BOUNDEDNESS AND COMPACTNESS OF THE HARDY TYPE OPERATOR WITH VARIABLE UPPER LIMIT IN WEIGHTED LEBESGUE SPACES

Akbota Muhamediyarovna Abylayeva

(Communicated by S. Varošanec)

Abstract. Let $0<\alpha<1$. The operator of the form

$$
K_{\alpha, \varphi} f(x)=\int_{a}^{\varphi(x)} \frac{f(t) w(t) d t}{(W(x)-W(t))^{(1-\alpha)}}, x>0
$$

is considered, where the real weight functions $v(x)$ and $w(x)$ are locally integrable on $I:=$ $(a, b), 0 \leqslant a<b \leqslant \infty$ and $\frac{d W(x)}{d x} \equiv w(x)$. In this paper we derive criteria for the operator $K_{\alpha, \varphi}$, $0<\alpha<1,0<p ; q<\infty, p>\frac{1}{\alpha}$ to be bounded and compact from the spaces $L_{p, w}$ to the spaces $L_{q, v}$.

1. Introduction

Let $0<p, q<\infty, I=(a, b), 0 \leqslant a<b \leqslant \infty, 0<\alpha<1$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Let $W: I \rightarrow R$ be a strictly increasing and locally absolutely continuous function on I. Suppose that $\frac{d W(x)}{d x} \equiv w(x)$ almost every $x \in I$ and $W(a)=\lim _{t \rightarrow a^{+}} W(t)>-\infty$.

Let $v: I \rightarrow I$ be a non-negative locally integrable function on I and $\varphi: I \rightarrow I$ be a strictly increasing locally absolutely continuous function with the property:

$$
\begin{gather*}
\lim _{x \rightarrow a^{+}} \varphi(x)=a, \lim _{x \rightarrow b^{-}} \varphi(x)=b, \varphi(x) \leqslant x, \quad \forall x \in I . \\
K_{\alpha, \varphi} f(x)=\int_{a}^{\varphi(x)} \frac{f(s) w(s) d s}{(W(x)-W(s))^{1-\alpha}}, \quad x \in I, \tag{1}
\end{gather*}
$$

from $L_{p, w}=L_{p, w}(I)$ to $L_{q, v}=L_{q, v}(I)$, where $L_{p, w}$ is the space of measurable functions $f: I \rightarrow R$ for which the functional

$$
\|f\|_{p, w}=\left(\int_{a}^{b}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}}, \quad 0<p<\infty
$$

Mathematics subject classification (2010): 46E30, 42A16.
Keywords and phrases: Inequalities, Hardy type inequalities, fractional integration operator, weighted estimate, boundedness, compactness.
is finite. Let

$$
\begin{equation*}
W_{0}(x)=W(x)-W(a) \tag{2}
\end{equation*}
$$

Then $W_{0}(x) \geqslant 0, W_{0}(a)=0$, and the operator (1) can be written as

$$
K_{\alpha, \varphi} f(x)=\int_{a}^{\varphi(x)} \frac{f(s) w(s) d s}{\left(W_{0}(x)-W_{0}(s)\right)^{1-\alpha}}, \quad x \in I
$$

Therefore, unless otherwise stated, further on we will assume that in (1) $W(\cdot) \geqslant 0$ and $W(a)=0$.

In the case $\varphi(x) \equiv x$ the operator (1) is studied in the papers [1,3], similar operators are also considered in the work [2] and in the case $\varphi(x) \equiv x, \quad W(x)=x$ the operator (1) is the Riemann-Liouville operator and its various aspects are considered in many papers and books, for example in [4, 9, 10, 11, 12].

Together with operator (1) we consider the operator

$$
\begin{equation*}
K_{\alpha, \varphi}^{\prime} g(s)=\int_{\varphi^{-1}(s)}^{b} \frac{g(x) v(x) d x}{(W(x)-W(s))^{1-\alpha}}, \quad s \in I \tag{3}
\end{equation*}
$$

from $L_{p, w}$ to $L_{q, v}$, where φ^{-1} is an inverse function to φ.
Throughout this paper expressions of the form $\frac{0}{0}, 0 \cdot \infty$ are supposed be equal to zero. The relation $A \ll B(A \gg B)$ means that $A \leqslant C B(B \leqslant C A)$ with a constant C depending only on p, q, α which can be different in different places. If $A<B$ and $A \gg B$, then we write $A \approx B$. By Z we denote the set of all integer numbers and χ_{E} denotes the characteristic function of the set E.

Besides the operator (1) we also consider the operator

$$
\begin{equation*}
H_{\varphi} f(x)=\frac{1}{W^{1-\alpha}(x)} \int_{a}^{\varphi(x)} f(s) w(s) d s, \quad x \in I \tag{4}
\end{equation*}
$$

From (1), (4) it is easy to see that

$$
\begin{equation*}
K_{\alpha, \varphi} f \geqslant H_{\varphi} f \tag{5}
\end{equation*}
$$

for $f \geqslant 0$.
In assumptions about the function φ the boundedness of the operator (4) from $L_{p, w}$ to $L_{q, v}$ is equivalent (see [8]) to the boundedness of the Hardy type operator

$$
H f(x)=\frac{1}{W^{1-\alpha}\left(\varphi^{-1}(x)\right)} \int_{a}^{x} f(s) w(s) d s, \quad x \in I
$$

from $L_{p, w}$ to $L_{q, \tilde{v}}$, where $\widetilde{v}(t)=v\left(\varphi^{-1}(t)\right)\left(\varphi^{-1}(t)\right)^{\prime}$. Therefore, from the results of the study the Hardy inequality (see, for example, [7]), we have

LEMMA 1. Let $1<p \leqslant q<\infty$. Then the operator (4) is bounded from $L_{p, w}$ to $L_{q, v}$ if and only if $A=\sup _{t \in I} A(t)<\infty$, where

$$
A(t)=\left(\int_{t}^{b} W^{q(\alpha-1)}(x) v(x) d x\right)^{\frac{1}{q}} W^{\frac{1}{p^{\prime}}}(\varphi(t))
$$

Moreover, $\left\|H_{\varphi}\right\| \approx A$.
REMARK 1. Here and below $\|T\|$ denotes the norm of the operator $T: L_{p, w} \rightarrow$ $L_{q, v}$, where the operator T either $T=H_{\varphi}$ or $T=K_{\alpha, \varphi}$.

