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Abstract. In the article, we prove that the inequality

Γ(x+1) � x2 + p
x+ p

holds for all x ∈ (0,1) if and only if p � p0 , where Γ(x) =
∫ ∞
0 tx−1e−t dt is the gamma function,

p0 =
[
x0Γ(x0 +1)− x2

0

]
/ [1−Γ(x0 +1)] = 1.755 · · · , x0 = 0.192 · · · is the unique solution of

the equation ψ(x+ 1) = [1−Γ(x + 1)][2−Γ(x)]/[(1− x)Γ(x + 1)] on the interval (0,1) and
ψ(x) = Γ′(x)/Γ(x) is the psi function. As applications, we present the best possible parameters
λ0 and μ0 on the interval (0,∞) such that the double inequality

x2 +λ0

x+λ0
< Γ(x+1) <

x2 + μ0

x+ μ0

holds for all x ∈ (1/2,1) , and the two-sided inequality

πx(1− x)(1− x+ μ0)
sin(πx)[(1− x)2 + μ0]

< Γ(x+1) <
πx(1− x)(1− x+λ0)
sin(πx)[(1− x)2 +λ0]

takes place for all x ∈ (0,1/2) .

1. Introduction

Let x > 0. Then the classical Euler gamma function Γ(x) [71] and its logarithmic
derivative, the so-called psi function ψ(x) [45] are given by

Γ(x) =
∫ ∞

0
tx−1e−t dt, ψ(x) =

Γ′(x)
Γ(x)

,

respectively. They have wide applications in pure and applied mathematics [8, 9, 10,
11, 12, 13, 14, 16, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 48, 49,
50, 51, 52, 53, 54, 55, 59, 63, 70, 72, 73, 74, 75]. In particular, many special functions
can be expressed by use of the gamma function [1, 2, 3, 4, 5, 6, 7, 18, 27, 40, 41, 42,
43, 44, 46, 47, 56, 57, 58, 60, 61, 62, 64, 67, 68, 69]. Recently, the bounds for the
gamma function have attracted the attention of many researchers. It is well known that

Mathematics subject classification (2010): 41A60, 33B15, 26D07.
Keywords and phrases: Gamma function, psi function, rational bound, Euler-Mascheroni constant.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-23-68

843

http://dx.doi.org/10.7153/mia-2020-23-68


844 J.-M. SHEN, Z.-H. YANG, W.-M. QIAN, W. ZHANG AND Y.-M. CHU

Γ(x+1) = xΓ(x) and Γ(n+1) = n! . Therefore, we only need to focus our attention on
Γ(x+1) with x ∈ (0,1) .

Gautschi [17] proved that the double inequality

n1−s <
Γ(n+1)
Γ(n+ s)

< e(1−s)ψ(n+1) (1.1)

holds for all s ∈ (0,1) and n ∈ N .
Inequality (1.1) was generalized and improved by Kershaw [34] as follows:

(
x+

s
2

)1−s
<

Γ(x+1)
Γ(x+ s)

< e(1−s)ψ[x+(1+s)/2]

for all x > 0 and s ∈ (0,1) .
Elezović et al. [15] established the double inequality

x
2

< Γ(x)−
1

1−x < −1
2

+

√
1
4

+ x

for the gamma function being valid for all x ∈ (0,1) , and asked for “other bounds for
the gamma function in terms of elementary functions”.

In [31], Ivády provided the bounds for gamma function in terms of very simple
rational functions as follows:

x2 +1
x+1

< Γ(x+1) <
x2 +2
x+2

(1.2)

for all x ∈ (0,1) . Inequality (1.2) can be regarded as a simple estimation of the value
of the gamma function.

