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Abstract. In the article, we present several new bounds for the the complete elliptic integrals

K (r)=
∫ π/2
0 (1−r2 sin2 θ )−1/2dθ and E (r)=

∫ π/2
0 (1−r2 sin2 θ )1/2dθ , and find an asymptotic

expansion for K (r) as r → 1 , which are the refinements and improvements of the previously
well-known results.

1. Introduction

For r ∈ [0,1] , Lengedre’s complete elliptic integrals of the first and second kind
[18, 20, 21, 22, 37, 60, 72, 73, 74, 82, 83, 87] are defined by

K = K (r) =

π/2∫
0

(1− r2 sin2 θ )−1/2dθ , K ′ = K ′(r) = K (r′),

K (0) = π/2, K (1) = ∞,

and

E = E (r) =

π/2∫
0

(1− r2 sin2 θ )1/2dθ , E ′ = E ′(r) = E (r′),

E (0) = π/2, E (1) = 1,

respectively. Here and in what follows we set r′ =
√

1− r2 . These integrals are special
cases of Guassian hypergeometric function [43, 55, 56, 57, 58, 62, 63, 66, 79, 91, 92,
94, 95]

F(a,b;c;x) = 2F1(a,b;c;x) =
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
(−1 < x < 1),
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where (a)0 = 1, (a)n =
n−1
∏
k=0

(a+k) = Γ(n+a)/Γ(a) for n � 1 and Γ(x) =
∫ ∞
0 tx−1e−t dt

is the Euler gamma function [29, 30, 46, 49, 50, 65, 78, 84, 85, 86, 89, 93]. Indeed, we
have

K (r) =
π
2

F

(
1
2
,
1
2
;1;r2

)
and E (r) =

π
2

F

(
−1

2
,
1
2
;1;r2

)
.

It is well known that the complete elliptic integrals have many important applica-
tions in physics, engineering, geometric function theory, theory of mean values, num-
ber theory and other related fields [1, 4, 7, 10, 31, 34, 35, 48, 52, 75]. Particularly, in
the past two decades, a great deal of mathematical effort in the complete elliptic inte-
grals has been devoted to the study of distortion estimates in quasiconformal mappings
[24, 25, 26, 27, 28, 32, 69, 70]. For more properties and recent development of K and
E see the book [13], and the research articles [23, 36, 61, 64, 68, 81, 88].

1.1. The complete elliptic integrals and their related means

An important method to study the complete elliptic integrals is to consider their
convexity and monotonicity properties, and their related bivariate means [2, 3, 5, 6, 8, 9,
16, 33, 39, 47, 76, 77, 90]. In 1875, Lagrange firstly defined the arithmetic-geometric
mean AG(a,b) [19, 38, 42, 45, 71, 80] of two positive real numbers a and b as the
common limit of the following sequences {an} and {bn} :

a0 = a, b0 = b,

an+1 = A(an,bn) =
an +bn

2
, bn+1 = G(an,bn) =

√
anbn.

Later, Gauss proved that

AG(a,b) =
π/2∫ π/2

0

dθ√
a2 cos2 θ +b2 sin2 θ

=

⎧⎨
⎩

πa
/[

2K
(√

1− (b/a)2
)]

, a � b,

πb
/[

2K
(√

1− (a/b)2
)]

, a < b.

From then on, AG(a,b) and related iterations have been used for efficient numerical
evaluation of the complete elliptic integral K (r) .

In 1998, a class of quasi-arithmetic mean related to the arithmetic-geometric mean
was introduced by Toader in [53], which is defined by

Mp,n(a,b) = p−1
(

1
π

∫ π

0
p(rn(θ )dθ )

)
= p−1

(
2
π

∫ π/2

0
p(rn(θ )dθ )

)
,

where rn(θ ) = (an cos2 θ + bn sin2 θ )1/n for n �= 0, and r0(θ ) = acos2 θ bsin2 θ , and p
is a strictly monotonic function. In the particular case p = x−1 and n = 2, Mp,n(a,b)
reduces to AG(a,b) . Moreover, taking p =

√
x and n = 1, a new symmetric mean

E(a,b) [17, 40, 41, 67, 96] involving the complete elliptic integral of the second kind
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was obtained

E(a,b) =

⎧⎪⎨
⎪⎩

4a
[
E
(√

1−b/a
)]2

/π2, a � b,

4b
[
E
(√

1−a/b
)]2

/π2, a < b,

which will be studied and derived several asymptotic bounds for E in this paper.

1.2. Some well known bounds for K and E

Ramanujan’s work on the asymptotic behavior of the hypergeometric functions
shows that K (r) satisfies (see [13, 1.48])

K (r)+ logr′ = log4+O((1− r2) log(1− r2)), r → 1. (1.1)

Anderson, Vamanamurthy and Vuorinen [12] approximated K (r) by the inverse hy-
perbolic tangent function arth, obtaining the inequalities

π
2

(
arthr

r

)1/2

< K (r) <
π
2

arthr
r

(1.2)

for all r ∈ (0,1) . In 1995, Sándor [51] refined the elegant inequalities for AG(a,b) in
terms of arithmetic and the logarithmic means

a−b
loga− logb

= L(a,b) < AG(a,b) < A(a,b) =
a+b

2
,

or equivalently
π
2

1
A(1,r′)

< K (r) <
π
2

1
L(1,r′)

and proved that for r ∈ (0,1)

π
2

(
2/π

A(1,r′)
+

1−2/π
L(1,r′)

)
< K (r) <

π
2

(
12/(5π)
A(1,r′)

