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BOUNDEDNESS AND COMPACTNESS OF THE HARDY TYPE OPERATOR
WITH VARIABLE UPPER LIMIT IN WEIGHTED LEBESGUE SPACES
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(Communicated by S. Varosanec)

Abstract. Let 0 < a < 1. The operator of the form

o(x)
Koo f(x) = /

a

FOwndr
We w7

is considered, where the real weight functions v(x) and w(x) are locally integrable on [ :=

(a,b), 0<a<b<e and dv;gx) = w(x). In this paper we derive criteria for the operator K ¢,

O<o<l1l,0<p;g<eo, p> é to be bounded and compact from the spaces L, to the spaces
Lyy.

1. Introduction

Let0<p,q<oo,1:(a,b),0<a<b<oo,0<a<1and%+1§:1. Let

W : 1 — R be a strictly increasing and locally absolutely continuous function on /.

Suppose that dVZ)EX) = w(x) almost every x € [ and W(a) = lim W(t) > —co.
t—a

Let v: I — I be a non-negative locally integrable functiononIand ¢ : I — I be a
strictly increasing locally absolutely continuous function with the property:

lim o(x) =a, lhl?f o(x)=b, p(x) <x, Vxel
o(x)

Kaof ) = |

a

f(s)w(s)ds
(W(x) = W(s))' =

xel, (1)

from Ly, = Lp,(I) to Ly, = Ly, (I), where L,,, is the space of measurable functions
f : I — R for which the functional

1

b
£l = | [ U @Pwdx ] o 0<p<es,
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is finite. Let
Wo(x) =W (x) —W(a). (2)

Then Wy(x) >0, Wy(a) =0, and the operator (1) can be written as

s s
Keof 1= [ Gt iy
Therefore, unless otherwise stated, further on we will assume that in (1) W(-) > 0 and
W(a)=0.

In the case @(x) = x the operator (1) is studied in the papers [1, 3], similar op-
erators are also considered in the work [2] and in the case @(x) =x, W(x) =x the
operator (1) is the Riemann-Liouville operator and its various aspects are considered in
many papers and books, for example in [4, 9, 10, 11, 12].

Together with operator (1) we consider the operator

b
, x)v(x)dx
Kl p8(s) = / (W(igzw()s))la’ sel 3)

from L, to L,,, where ¢! is an inverse function to ¢.

Throughout this paper expressions of the form %, 0o are supposed be equal
to zero. The relation A < B (A >> B) means that A < CB (B < CA) with a constant
C depending only on p,q,a which can be different in different places. If A < B and
A > B, then we write A ~ B. By Z we denote the set of all integer numbers and yg
denotes the characteristic function of the set E.

Besides the operator (1) we also consider the operator

o(x)
1
Hyf(x) = W o) / fls)w(s)ds, xel. 4)
From (1), (4) it is easy to see that
Koof > Hpf (5)

for f >0
In assumptions about the function ¢ the boundedness of the operator (4) from
Ly, to Ly, is equivalent (see [8]) to the boundedness of the Hardy type operator

Hf('x) Wl OC /f ds, xel,

from Ly, to L, 5, where v(t) =v(¢~'(t))(¢~'(r))’. Therefore, from the results of the
study the Hardy inequality (see, for example, [7]), we have
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LEMMA 1. Let 1 < p < g < o. Then the operator (4) is bounded from L, ,, to

Ly, if and only if A = supA(t) < oo, where
tel

Moreover,

REMARK 1. Here and below ||T|| denotes the norm of the operator 7 : L, ,, —
Ly, , where the operator T either T = Hy or T = Kg .

LEMMA 2. Let 0 < g < p <eo, p > 1. Then the operator (4) is bounded from
Lpw to Ly, if and only if

q r—q
—q

b b
[ [weenepwar | w0 e

=

Moreover, ||Hy| ~ B

We also need the following Lemma:

LEMMA 3. Let 0 < B < 1 and the function y(-) defined on I, such that 0 < y(x) <
1, Vxel. Then
()

/ <@, Vxel.
) l—z (1—2)=F = B

Indeed, using the inequality (1 — y(x))? > 1 —y(x), we have

¥(x)
1 B 1 B @
0/ o = gl () < - 0=y = B
2. The main results

Our first main result reads:

THEOREM 1. Let 1 < p < g < oo, 117 < o <1 and A be defined as in Lemma 1.
Then the operator (1) is bounded from L, ,, to Ly, if and only if A < eo. Moreover,