In 2017, Yang et al. [66] proved that the inequality

Γ(x+1) >
x2 +q
x+q

(1.3)

holds for all x ∈ (0,1) if and only if q � γ/(1− γ) = 1.365 · · · , where

γ = lim
n→∞

(
n

∑
k=1

1
k
− logn

)
= 0.577 · · ·

is Euler-Mascheroni constant [22].
The aim of this paper is to prove that the inequality

Γ(x+1) � x2 + p
x+ p

is valid for all x ∈ (0,1) if and only if p � p0 , and the double inequality

x2 + λ
x+ λ

< Γ(x+1) <
x2 + μ
x+ μ
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holds for all x ∈ (1/2,1) and the two-sided inequality

πx(1− x)(1− x+ μ)
sin(πx)[(1− x)2 + μ ]

< Γ(x+1) <
πx(1− x)(1− x+ λ )
sin(πx)[(1− x)2 + λ ]

takes place for all x ∈ (0,1/2) if and only if λ � λ0 = γ/(1− γ) = 1.365 · · · and

μ � μ0 = (π +
√

π −2)/(8−2π) = 1.697 · · · , where p0 = x0Γ(x0+1)−x2
0

1−Γ(x0+1) = 1.755 · · · and
x0 = 0.192 · · · is the unique solution of the equation

ψ(x+1) =
1−Γ(x+1)][2−Γ(x)]

(1− x)Γ(x+1)

on the interval (0,1) .

2. Lemmas

In order to establish our main results we need several lemmas, which we present
in this section.

LEMMA 2.1. (See [65, Corollary 3]) The double inequality

1
24(x+1/2)2−

7
960(x+1/2)4+log

(
x+

1
2

)
<ψ(x+1)<

1
24(x+1/2)2+log

(
x+

1
2

)

holds for all x ∈ (−1/2,∞) .

LEMMA 2.2. (See [66, Lemma 2.11]) Let p ∈ [8/5,9/5] , x ∈ (0,1) and the func-
tion h(p,x) be defined by

h(p,x) = ψ ′(x+1)+
4x2

(x2 + p)2 −
2

x2 + p
− 1

(x+ p)2 . (2.1)

Then there exist η1(p),η2(p) ∈ (0,1) with η1(p) < η2(p) such that h(p,x) > 0 for
x ∈ (0,η1(p))∪ (η2(p),1) and h(p,x) < 0 for x ∈ (η1(p),η2(p)) .

LEMMA 2.3. Let p∈ (7/4,44/25) , x∈ (0,1) and the function g(p,x) be defined
by

g(p,x) = ψ(x+1)− 2x
x2 + p

+
1

x+ p
. (2.2)

Then g(p,1/10) > 0 and g(p,1/2) < 0 .

Proof. It follows from Lemma 2.1 and the well known identity ψ(x+1)= ψ(x)+
1/x that

ψ(x+1) = ψ(x+2)− 1
x+1

>
1

24(x+3/2)2 −
7

960(x+3/2)4 + log

(
x+

3
2

)
− 1

x+1
,

(2.3)
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ψ(x+1) <
1

24(x+3/2)2 + log

(
x+

3
2

)
− 1

x+1
. (2.4)

Inequalities (2.3) and (2.4) lead to

ψ
(

1
10

+1

)
>

1
24(1/10+3/2)2 −

7
960(1/10+3/2)4 (2.5)

+ log

(
1
10

+
3
2

)
− 1

1
10 +1

= log
8
5
− 2577715

2883584
,

ψ
(

1
2

+1

)
<

1
24(1/2+3/2)2 + log

(
1
2

+
3
2

)
− 1

1
2 +1

= log2− 21
32

. (2.6)

From (2.2) we get

dg(p,1/10)
dp

=
[
(2x−1)p2+2x2p+(2−x)x3

(x2 + p)2(x+ p)2

]
x=1/10

=−100(8000p2−200p−19)
(1000p2 +110p+1)2 <0,

(2.7)

dg(p,1/2)
dp

=
[
(2x−1)p2 +2x2p+(2− x)x3

(x2 + p)2(x+ p)2

]
x=1/2

=
4(8p+3)

(2p+1)2(4p+1)2 > 0

(2.8)

for p ∈ (7/4,44/25) .
It follows from (2.2) and (2.5)-(2.8) that

g(p,1/10) > g(44/25,1/10)= ψ
(

1
10

+1

)
− 2/10

1/100+44/25
+

1
1/10+44/25

> log
8
5
− 2577715

2883584
− 2/10

1/100+44/25
+

1
1/10+44/25

= 0.000716 · · ·> 0,

g(p,1/2) < g(44/25,1/2) = ψ
(

1
2

+1

)
− 1

1/4+44/25
+

1
1/2+44/25

< log2− 21
32

− 1
1/4+44/25

+
1

1/2+44/25
= −0.01813 · · ·< 0

for p ∈ (7/4,44/25) . �

LEMMA 2.4. Let p ∈ (7/4,44/25) , x ∈ (0,1) , g(p,x) be defined by (2.2), and
η1(p) and η2(p) be defined by Lemma 2.2. Then g(p,η1(p)) > 0 and g(p,η2(p))< 0 .