LEMMA 2. Let $0<q<p<\infty, \quad p>1$. Then the operator (4) is bounded from $L_{p, w}$ to $L_{q, v}$ if and only if

$$
B=\left(\int_{a}^{b}\left(\int_{t}^{b} W^{q(\alpha-1)}(x) v(x) d x\right)^{\frac{q}{p-q}} W^{\frac{q(p-1)}{p-q}}(\varphi(t)) \frac{v(t) d t}{W^{q(1-\alpha)}(t)}\right)^{\frac{p-q}{p q}}<\infty
$$

Moreover, $\left\|H_{\varphi}\right\| \approx B$.
We also need the following Lemma:

Lemma 3. Let $0<\beta<1$ and the function $\gamma(\cdot)$ defined on I, such that $0<\gamma(x) \leqslant$ 1, $\forall x \in I$. Then

$$
\int_{0}^{\gamma(x)} \frac{d z}{(1-z)^{1-\beta}} \leqslant \frac{\gamma(x)}{\beta}, \quad \forall x \in I
$$

Indeed, using the inequality $(1-\gamma(x))^{\beta} \geqslant 1-\gamma(x)$, we have

$$
\int_{0}^{\gamma(x)} \frac{d z}{(1-z)^{1-\beta}}=\frac{1}{\beta}\left[1-(1-\gamma(x))^{\beta}\right] \leqslant \frac{1}{\beta}[1-(1-\gamma(x))]=\frac{\gamma(x)}{\beta}
$$

2. The main results

Our first main result reads:
THEOREM 1. Let $1<p \leqslant q<\infty, \frac{1}{p}<\alpha<1$ and A be defined as in Lemma 1. Then the operator (1) is bounded from $L_{p, w}$ to $L_{q, v}$ if and only if $A<\infty$. Moreover,

$$
\begin{equation*}
\left\|K_{\alpha, \varphi}\right\| \approx A \tag{6}
\end{equation*}
$$

Our next main result reads:
THEOREM 2. Let $0<q<p<\infty, \quad p>\frac{1}{\alpha}, \quad 0<\alpha<1$ and B be defined as in Lemma 2. Then the operator (1) is bounded from $L_{p, w}$ to $L_{q, v}$ if and only if $B<\infty$. Moreover,

$$
\begin{equation*}
\left\|K_{\alpha, \varphi}\right\| \approx B \tag{7}
\end{equation*}
$$

In the case $0 \neq W(a)>-\infty$, in accordance with Remark 1 the following theorems follows from Theorems 1 and 2, respectively:

COROLLARY 1. Let $1<p \leqslant q<\infty, \frac{1}{p}<\alpha<1$ and W_{0} be defined by (2). Then the operator (1) is bounded from $L_{p, w}$ to $L_{q, v}$ if and only if

$$
A_{0}=\sup _{a<z<b}\left(\int_{z}^{b} W_{0}^{q(\alpha-1)}(x) v(x) d x\right)^{\frac{1}{q}} W_{0}^{\frac{1}{p^{p}}}(\varphi(z))<\infty .
$$

Moreover, $\left\|K_{\alpha, \varphi}\right\| \approx A_{0}$.
COROLLARY 2. Let $0<q<p<\infty, \quad p>\frac{1}{\alpha}, \quad 0<\alpha<1$ and W_{0} be defined by (2). Then the operator (1) is bounded from $L_{p, w}$ to $L_{q, v}$ if and only if

$$
B_{0}=\left(\int_{a}^{b}\left(\int_{t}^{b} W_{0}^{q(\alpha-1)}(x) v(x) d x\right)^{\frac{q}{p-q}} W_{0}^{\frac{q(p-1)}{p-q}}(\varphi(t)) \frac{v(t) d t}{W_{0}^{q(1-\alpha)}(t)}\right)^{\frac{p-q}{p q}}<\infty
$$

Moreover, $\left\|K_{\alpha, \varphi}\right\| \approx B_{0}$.
For the operator (3) we have the following results:
THEOREM 3. Let $1<p \leqslant q<\frac{1}{1-\alpha}, \quad 0<\alpha<1$ and W_{0} be defined by (2). Let $W(a)>-\infty$. Then the operator $K_{\alpha, \varphi}^{\prime}$ defined by (3) is bounded from $L_{p, w}$ to $L_{q, v}$ if and only if

$$
A^{\prime}=\sup _{a<z<b}\left(\int_{z}^{b} W_{0}^{p^{\prime}(\alpha-1)}(x) v(x) d x\right)^{\frac{1}{p^{\prime}}} W_{0}^{\frac{1}{q}}(\varphi(z))<\infty
$$

Moreover, $\left\|K_{\alpha, \varphi}^{\prime}\right\| \approx A^{\prime}$.
THEOREM 4. Let $1<q<\min \left\{p, \frac{1}{1-\alpha}\right\}, 0<\alpha<1$ and W_{0} be defined by (2). Let $W(a)>-\infty$. Then the operator $K_{\alpha, \varphi}^{\prime}$ defined by (3) is bounded from $L_{p, w}$ to $L_{q, v}$ if and only if

$$
B^{\prime}=\left(\int_{a}^{b}\left(\int_{t}^{b} W_{0}^{p^{\prime}(\alpha-1)}(x) v(x) d x\right)^{\frac{p(q-1)}{p-q}} W_{0}^{\frac{p}{p-q}}(\varphi(t)) \frac{v(t) d t}{W_{0}^{p^{\prime}(1-\alpha)}(t)}\right)^{\frac{p-q}{p q}}<\infty
$$

Moreover, $\left\|K_{\alpha, \varphi}^{\prime}\right\| \approx B^{\prime}$.
The boundedness of the operator (1) from $L_{p, w}$ to $L_{q, v}$ is equivalent to the boundedness of the adjoint operator

$$
K_{\alpha, \varphi}^{*} g(s)=w(s) \int_{\varphi^{-1}(s)}^{b} \frac{g(x) d x}{(W(x)-W(s))^{1-\alpha}}, \quad s \in I
$$

from $L_{q^{\prime}, v^{1-q^{\prime}}}$ to $L_{p^{\prime}, w^{1-p^{\prime}}}$, which in turn is equivalent to the boundedness of the operator $K_{\alpha, \varphi}^{\prime}$ defined by (3) from $L_{q^{\prime}, w}$ to $L_{p^{\prime}, v}$. Therefore, by replacing q^{\prime} and p^{\prime} by p and q, respectively, in Theorems 3 and 4 , we obtain the assertions of Corollaries 1 and 2, respectively.