HKWPH ~A. (6)
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Our next main result reads:

THEOREM 2. Let 0 < g < p < oo, p> , 0< o<1 and B be defined as in
Lemma 2. Then the operator (1) is boundedfrom Ly to Ly, if and only if B < eo.
Moreover,

| Ke,pl| = B. @)

In the case 0 # W (a) > —oo, in accordance with Remark I the following theorems
follows from Theorems 1 and 2, respectively:

COROLLARY 1. Let 1 < p < g <oo, 117 <o <1 and Wy be defined by (2). Then
the operator (1) is bounded from L, to Ly, if and only if

1

ao=sup | [« | w (pa)) <o

a<z<b

Moreover, ~Ap.

COROLLARY 2. Let 0 < g<p <o, p>Li.  0<oa<1and Wy be defined by
(2). Then the operator (1) is bounded from L, ,, to Ly, if and only if

q =t
= P

b b
[ [weDovar | w7 o) | <o
a t 0

Moreover, ||Kq || ~ Bo.

For the operator (3) we have the following results:

THEOREM 3. Let 1 <p<q< 1=, 0<a<1 and Wy be defined by (2). Let
W(a) > —oco. Then the operator Ka’(p deﬁned by (3) is bounded from Ly, to Ly, if
and only if

7
L]

= sup /Wo “ 1 (x)pv(x)dx | W' (@(z)) < ee.

a<z<b

Ko oll = A’
.

THEOREM 4. Let 1 < g <min{p, 15}, 0< o <1 and Wy be defined by (2). Let
W (a) > —oo. Then the operator Kt/mp defined by (3) is bounded from L,,, to Ly, if
and only if

P=aq
plg=1) Pq

b b
(1) = v(r)dt
a/ /Wé’ 1 (x)v(x)dx WO (([)(Z))M < oo,
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Moreover, ||K, o ~

The boundedness of the operator (1) from L, ,, to Ly, is equivalent to the bound-
edness of the adjoint operator

b
K* / 5 SEI
/, 0

9

from Lq’.vl*q/ to Lp,_w -, » which in turn is equivalent to the boundedness of the operator

Ky, defined by (3) from Ly, to L, ,. Therefore, by replacing ¢" and p’ by p and
q, respectively, in Theorems 3 and 4, we obtain the assertions of Corollaries 1 and 2,
respectively.

Our main results concerning compactness of the operator Ky o reads:

THEOREM 5. Let 0 < o < 1 and é < p < g <oo. Then the following statements
are equivalent:

i) Ko :Lpw— Lqy is compact;

ii) A <eoand lim A( )= lim A(r) =0.

t—at t—b~

THEOREM 6. Let b<oo, 0 < <1, 0<g<p<ecoandp> é. Then the oper-
ator Kq ¢ is compact from Ly, to Ly, if and only if B < e holds.

3. Proofs of the main results

Proof of Theorem 1.

Necessity. Let the operator (1) be bounded from L, ,, to Ly, . Then from (1), (4),
(5) it follows that the operator H, boundedly maps from L, to Ly, and ||Ky e >
|Hg||. Consequently, by virtue of Lemma I,

®)

Sufficiency. Let A < eo. Consider the function W(¢(x)). In view of the conditions
imposed on the function ¢ and W we have that the function W(¢(x)) is continuous,
strictly increasing and W (¢@(a)) =W (a) =0.

For any k € Z we define x; = sup{x€1: W(¢p ( )) <2¥}. Hence, a < x; < xpp1 <
b forany k € Z and W (¢ (xy)) —thil W (p(x)) < 2%, butif x; < b, then x| < x; and

—Xk

W(p(x)) = 2.
Assume that @(x) =1y, I = [xk,xkﬂ), Jr= [tk,tk+1) and Zy = {k €EZ: I # 0}.
Then

I=JL=U % 9)

keZy keZy
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W (o)) =W(n) =25 ke 2, (10)
K< W(p(x)) < 2K, with xel, keZ,. (11)
Let f € Ly, . By using (9) and the relation ¢(x;_1) < xx—1 < x¢, k € Zy we have

b
/v (X)| Koo f (x)|7dx
X1 o(x) q
w(s)ds
%j) (!]Wgzé&ﬂa)“
X1 o(x)

- |[f(s)[w(s)ds
<2 %/v(x) / e S |

q

Yk O(—1)