+
1−12/(5π)

L(1,r′)

)
. (1.3)

In 2004, Alzer and Qiu [11] refined (1.2) and (1.3) as

π
2

(
arthr

r

)3/4

< K (r) <
π
2

arthr
r

(1.4)

with the best possible exponents 3/4 and 1, and

π
2

(
α

A(1,r′)
+

1−α
L(1,r′)

)
< K (r) <

π
2

(
β

A(1,r′)
+

1−β
L(1,r′)

)
(1.5)

with the optimal parameters α = 2/π and β = 3/4.
In 1997, Vuorinen [54] conjectured that the inequality

E (r) >
π
2

(
1+ r′3/2

2

)2/3

(1.6)
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holds for all r ∈ (0,1) . Later, Barnard et al. [14, 15] verified the conjecture. And in
[11] the authors also provided an optimal upper bound for E (r) in terms of power mean
of 1 and r′ , namely, for 0 < r < 1,

E (r) <
π
2

(
1+ r′log2/ log(π/2)

2

)log(π/2)/ log2

. (1.7)

In this paper, we shall give an asymptotic expansion for K (r) as r → 1 in Section
2, which is a refinement of (1.1). In Section 3, several sharp symmetrical bounds for
AG(a,b) and E(a,b) are found. These results lead to several new bounds for K (r) and
E (r) in Section 4. Finally, in Section 5 we shall compare our results with (1.4)-(1.7).

In order to prove our main results we need some formulas [13, Appendix E, pp.
474-475] and a technical lemma, which we present in this section.

dK

dr
=

E − r′2K
rr′2

,
dE

dr
=

E −K

r
,

d(E − r′2K )
dr

= rK ,

K

(
2
√

r
1+ r

)
= (1+ r)K (r), E

(
2
√

r
1+ r

)
=

2E − r′2K
1+ r

.

LEMMA 1.1. [13, Theorem 1.25]. For −∞ < a < b < ∞ , let f ,g : [a,b] → R

be continuous on [a,b] , and be differentiable on (a,b) , let g′(x) �= 0 on (a,b) . If
f ′(x)/g′(x) is increasing (decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

2. An asymptotic expansion for K (r) as r → 1

In this section, we find an infinite series for the function r→K (r)+ logr′ defined
on (0,1] . This result yields an asymptotic expansion for K (r) as r → 1, which is a
refinement of (1.1).

THEOREM 2.1. Let r∈ (0,1] , r0 = r , r1 = 2
√

r/(1+r)= ϕ2(r0) , r2 = 2
√

r1/(1+
r1) = ϕ2(r1) = ϕ4(r0) , · · · , rn = 2

√
rn−1/(1+ rn−1) = ϕ2(rn−1) = ϕ2n(r0) . Then

K (r)+ logr′ =
1
2

∞

∑
k=0

(3+ rk) log(1+ rk)− (1− rk) log(1− rk)
k
∏
i=0

(1+ ri)
.

Proof. By simple computation we get

K (r1)+ logr′1 =K

(
2
√

r
1+ r

)
+ log

(
1− r
1+ r

)
= (1+ r)K (r)+ log

(
1− r
1+ r

)
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=(1+ r)[K (r)+ logr′]− 1+ r
2

log(1− r2)+ log

(
1− r
1+ r

)

=(1+ r)[K (r)+ logr′]− (3+ r) log(1+ r)− (1− r) log(1− r)
2

,

that is,

K (r1)+ logr′1
1+ r0

= K (r0)+ logr′0−
(3+ r0) log(1+ r0)− (1− r0) log(1− r0)

2(1+ r0)
. (2.1)

Putting rn−1 into (2.1) instead of r0 , one has

K (rn)+ logr′n
1+ rn−1

=K (rn−1)+ logr′n−1−
(3+ rn−1) log(1+ rn−1)− (1− rn−1) log(1− rn−1)

2(1+ rn−1)
. (2.2)

It follows from (2.1) and (2.2) that

K (r)+ logr′ − (3+ r0) log(1+ r0)− (1− r0) log(1− r0)
2(1+ r0)

− (3+ r1) log(1+ r1)− (1− r1) log(1− r1)
2(1+ r0)(1+ r1)

=
K (r2)+ logr′2
(1+ r0)(1+ r1)

,

and

K (r)+ logr′ − (3+ r0) log(1+ r0)− (1− r0) log(1− r0)
2(1+ r0)

− (3+ r1) log(1+ r1)− (1− r1) log(1− r1)
2(1+ r0)(1+ r1)

− (3+ r2) log(1+ r2)− (1− r2) log(1− r2)
2(1+ r0)(1+ r1)(1+ r2)

=
K (r3)+ logr′3

(1+ r0)(1+ r1)(1+ r2)
.

Generally, by recursion we can obtain

K (r)+logr′−1
2

n

∑
k=0

(3+rk) log(1+rk)−(1−rk) log(1−rk)
k
∏
i=0

(1+ ri)
=

K (rn+1)+logr′n+1
n
∏
i=0

(1+ ri)
.

Since the function r → K (r)+ logr′ is strictly decreasing from (0,1] onto
[log4,π/2) ,

0 < K (r)+ logr′ − 1
2

n

∑
k=0

(3+ rk) log(1+ rk)− (1− rk) log(1− rk)
k
∏
i=0

(1+ ri)
<

π/2
n
∏
i=0

(1+ ri)
.
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Letting n → ∞ , then
∞
∏
i=0

(1+ ri) = +∞ for r ∈ (0,1] , and thereby

K (r)+ logr′ =
1
2

∞

∑
k=0

(3+ rk) log(1+ rk)− (1− rk) log(1− rk)
k
∏
i=0

(1+ ri)
.