Our main results concerning compactness of the operator $K_{\alpha, \varphi}$ reads:

THEOREM 5. Let $0<\alpha<1$ and $\frac{1}{\alpha}<p \leqslant q<\infty$. Then the following statements are equivalent:
i) $K_{\alpha, \varphi}: L_{p, w} \rightarrow L_{q, v}$ is compact;
ii) $A<\infty$ and $\lim _{t \rightarrow a^{+}} A(t)=\lim _{t \rightarrow b^{-}} A(t)=0$.

THEOREM 6. Let $b<\infty, 0<\alpha<1,0<q<p<\infty$ and $p>\frac{1}{\alpha}$. Then the operator $K_{\alpha, \varphi}$ is compact from $L_{p, w}$ to $L_{q, v}$ if and only if $B<\infty$ holds.

3. Proofs of the main results

Proof of Theorem 1.

Necessity. Let the operator (1) be bounded from $L_{p, w}$ to $L_{q, v}$. Then from (1), (4), (5) it follows that the operator H_{φ} boundedly maps from $L_{p, w}$ to $L_{q, v}$ and $\left\|K_{\alpha, \varphi}\right\| \geqslant$ $\left\|H_{\varphi}\right\|$. Consequently, by virtue of Lemma 1 ,

$$
\begin{equation*}
\left\|K_{\alpha, \varphi}\right\| \gg A \tag{8}
\end{equation*}
$$

Sufficiency. Let $A<\infty$. Consider the function $W(\varphi(x))$. In view of the conditions imposed on the function φ and W we have that the function $W(\varphi(x))$ is continuous, strictly increasing and $W(\varphi(a))=W(a)=0$.

For any $k \in Z$ we define $x_{k}=\sup \left\{x \in I: W(\varphi(x)) \leqslant 2^{k}\right\}$. Hence, $a<x_{k} \leqslant x_{k+1} \leqslant$ b for any $k \in Z$ and $W\left(\varphi\left(x_{k}\right)\right) \equiv \lim _{x \rightarrow x_{k}} W(\varphi(x)) \leqslant 2^{k}$, but if $x_{k}<b$, then $x_{k-1}<x_{k}$ and $W\left(\varphi\left(x_{k}\right)\right)=2^{k}$.

Assume that $\varphi\left(x_{k}\right)=t_{k}, I_{k}=\left[x_{k}, x_{k+1}\right), J_{k}=\left[t_{k}, t_{k+1}\right)$ and $Z_{0}=\left\{k \in Z: I_{k} \neq \emptyset\right\}$. Then

$$
\begin{equation*}
I=\bigcup_{k \in Z_{0}} I_{k}=\bigcup_{k \in Z_{0}} J_{k} \tag{9}
\end{equation*}
$$

$$
\begin{gather*}
W\left(\varphi\left(x_{k}\right)\right)=W\left(t_{k}\right)=2^{k}, \quad k \in Z_{0} \tag{10}\\
2^{k} \leqslant W(\varphi(x))<2^{k+1}, \text { with } x \in I_{k}, \quad k \in Z_{0} \tag{11}
\end{gather*}
$$

Let $f \in L_{p, w}$. By using (9) and the relation $\varphi\left(x_{k-1}\right) \leqslant x_{k-1}<x_{k}, k \in Z_{0}$ we have

$$
\begin{align*}
& \int_{a}^{b} v(x)\left|K_{\alpha, \varphi} f(x)\right|^{q} d x \\
\leqslant & \sum_{k} \int_{x_{k}}^{x_{k+1}} v(x)\left(\int_{a}^{\varphi(x)} \frac{|f(s)| w(s) d s}{(W(x)-W(s))^{1-\alpha}}\right)^{q} d x \\
\leqslant & 2^{q-1}\left(\sum_{k} \int_{x_{k}}^{x_{k+1}} v(x)\left(\int_{\varphi\left(x_{k-1}\right)}^{\varphi(x)} \frac{|f(s)| w(s) d s}{(W(x)-W(s))^{1-\alpha}}\right)^{q} d x\right. \\
& \left.+\sum_{k} \int_{x_{k}}^{x_{k+1}} v(x)\left(\int_{a}^{\varphi\left(x_{k-1}\right)} \frac{|f(s)| w(s) d s}{(W(x)-W(s))^{1-\alpha}}\right)^{q} d x\right):=2^{q-1}\left(F_{1}+F_{2}\right) \tag{12}
\end{align*}
$$

Here and in the sequal, the summation is taken over the set Z_{0} with respect to index k.

We estimate the expressions F_{1} and F_{2} separately. Applying Hölder's inequality, we obtain

$$
\begin{align*}
F_{1} & =\sum_{k} \int_{x_{k}}^{x_{k+1}} v(x)\left(\int_{\varphi\left(x_{k-1}\right)}^{\varphi(x)} \frac{|f(s)| w(s) d s}{(W(x)-W(s))^{1-\alpha}}\right)^{q} d x \\
& \leqslant \sum_{k} \int_{x_{k}}^{x_{k+1}} v(x)\left(\int_{\varphi\left(x_{k-1}\right)}^{\varphi(x)}|f(s)|^{p} w(s) d s\right)^{\frac{q}{p}}\left(\int_{\varphi\left(x_{k-1}\right)}^{\varphi(x)} \frac{w(s) d s}{(W(x)-W(s))^{p^{\prime}(1-\alpha)}}\right)^{\frac{q}{p^{\prime}}} d x \\
& \leqslant \sum_{k}\left(\int_{\varphi\left(x_{k-1}\right)}^{\varphi\left(x_{k+1}\right)}|f(s)|^{p} w(s) d s\right)_{x_{k}}^{\frac{q}{p}} \int_{x_{k+1}}^{x^{p}} v(x)\left(\int_{a}^{\varphi(x)} \frac{w(s) d s}{(W(x)-W(s))^{p^{\prime}(1-\alpha)}}\right)^{\frac{q}{p}} d x \tag{13}
\end{align*}
$$

Making the change of the variable $W(s)=W(x) z$ in the last integral and applying Lemma 3, we find that

$$
\begin{aligned}
\int_{a}^{\varphi(x)} \frac{w(s) d s}{(W(x)-W(s))^{p^{\prime}(1-\alpha)}} & \leqslant \frac{W(x)}{W^{p^{\prime}(1-\alpha)}(x)} \int_{0}^{\frac{W(\varphi(x))}{W(x)}} \frac{d z}{(1-z)^{1-p^{\prime}\left(\alpha-\frac{1}{p}\right)}} \\
& \leqslant \frac{1}{p^{\prime}\left(\alpha-\frac{1}{p}\right)} \frac{W(\varphi(x))}{W^{p^{\prime}(1-\alpha)}(x)} .
\end{aligned}
$$