Proof. Let h(p,x) be defined by (2.1). Then from (2.1) and (2.2) we clearly see
that

∂g(p,x)
∂x

= h(p,x) (2.9)

and

g(p,0+) = ψ(1)+
1
p

< −γ +
4
7

< 0, g(p,1−) = ψ(2)− 1
1+ p

> 1− γ − 4
11

> 0

(2.10)
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for p ∈ (7/4,44/25) .
We use the proof by contradiction to prove the desired results. We first prove

that g(p,η1(p)) > 0. Indeed, if g(p,η1(p)) � 0, then from (2.9) and (2.10) together
with (7/4,44/25)⊂ [8/5,9/5] and Lemma 2.2 we clearly see that there exists ω1(p)∈
(η2(p),1) such that g(p,x) � 0 for x ∈ (0,ω1(p)) and g(p,x) > 0 for x ∈ (ω1(p),1) ,
which contradicts with Lemma 2.3.

Next, we prove that g(p,η2(p)) < 0. In fact, if g(p,η2(p)) � 0, then (2.9) and
(2.10) together with (7/4,44/25) ⊂ [8/5,9/5] and Lemma 2.2 lead to the conclu-
sion that there exists ω2(p) ∈ (0,η1(p)) such that g(p,x) < 0 for x ∈ (0,ω2(p)) and
g(p,x) � 0 for x ∈ (ω2(p),1) , which also contradicts with Lemma 2.3. �

3. Main results

THEOREM 3.1. Let p > 0 . Then the inequality

Γ(x+1) � x2 + p
x+ p

holds for all x ∈ (0,1) if and only if p � p0 , where

p0 =
x0Γ(x0 +1)− x2

0

1−Γ(x0 +1)
= 1.755 · · ·

and x0 = 0.192 · · · is the unique solution of the equation

ψ(x+1) =
1−Γ(x+1)][2−Γ(x)]

(1− x)Γ(x+1)

on the interval (0,1) .

Proof. Let p ∈ (7/4,44/25) , x ∈ (0,1) , η1(p) and η2(p) be defined by Lemma
2.2, h(p,x) and g(p,x) be respectively defined by (2.1) and (2.2), and f (p,x) be de-
fined by

f (p,x) = logΓ(x+1)− log
x2 + p
x+ p

. (3.1)

Then from (2.2) and (3.1) we clearly see that

∂ f (p,x)
∂x

= g(p,x), (3.2)

f (p,0+) = f (p,1−) = 0. (3.3)

It follows from Lemma 2.2, Lemma 2.4, (2.9) and (2.10) that there exist τ1(p) ∈
(0,η1(p)) , τ0(p) ∈ (η1(p),η2(p)) and τ2(p) ∈ (η2(p),1) such that g(p,x) < 0 for
x∈ (0,τ1(p))∪(τ0(p),τ2(p)) and g(p,x) > 0 for x ∈ (τ1(p),τ0(p))∪(τ2(p),1) . Then
(3.2) leads to the conclusion that f (p,x) is strictly decreasing on (0,τ1(p))∪
(τ0(p),τ2(p)) and strictly increasing on (τ1(p),τ0(p))∪ (τ2(p),1) .
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Let x0 = 0.192 · · · be the unique solution of the equation

ψ(x+1) =
[1−Γ(x+1)][2−Γ(x)]

(1− x)Γ(x+1)

on the interval (0,1) and x0 = τ0(p0) , where

p0 =
x0Γ(x0 +1)− x2

0

1−Γ(x0 +1)
= 1.755 · · · ∈ (7/4,44/25).