COROLLARY 2.2. Let rn be defined as in Theorem 2.1. Then the complete elliptic
integrals of the first kind K (r) has the following asymptotic formula

K (r)+ logr′ = log4−
∞

∑
k=0

(1− rk) log(1− rk)
2k+2 , r → 1.

3. Bounds for AG(a,b) and E(a,b)

In this section, we shall prove several sharp symmetrical bounds for AG(a,b) and
E(a,b) in terms of some classical mean values, such as arithmetic mean A(a,b) , geo-
metric mean G(a,b) , harmonic mean H(a,b) and logarithmic mean L(a,b) . We first
establish three monotonicity lemmas involving the complete elliptic integrals K (r)
and E (r) .

LEMMA 3.1. (1) The function r �→ (E − r′2K )/r2 is strictly increasing from
(0,1) onto (π/4,1);

(2) the function r �→ 2E − r′2K is strictly increasing from (0,1) onto (π/2,2);

(3) the function r �→ [K − E − (E − r′2K )]/r4 is strictly increasing from (0,1)
onto (π/16,∞);

(4) the function r �→ r′3/4(K −E )/r2 is strictly decreasing from (0,1) onto (π/4,∞);

(5) the function r �→ E + r2K is strictly increasing from (0,1) onto (π/2,∞);

(6) the function r �→ [4(2E − r′2K )2/π2 − (1− r2)]/r2 is strictly increasing from
(0,1) onto (3/2,16/π2) .

Proof. Parts (1)-(4) can be found in [13, Theorem 3.21(1), Exercise 3.43(13)], [59,
Lemma 2.2(4)] and [11, Theorem 15].

For part (5), let g(r) = E + r2K , then by differentiation we have

g′(r) =
E −K

r
+2rK + r2 E − r′2K

rr′2
=

E − r′2K + r2r′2K
rr′2

> 0

for all r ∈ (0,1) . Thus g(r) is strictly increasing on (0,1) , and the limiting values are
clear.
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For part (6), let h1(r) = 4(2E − r′2K )2/π2 − (1− r2) , h2(r) = r2 and h(r) =
h1(r)/h2(r) . Then h(1−) = 16/π2 , h1(0) = h2(0) = 0 and

h′1(r)
h′2(r)

=
4

π2

(
2E − r′2K

)(E − r′2K
r2

)
+1. (3.1)

It follows from (3.1) and parts (1) and (2) together with Lemma 1.1 that h(r) is
strictly increasing on (0,1) and h(0+) = 3/2.

LEMMA 3.2. The function

f (r) =
4(1+ r2)(2E − r′2K )2/π2− (1− r2)2

r2

is strictly decreasing from (0,1) onto (32/π2,7/2) .

Proof. Clearly f (1−) = 32/π2 , and by l’Hôpital’s rule and Lemma 3.1(1), (2) we
have

lim
r→0+

f (r) = lim
r→0

[
4

π2 (2E − r′2K )2 +
4

π2 (1+ r2)(2E − r′2K )
E − r′2K

r2 +2(1− r2)

]

=
7
2
.

Differentiating f yields

f ′(r) =
[8r(2E −r′2K )2/π2+8(1+r2)(2E −r′2K )(E −r′2K )/r/π2+4r(1−r2)]r2

r4

− [4(1+ r2)(E − r′2K )2/π2− (1− r2)2]2r
r4

=
1
r3

[
− 8

π2 (2E − r′2K )2 +
8

π2 (1+ r2)(2E − r′2K )(E − r′2K )+2(1− r4)
]

=
2r′2

r3

[
1+ r2− 4

π2 (2E − r′2K )(E + r2K )
]
. (3.2)

Let

f1(r) = 1+ r2− 4
π2 (2E − r′2K )(E + r2K ), r ∈ (0,1). (3.3)

Then
lim

r→0+
f1(r) = 0, (3.4)

f ′1(r)
r

=
1
r

[
2r− 4

π2

E − r′2K
r

(E + r2K )− 4
π2 (2E − r′2K )

E − r′2K + r2r′2K
rr′2

]
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=2− 4
π2

E − r′2K
r2 (E + r2K )− 4

π2 (2E − r′2K )

(
E − r′2K

r2r′2
+K

)
= f2(r).

(3.5)

The equation (3.5) and Lemma 3.1(1), (2) and (5) imply that f2(r) is strictly de-
creasing on (0,1) . Note that f2(0) = 0. Thus f2(r) < 0 for r ∈ (0,1) . By (3.4)
and (3.5) we conclude that f1(r) is strictly decreasing on (0,1) , and f1(r) < 0 for
r ∈ (0,1) . Therefore, using (3.2) and (3.3), the monotonicity of f follows.

LEMMA 3.3. Let c ∈ R . Then the function

f (r) = r′c
[

E − r′2K − r′2(K −E )
r4

]

is strictly decreasing from (0,1) onto (0,3π/16) if and only if c � 1/2 .