Substituting this in (13) and using (9) - (11), we obtain that:

$$
\begin{align*}
F_{1} & \ll \sum_{k}\left(\int_{k_{k-1}}^{t_{k+1}}|f(s)|^{p} w(s) d s\right)^{\frac{q}{p}} \int_{x_{k}}^{x_{k+1}} W^{q(\alpha-1)}(x) v(x) W^{\frac{q}{p^{\prime}}}(\varphi(x)) d x \\
& \leqslant \sum_{k}\left(\int_{k_{k-1}}^{t_{k+1}}|f(s)|^{p} w(s) d s\right)^{\frac{q}{p}} 2^{\frac{q}{p^{\prime}}(k+1)} \int_{x_{k}}^{x_{k+1}} W^{q(\alpha-1)}(x) v(x) d x \\
& \ll \sum_{k}\left(\int_{k_{k-1}}^{t_{k+1}}|f(s)|^{p} w(s) d s\right)^{\frac{q}{p}} W^{\frac{q}{p}}\left(\varphi\left(x_{k}\right)\right) \int_{x_{k}}^{x_{k+1}} W^{q(\alpha-1)}(x) v(x) d x \tag{14}\\
& \ll A^{q} \sum_{k}\left(\int_{k_{k-1}}^{t_{k+1}}|f(s)|^{p} w(s) d s\right)^{\frac{q}{p}} \ll A^{q}\left(\sum_{k_{t_{k-1}}}^{t_{k+1}}|f(s)|^{p} w(s) d s\right)^{\frac{q}{p}} \\
& \ll A^{q}\|f\|_{p, w}^{q} . \tag{15}
\end{align*}
$$

In order to estimate F_{2} we use (9), (10) and the estimate $W(x) \geqslant W(\varphi(x)), \quad x \in I$, to deduce that

$$
\begin{aligned}
F_{2} & :=\sum_{k} \int_{x_{k}}^{x_{k+1}} v(x)\left(\int_{a}^{\varphi\left(x_{k-1}\right)} \frac{f(s) w(s) d s}{(W(x)-W(s))^{1-\alpha}}\right)^{q} d x \\
& \leqslant \sum_{k} \int_{x_{k}}^{x_{k+1}} v(x)\left(\int_{a}^{\varphi\left(x_{k-1}\right)} \frac{f(s) w(s) d s}{\left(W(x)-W\left(\varphi\left(x_{k-1}\right)\right)\right)^{1-\alpha}}\right)^{q} d x \\
& \leqslant \sum_{k} \int_{x_{k}}^{x_{k+1}} \frac{v(x) d x}{\left(W(x)-W\left(\varphi\left(x_{k-1}\right)\right)\right)^{q(1-\alpha)}}\left(\int_{a}^{\varphi\left(x_{k-1}\right)} f(s) w(s) d s\right)^{q} .
\end{aligned}
$$

Taking the following estimates

$$
\begin{aligned}
W(x)-W\left(\varphi\left(x_{k-1}\right)\right) & =W(x)-\frac{1}{2} \cdot 2^{k}=W(x)-\frac{1}{2} W\left(\varphi\left(x_{k}\right)\right) \\
& \geqslant W(x)-\frac{1}{2} W\left(x_{k}\right) \geqslant W(x)-\frac{1}{2} W(x)=\frac{1}{2} W(x),
\end{aligned}
$$

for $x_{k} \leqslant x \leqslant x_{k+1}$, into account, we obtain that

$$
\begin{align*}
F_{2} & \leqslant 2^{q(1-\alpha)} \sum_{k} \int_{x_{k}}^{x_{k+1}} \frac{v(x)}{W^{q(1-\alpha)}(x)}\left(\int_{0}^{\varphi\left(x_{k-1}\right)} f(s) w(s) d s\right)^{q} d x \\
& \ll \sum_{k} \int_{x_{k}}^{x_{k+1}} v(x)\left(\frac{1}{W^{1-\alpha}(x)} \int_{a}^{\varphi(x)} f(s) w(s) d s\right)^{q} d x \leqslant\left\|H_{\varphi} f\right\|_{q, v}^{q} . \tag{16}
\end{align*}
$$

Hence, on the basis of Lemma 1,

$$
\begin{equation*}
F_{2} \ll A^{q}\|f\|_{p, w}^{q} \tag{17}
\end{equation*}
$$

From (12), (15) and (17) it follows that the operator (1) is bounded from $L_{p, w}$ to $L_{q, v}$, Moreover, $\left\|K_{\alpha, \varphi}\right\| \ll A$, which together with (12) gives (6). The proof is complete.

Proof of Theorem 2.

Necessity. Let the operator (1) be bounded from $L_{p, w}$ to $L_{q, v}$. Then, as in Theorem 1, from (5) and from Lemma 2, we have

$$
\begin{equation*}
\left\|K_{\alpha, \varphi}\right\| \gg B \tag{18}
\end{equation*}
$$

Sufficiency. Let $B<\infty$. To estimate the norm of the operator (1), we proceed from the relation (12). By virtue of (16) and Lemma 2, we have

$$
\begin{equation*}
F_{2} \ll B^{q}\|f\|_{p, w}^{q} \tag{19}
\end{equation*}
$$

Estimating F_{1} in a similar way as in Theorem 1, we obtain the relation (14) and applying Hölder's inequality with exponents $\frac{p}{q}$ and $\frac{p}{p-q}$, we have

$$
\begin{align*}
F_{1} & \ll \sum_{k}\left(\int_{k_{k-1}}^{t_{k+1}}|f(s)|^{p} w(s) d s\right)^{\frac{q}{p}} W^{\frac{q}{p}}\left(\varphi\left(x_{k}\right)\right) \int_{x_{k}}^{x_{k+1}} W^{q(\alpha-1)}(x) v(x) d x \\
\leqslant & \left(\sum_{k} \int_{t_{k-1}}^{t_{k+1}}|f(s)|^{p} w(s) d s\right)^{\frac{q}{p}} \\
& \times\left(\sum_{k} W^{\frac{q(p-1)}{p-q}}\left(\varphi\left(x_{k}\right)\right)\left(\int_{x_{k}}^{x_{k+1}} W^{q(\alpha-1)}(x) v(x) d x\right)^{\frac{p}{p-q}}\right)^{\frac{p-q}{p}} \\
\leqslant & 2^{\frac{q}{p}}\|f\|_{p, w}^{q}\left(\frac{p}{p-q} \sum_{k} W^{\frac{q(p-1)}{p-q}}\left(\varphi\left(x_{k}\right)\right)\right. \\
& \left.\times \int_{x_{k}}^{x_{k+1}}\left(\int_{t}^{x_{k+1}} W^{q(\alpha-1)}(x) v(x) d x\right)^{\frac{q}{p-q}} W^{q(\alpha-1)}(t) v(t) d t\right)^{\frac{p-q}{p}} \\
\leqslant & \left(\sum_{k} \int_{x_{k}}^{x_{k+1}}\left(\int_{t}^{b} W^{q(\alpha-1)}(x) v(x) d x\right)^{\frac{q}{p-q}} W^{\frac{q(p-1)}{p-q}}(\varphi(t)) \frac{v(t) d t}{W^{q(1-\alpha)}(t)}\right)^{\frac{p-q}{p}}\|f\|_{p, w}^{q} \\
\leqslant & B^{q}\|f\|_{p, w}^{q} . \tag{20}
\end{align*}
$$