Then we clearly see that (p0,x0) ∈ (7/4,44/25)× (0,1) is the the unique solution
of the simultaneous equations

logΓ(x+1) = log
x2 + p
x+ p

, ψ(x+1) =
2x

x2 + p
− 1

x+ p

and
f (p0,x0) = f (p0,τ0(p0) = 0. (3.4)

From (3.1), (3.3), (3.4) and the piecewise monotonicity of the function f (p0,x)
on the interval (0,1) we get

Γ(x+1) � x2 + p0

x+ p0
(3.5)

for all x ∈ (0,1) , and inequality (3.5) becomes equality if and only if x = x0 .
It is easy to verify that the function p → (x2 + p)/(x+ p) is strictly increasing on

(0,∞) for all x ∈ (0,1) . Therefore,

Γ(x+1) � x2 + p
x+ p

(3.6)

for all x ∈ (0,1) and p � p0 follows from (3.5).
Next, we prove that p � p0 if inequality (3.6) holds for all x ∈ (0,1) . Indeed,

inequality (3.6) implies that

p � xΓ(x+1)− x2

1−Γ(x+1)
(3.7)

for all x ∈ (0,1) . In particular, taking x = x0 , then (3.7) leads to the conclusion that

p � x0Γ(x0 +1)− x2
0

1−Γ(x0 +1)
= p0. �

THEOREM 3.2. The double inequality

x2 + λ
x+ λ

< Γ(x+1) <
x2 + μ
x+ μ

holds for all x ∈ (1/2,1) and the two-sided inequality

πx(1− x)(1− x+ μ)
sin(πx)[(1− x)2 + μ ]

< Γ(x+1) <
πx(1− x)(1− x+ λ )
sin(πx)[(1− x)2 + λ ]

takes place for all x ∈ (0,1/2) if and only if λ � λ0 = γ/(1− γ) = 1.365 · · · and
μ � μ0 = (π +

√
π −2)/(8−2π)= 1.697 · · · .
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Proof. Let x ∈ (0,1) , x0 = 0.192 · · · be defined by Theorem 3.1, and H(x) and
P(x) be respectively defined by

H(x) = ψ(x+1)+
[1−Γ(x+1)][Γ(x)−2]

(1− x)Γ(x+1)
, (3.8)

P(x) =
xΓ(x+1)− x2

1−Γ(x+1)
. (3.9)

Then from the proof of Theorem 3.1 we know that x0 is the unique solution of the
equation H(x) = 0 on the interval (0,1) .

It follows from (3.8) and (3.9) that

P

(
1
2

)
= μ0, P(1−) = λ0, (3.10)

lim
x→0+

H(x)
x

=
π2

12
− γ2

2
− γ > 0, lim

x→1−
H(x)
1− x

= −π2

12
− 3γ2

2
+2γ < 0, (3.11)

P′(x) =
x(1− x)Γ(x+1)
[1−Γ(x+1)]2

H(x). (3.12)

From (3.11) and (3.12) together with x0 is the unique solution of the equation
H(x) = 0 on the interval (0,1) we clearly see that P(x) is strictly increasing on (0,x0)
and strictly decreasing on (x0,1) , which implies that P(x) is strictly decreasing on
(1/2,1) . Therefore, λ0 and μ0 are the best possible constants such that the double
inequality

x2 + λ0

x+ λ0
< Γ(x+1) <

x2 + μ0

x+ μ0
(3.13)

holds for all x ∈ (1/2,1) follow from (3.10) and the monotonicity of the function P(x)
on the interval (1/2,1) .

It is well known that Γ(x)Γ(1− x) = π/sin(πx) for all x ∈ (0,1) , which leads to
the conclusion that

Γ(2− x) =
πx(1− x)

sin(πx)Γ(x+1)
(3.14)

for all x ∈ (0,1) . Therefore, λ0 and μ0 are the best possible constants such that the
two-sided inequality

πx(1− x)(1− x+ μ0)
sin(πx)[(1− x)2 + μ0]

< Γ(x+1) <
πx(1− x)(1− x+ λ0)
sin(πx)[(1− x)2 + λ0]

takes place for all x∈ (0,1/2) follow easily from (3.13) and (3.14) together with 1−x∈
(1/2,1) . �

Let λ0 = γ/(1−γ) and xλ0
=
√

λ0(λ0 +1)−λ0 . Then simple computations show

that
(

x2+λ0
x+λ0

)′
= x+λ0+

√
λ0(λ0+1)

(x+λ0)2
(x− xλ0

), which implies that

min
x∈(0,1)

x2 + λ0

x+ λ0
=

x2
λ0

+ λ0

xλ0
+ λ0

=
2
√γ

1+
√γ

. (3.15)
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REMARK 3.3. From (1.3) and (3.15) we clearly see that the inequality

Γ(x+1) >
2
√γ

1+
√γ

holds for all x ∈ (0,1) .
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complete p-elliptic integrals, J. Math. Anal. Appl. 480, 2 (2019), Article ID 123388, DOI:
10.1016/j.jmaa.2019.123388.