Proof. By power series expansion, one has

2
π

[
E − r′2K − r′2(K −E )

]
=

2
π

[
(1+ r′2)E −2r′2K

]
=(2− r2)

∞

∑
n=0

(−1/2)n(1/2)n

(n!)2 r2n−2(1− r2)
∞

∑
n=0

(1/2)n(1/2)n

(n!)2 r2n

=r2 +(2− r2)
∞

∑
n=1

(−1/2)n(1/2)n

(n!)2 r2n−2(1− r2)
∞

∑
n=1

(1/2)n(1/2)n

(n!)2 r2n

=r2− (2− r2)
2

∞

∑
n=0

(1/2)n(1/2)n+1

[(n+1)!]2
r2n+2−2(1− r2)

∞

∑
n=0

(1/2)n+1(1/2)n+1

[(n+1)!]2
r2n+2

=r2−
∞

∑
n=0

(1/2)n(1/2)n+1

[(n+1)!]2
r2n+2 +

1
2

∞

∑
n=0

(1/2)n(1/2)n+1

[(n+1)!]2
r2n+4

−2
∞

∑
n=0

(1/2)n+1(1/2)n+1

[(n+1)!]2
r2n+2 +2

∞

∑
n=0

(1/2)n+1(1/2)n+1

[(n+1)!]2
r2n+4

=−
∞

∑
n=0

(1/2)n+1(1/2)n+2

[(n+2)!]2
r2n+4 +

1
2

∞

∑
n=0

(1/2)n(1/2)n+1

[(n+1)!]2
r2n+4

−2
∞

∑
n=0

(1/2)n+2(1/2)n+2

[(n+2)!]2
r2n+4 +2

∞

∑
n=0

(1/2)n+1(1/2)n+1

[(n+1)!]2
r2n+4

=
3
8

∞

∑
n=0

(1/2)n(3/2)n

(3)n

r2n+4

n!
=

3
8
r4F

(
1
2
,
3
2
;3;r2

)
. (3.6)

According to (3.6), f (r) can be rewritten as

f (r) =
3π
16

r′cF
(

1
2
,
3
2
;3;r2

)
. (3.7)
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Lemma 2.15(1) in [44] shows that x → (1−x)dF(a,b;a+b+1,x) (a,b > 0) is strictly
decreasing on (0,1) if and only if d � ab/(a+b+1) . Taking a = 1/2 and b = 3/2,
it follows that f (r) is strictly decreasing on (0,1) if and only if c � 1/2. Moreover,
when c � 1/2, by (3.7) we get f (0+) = 3π/16, and f (1+) = 0.

THEOREM 3.4. The double inequality

α
L(a,b)

+
1−α

He(a,b)
<

1
AG(a,b)

<
β

L(a,b)
+

1−β
He(a,b)

holds for all a,b > 0 with a �= b if and only if α � 1/2 and β � 2/π , where He(a,b) =
2A(a,b)/3+G(a,b)/3 .

Proof. According to the fact that He(a,b) > L(a,b) for all a,b > 0 with a �= b , it
follows that Theorem 3.4 is equivalent to

α <

1
AG(a,b)

− 1
He(a,b)

1
L(a,b)

− 1
He(a,b)

< β (3.8)

for all a,b > 0 with a �= b if and only if α � 1/2 and β � 2/π .
Since L(a,b) , He(a,b) and AG(a,b) are symmetric and homogeneous of degree

1, without loss of generality, we assume that a = 1 > b . Let b = (1− r)/(1+ r)(r ∈
(0,1)) . Then

A(a,b)
L(a,b)

=
1/(1+ r)

2r/ log[(1+ r)/(1− r)]/(1+ r)
=

arthr
r

, (3.9)

A(a,b)
AG(a,b)

=
1/(1+ r)

(π/2)/K [2
√

r/(1+ r)])
=

2K (r)
π

, (3.10)

A(a,b)
He(a,b)

=
1/(1+ r)

2/[3(1+ r)]+ (1/3)
√

(1− r)/(1+ r)
=

3
2+ r′

, (3.11)

1
AG(a,b)

− 1
He(a,b)

1
L(a,b)

− 1
He(a,b)

=
2K (r)/π −3/(2+ r′)
arthr/r−3/(2+ r′)

=
2rK (r)/π −3r/(2+ r′)

arthr−3r/(2+ r′)
. (3.12)

Let

G(r) =
2rK (r)/π −3r/(2+ r′)

arthr−3r/(2+ r′)
, r ∈ (0,1), (3.13)

G1(r) = 2rK (r)/π − 3r/(2 + r′) , G2(r) = arthr− 3r/(2 + r′) , G3(r) = 2E (r)/π −
[3r′(1+2r′)]/(2+r′)2 , G4(r)= 1− [3r′(1+2r′)]/(2+r′)2 . Then G(r)= G1(r)/G2(r) ,
G1(0+) = G2(0+) = G3(0+) = G4(0+) = 0 and

G′
1(r)

G′
2(r)

=
2E (r)/(πr′2)− [3(1+2r′)]/[r′(2+ r′)2]

1/r′2− [3(1+2r′)]/[r′(2+ r′)2]
=

G3(r)
G4(r)

,
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G′
3(r)

G′
4(r)

=
2(E −K )/(πr)+ [3r(2+7r′)]/[r′(2+ r′)3]

[3r(2+7r′)]/[r′(2+ r′)3]

=1− 2
3π

r′3/4(K −E )
r2 · r′1/4(2+ r′)3

7r′ +2
. (3.14)

It is easy to check that r → r(2+ r4)3/(7r4 +2) is strictly increasing from (0,1)
onto (0,3) . Then from (3.14) and Lemma 3.1(4) we know that G′

3(r)/G′
4(r) is strictly

increasing on (0,1) , and lim
r→0+

[G′
3(r)/G′

4(r)] = 1/2. Applying Lemma 1.1 two times,

we obtain that G(r) is strictly increasing on (0,1) , and by l’Hopital’s rule, G(0+) =
lim

r→0+
[G′

3(r)/G′
4(r)] = 1/2 and G(1−) = lim

r→1−
[G3(r)/G4(r)] = 2/π . Therefore, Theo-

rem 3.4 directly follows from (3.8)-(3.13).
Combining (1.5) and (3.8), we see that

1
2L(a,b)

+
1

2He(a,b)
<

1
AG(a,b)

<
3

4L(a,b)
+

1
4A(a,b)

(3.15)

for all a,b > 0 with a �= b . The following Theorem 3.5 will be a refinement of (3.15).