From (12), (19) and (20) it follows that the operator (1) is bounded from $L_{p, w}$ to $L_{q, v}$ and, moreover, $\left\|K_{\alpha, \varphi}\right\| \ll B$, which together with (18) gives (7). The proof is complete.

Proofs of Theorems 3 and 4. The proof are similar to those of Theorems 1 and 2, respectively, so we omit the details.

Proof of Theorem 5.

Necessity. Suppose that the operator (1) is compact from $L_{p, w}(I)$ to $L_{q, v}(I)$. We show that (ii) is true.

Since the operator $K_{\alpha, \varphi}$ is compact we get that the operator (1) is bounded. Then, from Theorem 1 its follows that $A<\infty$.

To prove $\lim _{t \rightarrow a^{+}} A(t)=\lim _{t \rightarrow b^{-}} A(t)=0$ we use the well known fact that a compact operator maps a weakly convergent sequence into a strongly convergent one. For $a<$ $s<b$ consider the family of functions

$$
\begin{equation*}
f_{s}(x)=\chi_{(a, \varphi(s)]}(x) W^{-\frac{1}{p}}(\varphi(s)), x \in I . \tag{21}
\end{equation*}
$$

It is easy to see that $\left\{f_{s}\right\}_{s \in(a, b)} \in L_{p, w}$.
Indeed,

$$
\begin{equation*}
\left\|f_{s}\right\|_{p, w}=\left(\int_{a}^{b}\left|f_{s}(x)\right|^{p} w(x) d x\right)^{\frac{1}{p}}=W^{-\frac{1}{p}}(\varphi(s))\left(\int_{a}^{\varphi(s)} w(x) d x\right)^{\frac{1}{p}}=1 \tag{22}
\end{equation*}
$$

We show that the family of functions (21) converges weakly to zero in $L_{p, w}$.
By using properties of $\varphi(x)$ and the Hölder inequality together with (22) we find that

$$
\begin{align*}
\int_{a}^{b} f_{s}(x) g(x) d x & =\int_{a}^{\varphi(s)} f_{s}(x) g(x) d x \\
& \leqslant\left(\int_{a}^{b}\left|f_{s}(x)\right|^{p} w(x) d x\right)^{\frac{1}{p}}\left(\int_{a}^{s}|g(x)|^{p^{\prime}} w^{1-p^{\prime}}(x) d x\right)^{\frac{1}{p^{\prime}}} \\
& =\left(\int_{a}^{s}|g(x)|^{p^{\prime}} w^{1-p^{\prime}}(x) d x\right)^{\frac{1}{p^{\prime}}} \tag{23}
\end{align*}
$$

for all $g \in L_{p^{\prime}, w^{1-p^{\prime}}}$.
Since $g \in L_{p^{\prime}, w^{1-p^{\prime}}}$, then last integral in (23) tends to zero when $s \rightarrow a^{+}$, which means weak convergence $f_{s} \rightarrow 0$ at $s \rightarrow a^{+}$. Since a compact operator in a Banach space every weakly convergent sequence translates into a strongly convergent one, then we get that

$$
\begin{equation*}
\lim _{s \rightarrow a^{+}}\left\|K_{\alpha, \varphi} f_{s}\right\|_{q, v}=0 \tag{24}
\end{equation*}
$$

On the other hand, by using properties of functions $W(x)$ and $\varphi(x)$ we have

$$
\begin{align*}
\left\|K_{\alpha, \varphi} f_{s}\right\|_{q, v} & =\left(\left.\left.\int_{a}^{b} v(x)\right|_{a} ^{\varphi(x)} \frac{f_{s}(t) w(t) d t}{(W(x)-W(t))^{1-\alpha}}\right|^{q} d x\right)^{\frac{1}{q}} \\
& \geqslant\left(\left.\int_{s}^{b} v(x) \int_{a}^{\varphi(s)} \frac{W^{-\frac{1}{p}}(\varphi(s)) w(t) d t}{(W(x)-W(t))^{1-\alpha}}\right|^{q} d x\right)^{\frac{1}{q}} \\
& \geqslant W^{-\frac{1}{p}}(\varphi(s))\left(\int_{s}^{b} v(x) W^{q(\alpha-1)}(x) d x\right)^{\frac{1}{q}} \int_{a}^{\varphi(s)} w(t) d t \\
& =W^{\frac{1}{p}}(\varphi(s))\left(\int_{s}^{b} v(x) W^{q(\alpha-1)}(x) d x\right)^{\frac{1}{q}}=A(s) . \tag{25}
\end{align*}
$$

By combining (24) and (25) we find that $\lim _{s \rightarrow a^{+}} A(s)=0$.
Next we show that $\lim _{t \rightarrow b^{-}} A(t)=0$. The compactness of the operator $K_{\alpha, \varphi}$ implies compactness of the dual operator

$$
\begin{equation*}
K_{\alpha, \varphi}^{*} g(t)=w(t) \int_{\varphi^{-1}(t)}^{b} \frac{g(x) d x}{(W(x)-W(t))^{1-\alpha}}, t \in I \tag{26}
\end{equation*}
$$

from $L_{q^{\prime}, v^{1-q^{\prime}}}$ to $L_{p^{\prime}, w^{1-p^{\prime}}}$.
For $a<s<b$ we consider the family of functions

$$
\begin{equation*}
g_{s}(x)=\chi_{[s, b)}(x)\left(\int_{s}^{b} v(t) W^{q(\alpha-1)}(t) d t\right)^{-\frac{1}{q}} W^{(q-1)(\alpha-1)}(x) v(x), x \in I \tag{27}
\end{equation*}
$$

These functions are properly defined, since the integrals in the definition of the functions $g_{s}(x)$, are finite because $A<\infty$.

