‖ = 0. (34)

Since ϕ(d) > c and the function ϕ(x) is continuous then there exists a point z ∈
(c,d) such that ϕ(z) = c . Since ϕ(x) is a strictly increasing function, then z = ϕ−1(c).

We have that

‖PcdKα ,ϕPc f‖q
q,v =

ϕ−1(c)∫
c

v(x)

∣∣∣∣∣∣
ϕ(x)∫
a

χ(a,c](t) f (t)w(t)dt

(W (x)−W(t))(1−α)

∣∣∣∣∣∣
q

dx

+
d∫

ϕ−1(c)

v(x)

∣∣∣∣∣∣
ϕ(x)∫
a

χ(a,c](t) f (t)w(t)dt

(W (x)−W(t))(1−α)

∣∣∣∣∣∣
q

dx := J1 + J2. (35)
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By Theorem 1, we get that

J1 �
ϕ−1(c)∫

a

v(x)

∣∣∣∣∣∣
ϕ(x)∫
a

f (t)w(t)dt

(W (x)−W(t))(1−α)

∣∣∣∣∣∣
q

dx � sup
a<t<ϕ−1(c)

Aq(t)‖ f‖q
p,w. (36)

Making the change of the variable W (t) =W (x)s in the integral below and apply-
ing Hölder’s inequality and Lemma 1 we obtain that

J2 =
d∫

ϕ−1(c)

v(x)

⎛
⎝ c∫

a

f (t)w(t)dt

(W (x)−W (t))(1−α)

⎞
⎠

q

dx

�
d∫

ϕ−1(c)

v(x)

⎛
⎝ c∫

a

w(t)dt

(W (x)−W (t))p′(1−α)

⎞
⎠

q
p′

dx‖ f‖q
p,w

=
d∫

ϕ−1(c)

v(x)
(W (x))

q
p′

(W (x))q(1−α)

⎛
⎜⎜⎝

W(c)
W(x)∫
a

ds

(1− s)p′(1−α)

⎞
⎟⎟⎠

q
p′

dx‖ f‖q
p,w

�
d∫

ϕ−1(c)

v(x)
(W (x))

q
p′

(W (x))q(1−α)

(
W (c)
W (x)

) q
p′

dx‖ f‖q
p,w

=W
q
p′ (c)

d∫
ϕ−1(c)

v(x)(W (x))q(1−α)dx‖ f‖q
p,w = Aq(ϕ−1(c))‖ f‖q

p,w . (37)

Since ϕ−1(c) → a+ at c → a+ , then from (36), (37) and (35) we have (34).
From (32), (33) and (34) it follows that the right side of (31) tends to zero with

c → a+ and d → b−. The proof is complete. �

Proof of Theorem 6. The statement of Theorem 6 follows by Ando Theorem and
its generalizations [6]. �
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