THEOREM 3.5. The double inequality

α
(

3
4L(a,b)

+
1

4A(a,b)

)
+(1−α)

(
1

2L(a,b)
+

1
2He(a,b)

)

<
1

AG(a,b)
β
(

3
4L(a,b)

+
1

4A(a,b)

)
+(1−β )

(
1

2L(a,b)
+

1
2He(a,b)

)
(3.16)

holds for all a,b > 0 with a �= b if and only if α � 17/44 and β � 8/π − 2 , where
He(a,b) = 2A(a,b)/3+G(a,b)/3 .

Proof. It suffices to establish the double inequality

α <

1
AG(a,b)

−
(

1
2L(a,b)

+
1

2He(a,b)

)
3

4L(a,b)
+

1
4A(a,b)

−
(

1
2L(a,b)

+
1

2He(a,b)

) < β (3.17)

holds for all a,b > 0 with a �= b if and only if α � 17/44 and β � 8/π −2.
Since L(a,b) , A(a,b) , He(a,b) and AG(a,b) are symmetric and homogeneous

of degree 1, without loss of generality, we assume that a = 1 > b . Let b = (1− r)/(1+
r)(r ∈ (0,1)) . Then from (3.9)-(3.12) we have

1
AG(a,b)

−
(

1
2L(a,b)

+
1

2He(a,b)

)
3

4L(a,b)
+

1
4A(a,b)

−
(

1
2L(a,b)

+
1

2He(a,b)

)
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=
2K (r)/π − arthr/(2r)−3/[2(2+ r′)]

arthr/(4r)+1/4−3/[2(2+ r′)]

=
4rK (r)/π − arthr−3r/(2+ r′)

arthr/2+ r/2−3r/(2+ r′)
. (3.18)

Let

F(r) =
4rK (r)/π − arthr−3r/(2+ r′)

arthr/2+ r/2−3r/(2+ r′)
, r ∈ (0,1), (3.19)

F1(r) = 4rK (r)/π −arthr−3r/(2+r′) , F2(r) = arthr/2+r/2−3r/(2+r′) , F3(r) =
4E (r)/π −1− [3r′(1+2r′)]/(2+ r′)2 , F4(r) = 1/2+ r′2/2− [3r′(1+2r′)]/(2+ r′)2 ,
F5(r)=−4(K −E )/(πr2)+[3(7r′+2)]/[r′(2+r′)3] , F6(r)=−1+[3(7r′+2)]/[r′(2+
r′)3] . Then F(r) = F1(r)/F2(r) , F1(0+) = F2(0+) = F3(0+) = F4(0+) = F5(0+) =
F6(0+) = 0 and

F ′
1(r)

F ′
2(r)

=
4E (r)/(πr′2)−1/r′2− [3(1+2r′)]/[r′(2+ r′)2]

1/(2r′2)+1/2− [3(1+2r′)]/[r′(2+ r′)2]
=

F3(r)
F4(r)

F ′
3(r)

F ′
4(r)

=
4(E −K )/(πr)+ [3r(2+7r′)]/[r′(2+ r′)3]

−r+[3r(2+7r′)]/[r′(2+ r′)3]
=

F5(r)
F6(r)

F ′
5(r)

F ′
6(r)

=
−4[E − r′2K − r′2(K −E )]/(πr3r′2)+3r(21r′2 +8r′ +4)/[r′3(2+ r′)4]

3r(21r′2 +8r′+4)/[r′3(2+ r′)4]

=1− 4
3π

r′1/2[E − r′2K − r′2(K −E )]
r4 · r′1/2(2+ r′)4

21r′2 +8r′+4
. (3.20)

It is not difficult to verify that r → r(2+ r2)4/(21r4 +8r2 +4) is strictly increas-
ing from (0,1) onto (0,27/11) . Then from (3.20) and Lemma 3.3 we know that
F ′

5(r)/F ′
6(r) is strictly increasing on (0,1) , and lim

r→0+
[F ′

5(r)/F ′
6(r)] = 17/44. Apply-

ing Lemma 1.1 three times, we obtain that F(r) is strictly increasing on (0,1) , and by
l’Hopital’s rule, F(0+)= lim

r→0+
[F ′

5(r)/F ′
6(r)] = 17/44 and F(1−)= lim

r→1−
[F3(r)/F4(r)] =

8/π −2.
Therefore, Theorem3.5 directly follows from (3.17)-(3.19) togetherwith the mono-

tonicity and range of F on (0,1) .