Xyl o(xr-1) a
2/ V(">( / <W<x§3vvvv(f)>>l ) dr | =2 (R R). (12

ko
Here and in the sequal, the summation is taken over the set Zy with respect to
index k.
We estimate the expressions F; and F, separately. Applying Holder’s inequality,
we obtain

s s )
A=X [ (/ﬁww—wwwa "
Yk P (Xk—1
- o) P (e Vs 7
< v | [ vorseas| | gt | @
ko O (xe—1) (1)
o(xis1) P xn o) o) e
<2 / ‘f(s)‘pw(s)ds V(.x) ( (W(x) _W(S))p/(la)> d'x' (13)
k O(xk—1) Xk a

Making the change of the variable W (s) = W (x)z in the last integral and applying
Lemma 3, we find that

(o)
o(x) W(x)
w(s)ds
!fww—wwv<><Wpla ! =
AT
S Pl Hwri-a)
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Substituting this in (13) and using (9) - (11), we obtain that:

Tt 1 p Xk4-1

F <<% (/ |f($)|Pw(s)ds /an 1 Wl/(q)(x))dx

Tt 1 . X1
<z / (s)|Pw(s)ds | 27 *Y /W‘”‘l X)dx

-1

<<2</] Pwids | W (p(x)) [ WD Epwdx  (14)

k—1 Xk
q q

<<Aq§< / | f(s)pw(s)ds> < A9 (2 / 1£(s)[Pw(s) )

k-1

<A £1I5 - (15)

In order to estimate F> we use (9), (10) and the estimate W (x) > W (¢@(x)), x€l,
to deduce that

Xt 1 ¢(x-1) Fs)w(s)ds K
F=) / v(x) ( / ))l—a) dx

=/ W
X1 o(x-1) q
/ / f(s)w(s)ds I
J S (W) = W(ew-1))' ¢
Xt 1 V(o) O(x—1) 1
J —W(p(x_1)))a0-9) ( / f(S)W(S)ds)
Taking the following estimates
W) =Wk 1)) = W) — 52 = W)~ 3W(0(n)

> W) — W) > W) — 3W() = W),

for x; < x < x4, into account, we obtain that

X1 P(x—1) a
F, < 21l-@ 2/ wa ( O/ f(s)w(s)ds) dx

X1 o(x) d
<<2/v(x) (ﬁ/mm@m) dx< [Hof4, (1)
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Hence, on the basis of Lemma 1,
B <A f%, 17)

From (12), (15) and (17) it follows that the operator (1) is bounded from L, ,,
to Ly, , Moreover, |Kq ¢l < A, which together with (12) gives (6). The proof is
complete. [l

Proof of Theorem 2.
Necessity. Let the operator (1) be bounded from L, ,, to Ly, . Then, as in Theorem
1, from (5) and from Lemma 2, we have

Ko,

| > B. (18)

Sufficiency. Let B < . To estimate the norm of the operator (1), we proceed
from the relation (12). By virtue of (16) and Lemma 2, we have

By < BY||£- (19)

Estimating F| in a similar way as in Theorem 1, we obtain the relation (14) and
applying Holder’s inequality with exponents ;—’ and -2 - » we have

P
q
Tkt1 P X1

A< | [1r©rwds| WP (ow) [ wie s
ko\, | Xg

q
Tkt1 P

< s)[Pw(s)ds
< %/f@()

S
=
o

Yt 1 P

| ZWEF (o) | [ W @pas
k 4

q p q(p—1)
L2 flf 0 | =2V 7 (@(x))
P—q k

i
(A

q
Xe+1 f Xk+1 p—q

x / / WD (u)dx | WD (1 )v(e)d

X t

|

q P—q

Xk+1 b P—q P

(%=1 (x)y(x)dx o= —
< ;Z /W (v (x) W (1)

1150

<BY|f115 - (20)
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From (12), (19) and (20) it follows that the operator (1) is bounded from L, ,, to L,
and, moreover, ||Kq | < B, which together with (18) gives (7). The proof is com-
plete. O

Proofs of Theorems 3 and 4. The proof are similar to those of Theorems 1 and 2,
respectively, so we omit the details. [

Proof of Theorem 5.

Necessity. Suppose that the operator (1) is compact from L,,,(I) to Ly (I). We
show that (ii) is true.

Since the operator K¢, ¢ is compact we get that the operator (1) is bounded. Then,
from Theorem 1 its follows that A < co.