[57] M.-K. WANG, Y.-M. CHU, W. ZHANG, Monotonicity and inequalities involving zero-balanced hy-
pergeometric function, Math. Inequal. Appl. 22, 2 (2019), 601–617.

[58] M.-K. WANG, Z.-Y. HE, Y.-M. CHU, Sharp power mean inequalities for the generalized elliptic
integral of the first kind, Comput. Methods Funct. Theory 20, 1 (2020), 111–124.

[59] J.-F. WANG, C.-X. HUANG, L.-H. HUANG, Discontinuity-induced limit cycles in a general planar
piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst. 33 (2019), 162–178.

[60] B. WANG, C.-L. LUO, S.-H. LI, Y.-M. CHU, Sharp one-parameter geometric and quadratic means
bounds for the Sándor-Yang means, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RACSAM 114,
1 (2020), DOI: 10.1007/s13398-019-00734-0.

[61] M.-K. WANG, W. ZHANG, Y.-M. CHU, Monotonicity, convexity and inequalities involving the gen-
eralized elliptic integrals, Acta Math. Sci. 39B, 5 (2019), 1440–1450.

[62] S.-H. WU, Y.-M. CHU, Schur m-power convexity of generalized geometric Bonferroni mean involv-
ing three parameters, J. Inequal. Appl. 2019 (2019), Article 57, 11 pages.

[63] D.-X. XIE, J. LI, A new analysis of electrostatic free energy minimization and Poisson-Boltzmann
equation for protein in ionic solvent, Nonlinear Anal. Real World Appl. 21 (2015), 185–196.

[64] H.-Z. XU, Y.-M. CHU, W.-M. QIAN, Sharp bounds for the Sándor-Yang means in terms of arithmetic
and contra-harmonic means, J. Inequal. Appl. 2018 (2018), Article 127, 13 pages.

[65] Z.-H. YANG, Approximations for certain hyperbolic functions by partial sums of their Taylor series
and completely monotonic functions related to gamma function, J. Math. Anal. Appl. 441, 2 (2016),
549–564.

[66] Z.-H. YANG, W.-M. QIAN, Y.-M. CHU, W. ZHANG, On rational bounds for the gamma function, J.
Inequal. Appl. 2017 (2017), Article 210, 17 pages.

[67] S. ZAHEER ULLAH, M. ADIL KHAN, Y.-M. CHU, Majorization theorems for strongly convex func-
tions, J. Inequal. Appl. 2019 (2019), Article 58, 13 pages.

[68] S. ZAHEER ULLAH, M. ADIL KHAN, Y.-M. CHU, A note on generalized convex functions, J. Inequal.
Appl. 2019 (2019), Article 291, 10 pages.

[69] S. ZAHEER ULLAH, M. ADIL KHAN, Z. A. KHAN, Y.-M. CHU, Integral majorization type in-
equalities for the functions in the sense of strong convexity, J. Funct. Spaces 2019 (2019), Article ID
9487823, 11 pages.

[70] L. ZHANG, S.-Y. JIAN, Further studies on the Wei-Yao-Liu nonlinear conjugate gradient method,
Appl. Math. Comput. 219, 14 (2013), 7616–7621.



SHARP RATIONAL BOUNDS FOR THE GAMMA FUNCTION 853

[71] T.-H. ZHAO, Y.-M. CHU, H. WANG, Logarithmically complete monotonicity properties relating to
the gamma function, Abstr. Appl. Anal. 2011 (2011), Article ID 896483, 13 pages.

[72] W.-J. ZHOU, On the convergence of the modified Levenberg-Marquardt method with a nonmonotone
second order Armijo type line search, J. Comput. Appl. Math. 239 (2013), 152–161.

[73] X.-S. ZHOU, Weighted sharp function estimate and boundedness for commutator associated with
singular integral operator satisfying a variant of Hörmander’s condition, J. Math. Inequal. 9, 2 (2015),
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