In addition, $g_{s} \in L_{q^{\prime}, v^{1-q^{\prime}}}$, for any $s \in(a, b)$. Indeed,

$$
\begin{align*}
\left\|g_{s}\right\|_{q^{\prime}, v^{1-q^{\prime}}} & =\left(\int_{a}^{b}\left|g_{s}(x)\right|^{q^{\prime}} v^{1-q^{\prime}}(x) d x\right)^{\frac{1}{q^{\prime}}} \\
& =\left(\int_{s}^{b} W^{q(\alpha-1)}(t) v(t) d t\right)^{-\frac{1}{q^{\prime}}}\left(\int_{s}^{b}\left|W^{(q-1)(\alpha-1)}(x) v(x)\right|^{q^{\prime}} v^{1-q^{\prime}}(x) d x\right)^{\frac{1}{q^{\prime}}} \\
& =\left(\int_{s}^{b} W^{q(\alpha-1)}(t) v(t) d t\right)^{-\frac{1}{q^{\prime}}}\left(\int_{s}^{b} W^{q(\alpha-1)}(t) v(t) d t\right)^{\frac{1}{q^{\prime}}}=1 \tag{28}
\end{align*}
$$

From (28) it follows that

$$
\begin{aligned}
\int_{a}^{b} g_{s}(x) f(x) d x & =\int_{s}^{b} g_{s}(x) f(x) d x \leqslant\left(\int_{s}^{b}\left|g_{s}(x)\right|^{q} v^{-\frac{q^{\prime}}{q}}(x) d x\right)^{\frac{1}{q^{\prime}}}\left(\int_{s}^{b}|f(x)|^{q} v(x) d x\right)^{\frac{1}{q}} \\
& \leqslant\left(\int_{s}^{b}|f(x)|^{q} v(x) d x\right)^{\frac{1}{q}}\left\|g_{s}\right\|_{q^{\prime}, v^{1-q^{\prime}}}=\left(\int_{s}^{b}|f(x)|^{q} v(x) d x\right)^{\frac{1}{q}}
\end{aligned}
$$

for all $f \in L_{q, v}$.
Since $f \in L_{q, v}$, the last integral tends to zero at $s \rightarrow b^{-}$. Hence, the family of functions $\left\{g_{s}\right\}_{s \in(a, b)}$ converge weakly to zero in $L_{q^{\prime}, v^{1-q^{\prime}}}$ when $s \rightarrow b^{-}$.

The dual operator $K_{\alpha, \varphi}^{*}$ is compact from $L_{q^{\prime}, v^{1-q^{\prime}}}$ to $L_{p^{\prime}, w^{1-p^{\prime}}}$. Therefore,

$$
\begin{equation*}
\lim _{s \rightarrow b^{-}}\left\|K_{\alpha, \varphi}^{*} g_{s}\right\|_{p^{\prime}, w^{1-p^{\prime}}}=0 \tag{29}
\end{equation*}
$$

However, the following estimate holds:

$$
\begin{aligned}
& \left\|K_{\alpha, \varphi}^{*} g_{s}\right\|_{p^{\prime}, w^{1-p^{\prime}}} \\
= & \left(\left.\left.\int_{a}^{b} w(t)\right|_{\varphi^{-1}(t)} ^{b} \frac{g_{s}(x) d x}{(W(x)-W(t))^{1-\alpha}}\right|^{p^{\prime}} d t\right)^{\frac{1}{p^{\prime}}} \\
\geqslant & \left(\int_{a}^{\varphi(s)} w(t)\left|\int_{\varphi^{-1}(t)}^{b} \frac{g_{s}(x) d x}{(W(x)-W(t))^{1-\alpha}}\right|^{p^{\prime}} d t\right)^{\frac{1}{p^{\prime}}} \\
\geqslant & \left(\left.\int_{a}^{\varphi(s)} w(t) \int_{s}^{b} \frac{W^{(q-1)(\alpha-1)}(x) v(x) d x}{(W(x))^{1-\alpha}}\right|^{p^{\prime}} d t\right)^{\frac{1}{p^{\prime}}}\left(\int_{s}^{b} W^{q(\alpha-1)}(t) v(t) d t\right)^{-\frac{1}{q^{\prime}}}{ }^{b} \int_{s}^{-\frac{1}{q^{\prime}}} W^{q(\alpha-1)}(t) v(t) d t\left(\int_{a}^{\varphi} w(t) d t\right)^{\frac{1}{p^{\prime}}}=A(s) \\
= & \left(\int_{s}^{b} W^{q(\alpha-1)}(t) v(t) d t\right)^{b}
\end{aligned}
$$

Consequently, by using (29) we have that $\lim _{s \rightarrow b^{-}} A(s)=0$. Thus, the implication (i) \Rightarrow (ii) holds.

Sufficiency. Now we will prove (ii) \Rightarrow (i).
Let $a<c<d<b$. We take d such that $\varphi(d)>c$ and put $P_{c} f=\chi_{(a, c]} f, P_{c d} f=$ $\chi_{(c, d]} f, Q_{d} f=\chi_{(d, b)} f$.

Then $f=\chi_{(a, c]} f+\chi_{(c, d]} f+\chi_{(d, b)} f=P_{c} f+P_{c d} f+Q_{d} f$.

We find that

$$
\begin{aligned}
K_{\alpha, \varphi} f= & \left(P_{c}+P_{c d}+Q_{d}\right) K_{\alpha, \varphi} f=\left(P_{c}+P_{c d}\right) K_{\alpha, \varphi}\left(P_{c}+P_{c d}+Q_{d}\right) f+Q_{d} K_{\alpha, \varphi} f \\
= & P_{c} K_{\alpha, \varphi} P_{c} f+P_{c} K_{\alpha, \varphi} P_{c d} f+P_{c} K_{\alpha, \varphi} Q_{d} f+P_{c d} K_{\alpha, \varphi} P_{c} f \\
& +P_{c d} K_{\alpha, \varphi} P_{c d} f+P_{c d} K_{\alpha, \varphi} Q_{d} f+Q_{d} K_{\alpha, \varphi} f
\end{aligned}
$$