To prove ILHE Ar) = tlirgl A(t) = 0 we use the well known fact that a compact

operator maps a weakly convergent sequence into a strongly convergent one. For a <
s < b consider the family of functions

£ = Xiarols) W 7 (9(s)), x € 1. @1)

It is easy to see that { fs }se(ap) € Lpw-
Indeed,

==

b
1fllpw = | [ 1fGIwEax | =w-

o(s)

() | [ wiwax] =1 @

a

= |-

==

We show that the family of functions (21) converges weakly to zeroin L, ,, .
By using properties of ¢(x) and the Holder inequality together with (22) we find
that

b ?(s)
[£@swdx= [ fiixgxax
b P s ﬁ
<| [1nerw@ax )] | [leeor w7 wax
- / 1g(x)|” w! 7 (x)dx (23)
forall g€ Lp’,WI*P/ .

Since g € L , ,_,, then last integral in (23) tends to zero when s — a™, which
plowi P

means weak convergence f; — 0 at s — a’. Since a compact operator in a Banach
space every weakly convergent sequence translates into a strongly convergent one, then
we get that

‘lim+ | Ko, fs]| v = O. (24)
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On the other hand, by using properties of functions W (x) and ¢(x) we have
1

o(x 4 q

" Rowd
HKa,fpfx (X) /(W():)_w dx

qv =

W)«

Ree o
<

1 b %1 o(s)
=W o) | [vawr e D@ax | [ wiea
| \ :
=W7 ((s)) / vO)WI D (x)dx | =A(s). (25)

By combining (24) and (25) we find that lim+ A(s) =0.

Next we show that lim A(z) = 0. The compactness of the operator K, implies
t—b~

compactness of the dual operator
b

K, p8(t) = wlt) / (W(x)gfx‘z[f(’;))lw rel, (26)
o)

fromL, ;_ sy toL , | .
q'v P'w
For a < s < b we consider the family of functions

1
b d
8s(x) = X5 (%) / viOW? e Dyar | wleex), xel.  (27)
N
These functions are properly defined, since the integrals in the definition of the
functions g,(x), are finite because A < oo,
In addition, g, € Lq,_vl,q/ , forany s € (a,b). Indeed,

ql

b
Il gy = | [ lasI?v'=7 ()ax
a

=
S3
Q\

b
- / WO (1) e)ds / WD () ()[4 (x)dx

Y
>
=

b

_ / W) (1 )(r)dr / WD (w(rydr | = 1. (28)

N N
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From (28) it follows that

b b b q b

gs(x) f(x)dx = [ gs(x)f(x)dx < \gs(x)lqv_%/(X)dx |f(x)[Tv(x)dx
Jutoritae= frcasiones | /

Q=

a N

1 1
q

b
<| [1remedr | ey = | [1remxar

forall f € Lgyy.
Since f € L, the last integral tends to zero at s — b~ . Hence, the family of
functions {gs}_ye(%b) converge weakly to zero in Lq,yl,,/ when s — b~ .
The dual operator K}, , is compactfrom L , , s to L , | . Therefore,
o0 q' v plwi

Jim 1K, g8l = 0. 29)
However, the following estimate holds:

1Kz g8l 1o

b b (0 P v
B gs(x)dx
-1/ | wowayee| @

a o~ 1(r)

o(s) b Y

gs(x)dx

> /0] | w sweee

a o)

o(s) b D1 ) (s x!” 7 v
> / w(t) / we (W(x))(l_)a( x| / WD) (1)o()ds

1
o(s) P’

b
/ W) (1 )(r)dr / w(t)di | = A(s).

a

q

, )
— / W) (1 )(r)dr

Consequently, by using (29) we have that 1i1}1]1 A(s) = 0. Thus, the implication (i)
= (ii) holds. ‘

Sufficiency. Now we will prove (i) = (i).

Let a < c<d <b. We take d such that ¢(d) > c and put Po.f = x(q.)f5 Peaf =
Xea)fs Qaf = Xap)f-

Then f = X(4f + Xea)f + Xap)f =Fef +FPeaf +Quaf -



816 A.M. ABYLAYEVA

We find that

Ka,(pf:(Pc+Pcd+Qd)Ka,(pf: (Pc+Pcd)KO£.,q)(PC+Pcd+Qd)f+QdKa,(pf
:PcKa,goPcf+PcKa,(chdf+PcKa,def+Pcha,<chf
+Pcha,(chdf+Pcha,<def+ QdKoc,q)f-

Thus, since P-Ky P =0, P-Kg Q4 =0, PyKy 9Qq = 0 we can conclude that
Ka,(pf = PcKa,(chf+ Pchoc,chf + Pcha,(chdf+ QdKoupf- (30)