THEOREM 3.6. Let α1,α2,β1,β2 ∈ (0,1) . Then:

(1) the double inequality

α1A(a,b)+ (1−α1)G(a,b) < E(a,b) < β1A(a,b)+ (1−β1)G(a,b)

holds for all a,b > 0 with a �= b if and only if α1 � 3/4 and β1 � 8/π2 ;

(2) the double inequality

α2A(a,b)+ (1−α2)H(a,b) < E(a,b) < β2A(a,b)+ (1−β2)H(a,b)

holds for all a,b > 0 with a �= b if and only if α2 � 8/π2 and β2 � 7/8 , where
H(a,b) = 2ab/(a+b) is classical harmonic mean of a and b.
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Proof. It is clear to see that parts (1) and (2) are respectively equivalent to

α1 <
E(a,b)−G(a,b)
A(a,b)−G(a,b)

< β1,

α2 <
E(a,b)−H(a,b)
A(a,b)−H(a,b)

< β2

hold for all a,b > 0 with a �= b if and only if α1 � 3/4, β1 � 8/π2 , α2 � 8/π2 and
β2 � 7/8.

Without loss of generality, we assume that a = 1 > b . Let b = [(1− r)/(1 +
r)]2(r ∈ (0,1)) . Then simple computations leads to

E(a,b)
A(a,b)

=
4
[
E
(

2
√

r
1+r

)]2
/π2

(1+ r2)/(1+ r)2 =
4

π2

(2E − r′2K )2

1+ r2 ,

G(a,b)
A(a,b)

=
1− r2

1+ r2 ,
H(a,b)
A(a,b)

=
(

1− r2

1+ r2

)2

.

Consequently,

E(a,b)−G(a,b)
A(a,b)−G(a,b)

=
4(2E − r′2K )2/[π2(1+ r2)]− (1− r2)/(1+ r2)

1− (1− r2)/(1+ r2)

=
4(2E − r′2K )2/π2− (1− r2)

2r2 , (3.21)

E(a,b)−H(a,b)
A(a,b)−H(a,b)

=
4(2E − r′2K )2/[π2(1+ r2)]− (1− r2)2/(1+ r2)2

1− (1− r2)2/(1+ r2)2

=
4(1+ r2)(2E − r′2K )2/π2− (1− r2)2

4r2 , (3.22)

Therefore, Theorem 3.6 directly follows from (3.21), (3.22), Lemma 3.1(6) and
Lemma 3.2.

THEOREM 3.7. The double inequality

α
[
7
8
A(a,b)+

1
8
H(a,b)

]
+(1−α)

[
3
4
A(a,b)+

1
4
G(a,b)

]

<E(a,b) < β
[
7
8
A(a,b)+

1
8
H(a,b)

]
+(1−β )

[
3
4
A(a,b)+

1
4
G(a,b)

]

holds for all a,b > 0 with a �= b if and only if α � 3/16 and β � 4(16/π2−3/2) .

Proof. With the similar argument in Theorem 3.6, we assume that a = 1 and b =
[(1− r)/(1+ r)]2(r ∈ (0,1)) . Thus we only need to prove that

J(r) =
E(a,b)− [3A(a,b)/4+G(a,b)/4]

7A(a,b)/8+H(a,b)/8− [3A(a,b)/4+G(a,b)/4]
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=
E(a,b)/A(a,b)− [3/4+G(a,b)/(4A(a,b))]

1/8+H(a,b)/(8A(a,b))− [G(a,b)/(4A(a,b))]

=
4(2E − r′2K )2/π2/(1+ r2)−3/4− (1− r2)/(1+ r2)/4

1/8+(1− r2)2/(1+ r2)2/8− (1− r2)/(1+ r2)/4

=
2(1+ r2)

[
4(2E − r′2K )2/π2−1− r2/2

]
r4 (3.23)

is strictly increasing from (0,1) onto (3/16,4(16/π2−3/2)) .
Let J1(r)= 2(1+r2)

[
4(2E − r′2K )2/π2−1− r2/2

]
, J2(r)= r4 , J3(r)= 4(2E −

r′2K )2/π2−1−r2/2+1/2(1+r2)[8(2E −r′2K )(E −r′2K )/(π2r2)−1] and J4(r)=
r2 . Then J(r) = J1(r)/J2(r) , J1(0+) = J2(0+) = J3(0+) = J4(0+) = 0 and

J′1(r)
J′2(r)

=
4(2E − r′2K )2/π2−1− r2/2

r2 +
1+ r2

2r2

[
8

π2 (2E − r′2K )
E − r′2K

r2 −1

]

=
J3(r)
J4(r)

, (3.24)

J′3(r)
J′4(r)

=
8

π2 (2E − r′2K )
E − r′2K

r2 −1+
2

π2 (1+ r2)

×
⎡
⎣
(

E − r′2K
r2

)2

+(2E − r′2K )
K −E − (E − r′2K )

r4

⎤
⎦ . (3.25)

The equation (3.25) and Lemma 3.1(1)-(3) show that J′3(r)/J′4(r) is strictly in-
creasing from (0,1) onto (3/16,+∞) . Therefore, the monotonicity of J(r) follows
from (3.23) and (3.24) together with Lemma 1.1. Moreover, by l’Hopital’s rule, J(0+)=
lim

r→0+
[J′3(r)/J′4(r)] = 3/16. And J(1−) = 4(16/π2−3/2) is clear.

4. Bounds for K (r) and E (r)

THEOREM 4.1. For all r ∈ (0,1) we have

π
2

[
α

arthr
r

+(1−α)
3

2+ r′

]
< K (r) <

π
2

[
β

arthr
r

+(1−β )
3

2+ r′

]
(4.1)

with the best possible constants

α = 1/2, β = 2/π .

Proof. Taking a = 1+ r and b = 1− r in Theorem 3.4, we obtain the result.