Thus, since $P_{c} K_{\alpha, \varphi} P_{c d} \equiv 0, P_{c} K_{\alpha, \varphi} Q_{d} \equiv 0, P_{c d} K_{\alpha, \varphi} Q_{d} \equiv 0$ we can conclude that

$$
\begin{equation*}
K_{\alpha, \varphi} f=P_{c} K_{\alpha, \varphi} P_{c} f+P_{c d} K_{\alpha, \varphi} P_{c} f+P_{c d} K_{\alpha, \varphi} P_{c d} f+Q_{d} K_{\alpha, \varphi} f \tag{30}
\end{equation*}
$$

We show that the operator $P_{c d} K_{\alpha, \varphi} P_{c d}$ is compact from $L_{p, w}(I)$ to $L_{q, v}(I)$. Since $P_{c d} K_{\alpha, \varphi} P_{c d} f(x)=0$ when $x \in I \backslash(c, d]$, then it suffices to show that the operator $P_{c d} K_{\alpha, \varphi} P_{c d}$ is compact from $L_{p, w}(c, d)$ to $L_{q, v}(c, d)$ and this is equivalent to the compactness from $L_{p, w}(c, d)$ to $L_{q, v}(c, d)$ of the operator $K f(x)=\int_{c}^{d} K(x, s) f(s) d s$ with the kernel

$$
K(x, t)=\frac{v^{\frac{1}{q}}(x) \chi_{(c, d]}(t) \theta(\varphi(x)-t) w^{\frac{1}{p^{\prime}}}(t)}{(W(x)-W(t))^{(1-\alpha)}}
$$

where $\theta(z)$ is Heaviside's unit step function, (that is, $\theta(z)=1$ for $z \geqslant 0$ and $\theta(z)=0$ for $z<0$).

From the proof of the Theorem 1 there are points x_{k}, x_{i} such that $k-i=m \geqslant 1$, $x_{k} \geqslant d$ and $c \geqslant x_{i}$. Therefore, making the change of the variable $W(s)=W(x) z$ in the integral below and applying Lemma 3, we have that

$$
\begin{aligned}
\int_{c}^{d}\left(\int_{c}^{d}|K(x, t)|^{p^{\prime}} d t\right)^{\frac{q}{p^{\prime}}} d x & =\int_{c}^{d} v(x)\left(\int_{c}^{\varphi(x)} \frac{\chi_{(c, d]}(t) w(t) d t}{(W(x)-W(t))^{p^{\prime}(1-\alpha)}}\right)^{\frac{q}{p^{\prime}}} d x \\
& \leqslant \int_{c}^{d} v(x)\left(\int_{a}^{\varphi(x)} \frac{w(t) d t}{(W(x)-W(t))^{p^{\prime}(1-\alpha)}}\right)^{\frac{q}{p^{\prime}}} d x \\
& \ll \int_{x_{i}}^{x_{k}} v(x) W^{q(\alpha-1)}(x) v(x) W^{\frac{q}{p^{\prime}}}(\varphi(x)) d x \\
& \leqslant W^{\frac{q}{p^{\prime}}}\left(\varphi\left(x_{k}\right)\right) \int_{x_{i}}^{x_{k}} v(x) W^{q(\alpha-1)}(x) d x \\
& \ll W^{\frac{q}{p^{\prime}}}\left(\varphi\left(x_{i}\right)\right) \int_{x_{i}}^{b} v(x) W^{q(\alpha-1)}(x) d x \leqslant A^{q}<\infty .
\end{aligned}
$$

Therefore, on the basis of the theorem in Kantorovich and Akilov (see [5], page 420), the operator K is compact from $L_{p}(c, d)$ to $L_{q}(c, d)$, which is equivalent to the compactness of the operator $P_{c d} K_{\alpha, \varphi} P_{c d}$ from $L_{p, w}(I)$ to $L_{q, v}(I)$.

By using (30) we find that

$$
\begin{equation*}
\left\|K_{\alpha, \varphi}-P_{c d} K_{\alpha, \varphi}\right\| \leqslant\left\|P_{c} K_{\alpha, \varphi}\right\|+\left\|Q_{d} K_{\alpha, \varphi}\right\|+\left\|P_{c d} K_{\alpha, \varphi} P_{c}\right\| \tag{31}
\end{equation*}
$$

We will show that the right-hand side of (31) tends to zero as $c \rightarrow a^{+}$and $d \rightarrow b^{-}$. This will imply that the operator $K_{\alpha, \varphi}$ being a uniform limit of compact operators, is compact from $L_{p, w}(I)$ to $L_{q, v}(I)$.

Consider each of the operators in (31) separately. By Theorem 1 we have

$$
\begin{aligned}
\left\|P_{c} K_{\alpha, \varphi} P_{c} f\right\|_{q, v} & =\left(\left.\left.\int_{a}^{c} v(x)\right|_{a} ^{\varphi(x)} \frac{f(t) w(t) d t}{(W(x)-W(t))^{(1-\alpha)}}\right|^{q} d x\right)^{\frac{1}{q}} \\
& \ll \sup _{a<t<c} W^{\frac{1}{p}}(\varphi(t))\left(\int_{t}^{c} W^{q(\alpha-1)}(x) v(x) d x\right)^{\frac{1}{q}}\|f\|_{p, w} \leqslant \sup _{a<t<c} A(t)\|f\|_{p, w}
\end{aligned}
$$

Hence, $\left\|P_{c} K_{\alpha, \varphi} P_{c}\right\| \ll \sup _{a<t<c} A(t)$. Then

$$
\begin{equation*}
\lim _{c \rightarrow a^{+}}\left\|P_{c} K_{\alpha, \varphi} P_{c}\right\| \ll \lim _{t \rightarrow a^{+}} A(t)=0 \tag{32}
\end{equation*}
$$

Let $v_{d}=Q_{d} v$. Then, by Theorem 1 we obtain that

$$
\begin{aligned}
\left\|Q_{b} K_{\alpha, \varphi} f\right\|_{q, v} & =\left\|K_{\alpha, \varphi} f\right\|_{q, v_{d}} \ll \sup _{a<t<b} W^{\frac{1}{p^{\prime}}}(\varphi(t))\left(\int_{t}^{b} W^{q(\alpha-1)}(x) v_{d}(x) d x\right)^{\frac{1}{q}}\|f\|_{p, w} \\
& =\sup _{d<t<b} W^{\frac{1}{p^{\prime}}}(\varphi(t))\left(\int_{t}^{b} W^{q(\alpha-1)}(x) v(x) d x\right)^{\frac{1}{q}}\|f\|_{p, w}=\sup _{d<t<b} A(t)\|f\|_{p, w} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\lim _{d \rightarrow b^{-}}\left\|Q_{d} K_{\alpha, \varphi}\right\| \ll \lim _{t \rightarrow b^{-}} A(t)=0 \tag{33}
\end{equation*}
$$