We show that the operator P.yKy oP.q is compact from Ly, () to Ly, (I). Since
P.qKg.Peaf(x) =0 when x € I\(c,d], then it suffices to show that the operator
P.qKo,pPeq is compact from L, (c,d) to Ly, (c,d) and this is equivalent to the com-

d
pactness from L, ,,(c,d) to Ly, (c,d) of the operator K f(x) = [K(x,s)f(s)ds with the
c

kernel 1

l /
Ve (X)X (ca) (1) B(@(x) —1)wr" (1)
(W (x) =W ()= ’
where 6(z) is Heaviside’s unit step function, (that is, 6(z) =1 for z >0 and 6(z) =0
for 7 <0).
From the proof of the Theorem 1 there are points xg,x; such that k—i=m > 1,

Xx = d and ¢ > x;. Therefore, making the change of the variable W (s) = W (x)z in the
integral below and applying Lemma 3, we have that

K(x,t) =

dara o NT (e owwar )
S iweora ) a= o [ it | o
d o(x) v

w(t)dt
<[\ [ e |

<w/ ((p(xk))/v(x)wq(a—l)(x)dx
x,-b
(9x)) [ v@We (x)dx < A7 <

Xi

3o

<L Wpr

Therefore, on the basis of the theorem in Kantorovich and Akilov (see [5], page
420), the operator K is compact from L,(c,d) to L,(c,d), which is equivalent to the
compactness of the operator P.;Ke, ¢Prq from Ly, (I) to Ly, (1).
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By using (30) we find that

HKa,(p _Pcha,<p|| < HPL_KO{#’

‘ +||QdKOC,<p||+ HPchouchH- (31)
We will show that the right-hand side of (31) tends to zero as ¢ — a* and d — b™.

This will imply that the operator K4  being a uniform limit of compact operators, is
compact from L, (1) to Ly, ().

Consider each of the operators in (31) separately. By Theorem 1 we have

L
c

" o)
HPCKOC,KPPCfH%V: /V(x) /(W(x)—W(Z))(l_a)

q

dx

a

1

L ’ ’
< sup W7 (9(1)) /Wq(a*l)(X)V(X)dx £ llpw < sup A@)[[£1]p.w-
a<t<c ; a<t<c

Hence, ||P.Ko,oP:|| < sup A(r). Then

a<t<c

lim ||PKq,oPe|| < lim A(r) = 0.
c—at : t—at

(32)
Let vy = Qg4v. Then, by Theorem 1 we obtain that
. b q
10Keo fllgn = [Kapfllgsy < sup W7 (00)) | [WH D aw)ax | £
a<t<
t
1
, b q
= sup W7 (¢(1)) /W”(""”(X)V(X)dx 1fllpw="sup A@)I[f]lpw-
d<t<b " d<t<b
Consequently,
lim [|QsKe el < lim A(r) =0. (33)
d—b~ t—b~
Now we will prove that
Clir;l+ | PeaKe,pPe|| = 0. (34)

Since @(d) > ¢ and the function ¢(x) is continuous then there exists a point z €

(¢,d) such that ¢(z) = c. Since @(x) is a strictly increasing function, then z= ¢~ !(c)
We have that

o 1(c) qo(x)x 1O f(Ow(t)de ’
IPakaoeflf, = [ v| [ Gt

Wi W) dx:=J1+J. (35
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By Theorem 1, we get that

7o) o(x) a

f@Ow)de
Ji < / v(x) /(W(x)—W(t))(l—a) dx<<a<ti1;gl(c)Aq(t)\\f||;,w- (36)

a a

Making the change of the variable W (r) = W (x)s in the integral below and apply-
ing Holder’s inequality and Lemma | we obtain that

d c q
B S()w(r)dr
n= [ v / W -woya | ¢

d c
w(t)dt
< / v(x) a/(W(x)—W(t))P/(1°‘> dx||f||?77w

W(c)
d q W(x)
W) ds
-/ V<x><w<x>>q<1a>( T | Wl
W(C) P
(W ) ax||fle,,

d
(c) / V() (W ()70 Ddx || £9, =A@ () |1 £1%,, BT
1)

Since ¢~!(c) — a* at ¢ — a™, then from (36), (37) and (35) we have (34).
From (32), (33) and (34) it follows that the right side of (31) tends to zero with
¢—a’ and d — b~. The proofis complete. [

Proof of Theorem 6. The statement of Theorem 6 follows by Ando Theorem and
its generalizations [6]. [
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