THEOREM 4.2. For all r ∈ (0,1) we have

π
2

[
α
(

3
4L(1,r′)

+
1

4A(1,r′)

)
+(1−α)

(
1

2L(1,r′)
+

1
2He(1,r′)

)]
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<K (r) <
π
2

[
β
(

3
4L(1,r′)

+
1

4A(1,r′)

)
+(1−β )

(
1

2L(1,r′)
+

1
2He(1,r′)

)]
,

(4.2)

π
2

[
α
(

3
4

arthr
r

+
1
4

)
+(1−α)

(
arthr
2r

+
3

2(2+ r′)

)]

<K (r) <
π
2

[
β
(

3
4

arthr
r

+
1
4

)
+(1−β )

(
arthr
2r

+
3

2(2+ r′)

)]
(4.3)

with the best possible constants

α = 17/44, β = 8/π −2.

Proof. Two inequalities in Theorem 4.2 follow easily from Theorem 3.5 with a =
1, b = r′ and a = 1+ r , b = 1− r , respectively.

THEOREM 4.3. For all r ∈ (0,1) we have

π
2

√
α1

1+ r′2

2
+(1−α1)r′ < E (r) <

π
2

√
β1

1+ r′2

2
+(1−β1)r′, (4.4)

π
2

√
α2

1+ r′2

2
+(1−α2)

2r′2

1+ r′2
< E (r) <

π
2

√
β2

1+ r′2

2
+(1−β2)

2r′2

1+ r′2
(4.5)

with the best possible constants

α1 = 3/4, β1 = 8/π2, α2 = 8/π2, β2 = 7/8.

Proof. Theorem 4.3 follows from Theorem 3.6 with a = 1 and b = r′2 .
Similarly, letting a = 1 and b = r′2 in Theorem 3.7, one has

THEOREM 4.4. For all r ∈ (0,1) we have

π
2

√
α
[
7+18r′2 +7r′4

16(1+ r′2)

]
+(1−α)

(
3r′2 +2r′ +3

8

)

<E (r) <
π
2

√
β
[
7+18r′2 +7r′4

16(1+ r′2)

]
+(1−β )

(
3r′2 +2r′ +3

8

)
(4.6)

with the best possible constants

α = 3/16, β = 4(16/π2−3/2).



ASYMPTOTIC EXPANSION AND BOUNDS FOR COMPLETE ELLIPTIC INTEGRALS 835

5. Comparisons

REMARK 5.1. Since 1/AG(1+ r,1− r) = 2K (r)/π , 1/L(1+ r,1− r) = arthr/r
and 1/A(1+ r,1− r)= 1, the right-hand side of inequality (1.4) can be expressed as

1
AG(a,b)

<
1

L(a,b)

with a = 1+ r and b = 1− r . Thus Theorems 3.4 and 3.5 imply that our upper bounds
in (4.1) and (4.3) are better than that in (1.4). On the other hand, it follows from (3.15)
and (3.16) that the upper bound in (4.2) is better than that in (1.5).

Next, we shall compare the lower bound in (4.3) with the lower bound in (1.4).
For this purpose we need the following two propositions.

PROPOSITION 5.2. For all r ∈ (0,1) , we have

r2arthr

r− r′2arthr
>

3
2

+
1
5
r2 +

23
175

r4, (5.1)

35arthr+
216r′

(2+ r′)2

(
3
2
r+

1
5
r3 +

23
175

r5
)
− 162r

2+ r′
−17r > 0. (5.2)

Proof. Clearly, inequality (5.1) can be rewritten as

arthr
r

>
r− r′2arthr

r3

(
3
2

+
1
5
r2 +

23
175

r4
)

.

Since arthr/r = ∑∞
n=0

[
r2n/(2n+1)

]
and (r−r′2arthr)/r3 = [1−(1−r2)arthr/r]/r2 =

∑∞
n=0(2r2n)/[(2n+1)(2n+3)] , one has

arthr
r

− r− r′2arthr
r3

(
3
2

+
1
5
r2 +

23
175

r4
)

=
∞

∑
n=0

r2n

2n+1
−
(

3
2

+
1
5
r2 +

23
175

r4
) ∞

∑
n=0

2r2n

(2n+1)(2n+3)

=
∞

∑
n=2

r2n

2n+1
−

∞

∑
n=2

3r2n

(2n+1)(2n+3)
−2

5

∞

∑
n=1

r2n+2

(2n+1)(2n+3)
− 46

175

∞

∑
n=0

r2n+4

(2n+1)(2n+3)

=
∞

∑
n=0

r2n+4

2n+5
−

∞

∑
n=0

3r2n+4

(2n+5)(2n+7)
−2

5

∞

∑
n=0

r2n+4

(2n+3)(2n+5)
− 46

175

∞

∑
n=0

r2n+4

(2n+1)(2n+3)

=
∞

∑
n=0

2n(700n2 +2568n+2213)
175(2n+1)(2n+3)(2n+5)(2n+7)

r2n+4 > 0

for all r ∈ (0,1) .
For the inequality (5.2), set

f (r) = 35arthr+
216r′

(2+ r′)2

(
3
2
r+

1
5
r3 +

23
175

r5
)
− 162r

2+ r′
−17r, r ∈ (0,1).
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Then f (0+) = 0, and by tedious computations we have

f ′(r) =
19872r8−29592r6−30810r4 +130480r2−40950−√

1− r2g(r)
175(1− r2)(2+ r′)3 , (5.3)

where g(r) = 59616r6 + 13775r4 + 89215r2− 40950 is strictly increasing on (0,1) ,
and there exists a unique zero point r0 = 0.62778 · · · such that g(r) < 0 for r ∈ (0,r0) ,
and g(r) > 0 for r ∈ (r0,1) .