Now we will prove that

$$
\begin{equation*}
\lim _{c \rightarrow a^{+}}\left\|P_{c d} K_{\alpha, \varphi} P_{c}\right\|=0 \tag{34}
\end{equation*}
$$

Since $\varphi(d)>c$ and the function $\varphi(x)$ is continuous then there exists a point $z \in$ (c, d) such that $\varphi(z)=c$. Since $\varphi(x)$ is a strictly increasing function, then $z=\varphi^{-1}(c)$. We have that

$$
\begin{align*}
\left\|P_{c d} K_{\alpha, \varphi} P_{c} f\right\|_{q, v}^{q}= & \int_{c}^{\varphi^{-1}(c)} v(x)\left|\int_{a}^{\varphi(x)} \frac{\chi_{(a, c]}(t) f(t) w(t) d t}{(W(x)-W(t))^{(1-\alpha)}}\right|^{q} d x \\
& +\int_{\varphi^{-1}(c)}^{d} v(x)\left|\int_{a}^{\varphi(x)} \frac{\chi_{(a, c]}(t) f(t) w(t) d t}{(W(x)-W(t))^{(1-\alpha)}}\right|^{q} d x:=J_{1}+J_{2} \tag{35}
\end{align*}
$$

By Theorem 1, we get that

$$
\begin{equation*}
J_{1} \leqslant \int_{a}^{\varphi^{-1}(c)} v(x)\left|\int_{a}^{\varphi(x)} \frac{f(t) w(t) d t}{(W(x)-W(t))^{(1-\alpha)}}\right|^{q} d x \ll \sup _{a<t<\varphi^{-1}(c)} A^{q}(t)\|f\|_{p, w}^{q} \tag{36}
\end{equation*}
$$

Making the change of the variable $W(t)=W(x) s$ in the integral below and applying Hölder's inequality and Lemma 1 we obtain that

$$
\begin{align*}
J_{2} & =\int_{\varphi^{-1}(c)}^{d} v(x)\left(\int_{a}^{c} \frac{f(t) w(t) d t}{(W(x)-W(t))^{(1-\alpha)}}\right)^{q} d x \\
& \leqslant \int_{\varphi^{-1}(c)}^{d} v(x)\left(\int_{a}^{c} \frac{w(t) d t}{(W(x)-W(t))^{p^{\prime}(1-\alpha)}}\right)^{\frac{q}{p^{\prime}}} d x\|f\|_{p, w}^{q} \\
& =\int_{\varphi^{-1}(c)}^{d} v(x) \frac{(W(x))^{\frac{q}{p^{\prime}}}}{(W(x))^{q(1-\alpha)}}\left(\int_{a}^{\frac{W(c)}{W(x)}} \frac{d s}{(1-s)^{p^{\prime}(1-\alpha)}}\right)^{\frac{q}{p^{\prime}}} d x\|f\|_{p, w}^{q} \\
& \ll \int_{\varphi^{-1}(c)}^{d} v(x) \frac{(W(x))^{\frac{q}{p^{\prime}}}}{(W(x))^{q(1-\alpha)}}\left(\frac{W(c)}{W(x)}\right)^{\frac{q}{p^{\prime}}} d x\|f\|_{p, w}^{q} \\
& =W^{\frac{q}{p^{\prime}}(c) \int_{\varphi^{-1}(c)}^{d} v(x)(W(x))^{q(1-\alpha)} d x\|f\|_{p, w}^{q}=A^{q}\left(\varphi^{-1}(c)\right)\|f\|_{p, w}^{q} .} \tag{37}
\end{align*}
$$

Since $\varphi^{-1}(c) \rightarrow a^{+}$at $c \rightarrow a^{+}$, then from (36), (37) and (35) we have (34).
From (32), (33) and (34) it follows that the right side of (31) tends to zero with $c \rightarrow a^{+}$and $d \rightarrow b^{-}$. The proof is complete.

Proof of Theorem 6. The statement of Theorem 6 follows by Ando Theorem and its generalizations [6].

REFERENCES

[1] A.M. Abylayeva, Criterion of the boundedness of $0<\alpha<1$ - order fractional integration type operator, Bulletin of L.N. Gumilyov ENU, 46, 62005 , 130-136 (in Russian).
[2] A.M. Abylayeva, Inequalities for Some Classes of Hardy Type Operators and Compactness in Weighted Lebesgue Spaces, Doctoral Thesis, Luleå University of Technology, Sweden, ISSN 14021544, December 2016.
[3] A.M. Abylayeva and R. Oinarov, Criterion of the boundedness of a class of fractional integration operators, Math. J. Almaty, 4, 12 (2004), No.2, 5-14 (in Russian).
[4] D.E. Edmunds, V. Kokilashvili and A. Meskhi, Bounded and compact integral operators, Kluwer Academic Published, Boston / Dordrecht / London, 2002.
[5] L.V. Kantarovich and G.R. Akilov, Functional analysis, Publishing House "Nauka", Moscow, 1977, 741 (in Russian).
[6] M.A. Krasnoselskit, P.P. Zabreiko, E.I. Pustylnik and P.E. Sobolevskit, Integral operators in space of summable functions, Publishing House "Nauka", Moscow, 1966, 500 (in Russian).
[7] A. Kufner, L. Maligranda and L.-E. Persson, The Hardy Inequality. About its History and some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
[8] A. Kufner, L.-E. Persson and N.Samko, Weighted Inequalities of Hardy Type, Second Edition, World Scientific, New Jersey-London-Singapore-Beijing-ShanghaiHong Kong-Taipei-ChennaiTokyo, 2017.
[9] M.A. Lorente, A characterization of two weight norm inequalities for one-side operators of fractional type, Can.Math.J. 49, 5 (1997), 1010-1033.
[10] A. Meskhi, Solution of some weight problems for the Reimann -Liouville and Weyl operators, Georgian Math.J. 5, 6 (1998), 565-574.
[11] D.V. Prokhorov, On the boundedness and compactness of a class of integral operators, J.London Math. Soc. 61, 2 (2000), 617-628.
[12] D.V. Prokhorov and V.D. Stepanov, Riemann-Liouville operators, Reports of the Russian Academy of Sciencesh. 382, 4 (2002), 452-455 (in Russian).

Akbota Muhamediyarovna Abylayeva
L.N. Gumilyov Eurasian National University
Satpayev Str., 2, Astana, Republic of Kazakhstan, 010008
e-mail: abylayeva_b@mail.ru