Finally, it is sufficient to prove that f ′(r) > 0 for r ∈ (0,r0] and r ∈ (r0,1) .
When r ∈ (0,r0] , noting that the fact 1− r2 <

√
1− r2 for r ∈ (0,1) , we have

19872r8−29592r6−30810r4 +130480r2−40950−
√

1− r2g(r)

>19872r8−29592r6−30810r4 +130480r2−40950− (1− r2)g(r)

=r2[79488r6 + r2(44630−75433r2)+315] > 0

for all r ∈ (0,r0] . Thus it follows from (5.3) that f ′(r) > 0 for all r ∈ (0,r0] .
When r ∈ (r0,1) , by the inequality

√
1− r2 < 1− r2/2− r4/8, we get

19872r8−29592r6−30810r4 +130480r2−40950−
√

1− r2g(r)

>19872r8−29592r6−30810r4 +130480r2−40950− (1− r2/2− r4/8
)
g(r)

=

(
59616r8 +411215r6−569349r4−40770r2 +166320

)
r2

8
.

It is not difficult to verify that inequality 59616r8 +411215r6−569349r4−40770r2 +
166320 > 0 takes place for all r ∈ (0,1) . Thus (5.3) leads to that f ′(r) > 0 for all
r ∈ (r0,1) .

PROPOSITION 5.3. Let

F(r) = log

(
105
176

arthr
r

+
81

88(2+ r′)
+

17
176

)
− 3

4
log

(
arthr

r

)
.

Then F(r) is strictly increasing from (0,1) onto (0,∞) .

Proof. Differentiating F yields

F ′(r) =
105(r− r′2arthr)/(r2r′2)+162r/[r′(2+ r′)2]

105(arthr)/r+162/(2+ r′)+17
− 3

4
r− r′2arthr

rr′2arthr

=
3(r− r′2arthr)F1(r)

4rr′2arthr [105(arthr)/r+162/(2+ r′)+17]
(5.4)

where

F1(r) = 35
arthr

r
+

216r′

(2+ r′)2

r2arthr

r− r′2arthr
− 162

2+ r′
−17. (5.5)
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It follows from (5.1) and (5.2) that

F1(r) > 35
arthr

r
+

216r′

(2+ r′)2

(
3
2

+
1
5
r2 +

23
175

r4
)
− 162

2+ r′
−17 > 0 (5.6)

for all r ∈ (0,1) .
Therefore, the monotonicity of F(r) follows from (5.4)-(5.6). The limiting values

are clear.

REMARK 5.4. From Proposition 5.3 we conclude that the lower bound in (4.3) is
better than the lower bound in (1.4).

REMARK 5.5. The lower bound in (4.5) is better than the lower bound in (1.6)
when r → 1. Computational and numerical experiments show that the lower bound in
(4.6) is tighter than that in (1.6) for 0 � r � 0.972. Aslo, computational and numerical
experiments show that the upper bound in (4.6) is tighter than that in (1.7) for 0 � r �
0.953.
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the first kind with respect to Hölder means, J. Math. Anal. Appl. 388, 2 (2012), 1141–1146.

[60] M.-K. WANG, Y.-M. CHU, S.-L. QIU, Y.-P. JIANG, Bounds for the perimeter of an ellipse, J. Ap-
prox. Theory 164, 7 (2012), 928–937.

[61] M.-K. WANG, Y.-M. CHU, Y.-F. QIU, S.-L. QIU, An optimal power mean inequality for the com-
plete elliptic integrals, Appl. Math. Lett. 24, 6 (2011), 887–890.



840 M.-K. WANG, Y.-M. CHU, Y.-M. LI AND W. ZHANG

[62] M.-K. WANG, Y.-M. CHU, W. ZHANG, Monotonicity and inequalities involving zero-balanced hy-
pergeometric function, Math. Inequal. Appl. 22, 2 (2019), 601–617.

[63] M.-K. WANG, Y.-M. CHU, W. ZHANG, Precise estimates for the solution of Ramanujan’s general-
ized modular equation, Ramanujan J. 49, 3 (2019), 653–668.

[64] M.-K. WANG, Z.-Y. HE, Y.-M. CHU, Sharp power mean inequalities for the generalized elliptic
integral of the first kind, Comput. Methods Funct. Theory 20, 1 (2020), 111–124.

[65] M.-K. WANG, M.-Y. HONG, Y.-F. XU, Z.-H. SHEN, Y.-M. CHU, Inequalities for generalized
trigonometric and hyperbolic functions with one parameter, J. Math. Inequal. 14, 1 (2020), 1–21.

[66] M.-K. WANG, Y.-M. LI, Y.-M. CHU, Inequalities and infinite product formula for Ramanujan gen-
eralized modular equation function, Ramanujan J. 46, 1 (2018), 189–200.

[67] B. WANG, C.-L. LUO, S.-H. LI, Y.-M. CHU, Sharp one-parameter geometric and quadratic means
bounds for the Sándor-Yang means, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RACSAM 114,
1 (2020), Article 7, 10 pages, Available online at
https://doi.org/10.1007/s13398-019-00734-0.

[68] J.-L. WANG, W.-M. QIAN, Z.-Y. HE, Y.-M. CHU, On approximating the Toader mean by other
bivariate means, J. Funct. Spaces 2019 (2019), Article ID 6082413, 7 pages.

[69] M.-K. WANG, S.-L. QIU, Y.-M. CHU, Infinite series formula for Hübner upper bound function with
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