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SHARP LOWER AND UPPER BOUNDS FOR THE q–GAMMA FUNCTION

AHMED SALEM

(Communicated by N. Elezović)

Abstract. This paper is devoted to provide sharp bounds for the q -gamma function from below
and above for all q > 0 by means of investigating the monotonicity property to analytical func-
tions involving logarithm q -gamma function. It turns out that these results refine and improve
lower and upper bounds for the q -gamma function which have been given by Salem [13].

1. Introduction

The q -gamma function is defined as [11]

Γq(x) = |1−q|1−xq
x(x−1)

2 H(q−1)
∞

∏
n=0

1− q̂n+1

1− q̂n+x , 0 < q �= 1 (1)

where | · | is the absolute value, H(·) denotes the Heaviside step function and

q̂ =

{
q if 0 < q � 1

q−1 if q � 1.

The close connection between two branches of the q -gamma function when 0 < q < 1
and q � 1 is given by

Γq(x) = q
(x−1)(x−2)

2 Γq−1(x), q � 1. (2)

In the recent past, numerous papers were published presenting remarkable inequalities
involving the q -gamma function (see [13, 14, 15, 16, 2, 17, 18, 19, 20, 21, 22, 23, 24, 4, 5,
7,3,8,6,9] and the extensive list of references given therein). The author in [13] proved
that the function

Fq(x) =
logΓq(x+1)− x(x−1)

2 H(q−1) logq

x log[x]q− x(x−1)H(q−1) logq
, 0 < x �= 1, q > 0 (3)
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and Fq(1) = 1− q̂−1γq̂ where [x]q = (1−qx)/(1−q) , is increasing on (0,∞) and used
this result to establish sharp bounds for the q -gamma function stated for q > 0 as

q
x(1−x)

2 H(q−1)[x]αx−1
q � Γq(x) � q

x(x−1)
2 H(q−1)[x]β x−1

q , x ∈ (0,1] (4)

with the best possible constants α = 1 and β = 0 and

q
x(1−x)

2 (2α−1)H(q−1)[x]αx−1
q � Γq(x) � q

x(1−x)
2 H(q−1)[x]β x−1

q , x ∈ [1,∞) (5)

with the best possible constants α = 1− q̂−1γq̂ and β = 1, where γq is the q -analogue
of the Euler-Mascheroni constant defined as

γq =
1−q
logq

ψq(1) (6)

and ψq(x) denotes the q -digamma function which is defined as the logarithmic deriva-
tive of the q -gamma function

ψq(x) =
d
dx

(logΓq(x)) =
Γ′

q(x)
Γq(x)

(7)

The q -digamma function ψq(x) appeared in the work of Krattenthaler and Srivastava
[10] where they studied the summations for basic hypergeometric series. Some of its
properties are presented and proved in their work and also in [25]. From (1), the q -
digamma function, for 0 < q < 1 and for all real variable x > 0, can be represented
as

ψq(x) = − log(1−q)+ logq
∞

∑
k=1

qxk

1−qk (8)

and satisfies the identity (see [25])

ψq(x+1) = ψq(x)− qx logq
1−qx . (9)

The n th derivatives of the q -gamma function is the so-called the q -polygamma func-
tions which can be represented as

ψ(n)
q (x) = logn+1 q

∞

∑
k=1

knqxk

1−qk , n ∈ N, 0 < q < 1. (10)

The purpose of this paper is to establish inequalities companion to the inequalities (4)
and (5). These improvements will be shown in Theorems 1 and 5 and will be compared
with the previous results (4) and (5) in the final section. It will turn out that the new
results are superior.

We need the following inequalities. In [23] (Corollaries 3.5 and 3.6), it is proven
that

β1(1) < ψq(x) < β1(2) (11)
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holds true for all positive reals x and q , where

β1(1) = log[x]q +
1
2

qx logq
1−qx − 1

12
qx log2 q
(1−qx)2 ,

β1(2) = β1(1)+
1

720
(q2x +4qx +1)qx log4 q

(1−qx)4

and the inequalities

ψq(x) < log[x]q +
1
2

qx logq
1−qx , (12)

ψ ′
q(x) > −β2(0) = −qx logq

1−qx +
1
2

qx log2 q
(1−qx)2 (13)

hold true for all positive reals x and q . Also, we need the inequalities obtained in [19]
(Corollary 3.7):

log[x]q +
qx logq
1−qx < ψq(x) < log[x]q +

1−q+ logq
(1−q) logq

qx logq
1−qx (14)

ψ ′
q(x) > −qx logq

1−qx +
1−q+ logq
(1−q) logq

qx log2 q
(1−qx)2 (15)

hold for all x > 0 and 0 < q < 1 and the inequality (3.3) obtained in [17]:

ψq(x) > log[x]q +
1
2

qx logq
1−qx +

2(1−q+ logq)− (1−q) logq

2(1−q) log2 q

qx log2 q
(1−qx)2 (16)

holds for all x > 0 and 0 < q < 1.

2. Useful lemmas

The following lemmas will be used in the proofs of the main results of this paper.

LEMMA 1. Let k ∈ N and 0 < q < 1 . Then

kqk logq < 1−qk � k(1−q) < −k logq. (17)

LEMMA 2. Let γq be defined in (6). Let

α(q) = 1−q−1γq, δ (q) =
1
2q

(
ψq(1)− 1−q

logq
ψ ′

q(1)
)

. (18)

If 0 < q < 1 , then q/2 < γq < q, 0 < α(q) < 1/2 , and α(q) < δ (q) .
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Proof. By virtue of (14) at x = 1, we get ψq(1) > q logq
1−q which, by using (6),

gives γq < q . Moreover, by using the inequality (12) at x = 1, we can see that γq > 1
2q .

Therefore, we have 1
2q < γq < q which yields 0 < α(q) < 1

2 .
From (14) at x = 1, we get

α(q) = 1− 1−q
q logq

ψq(1) < 1− 1−q+ logq
(1−q) logq

and from (15) and (16) at x = 1, we get

δ (q) >
1
2

+
2q(1−q+ logq)−q(1−q) logq

4(1−q)3 .

Whence

α(q)− δ (q) < −4(1−q)3 +2(1−q)(1+q−q2) logq+q(1+q) log2 q
4(1−q)3 logq

= − q(1+q)
4(1−q)3 logq

u1(q)v1(q)

where

u1(q) = logq+
2(1−q)
1+q

and v1(q) = logq+
2(1−q)2

q
.

By differentiating u1 gives

u′1(q) =
(1−q)2

q(1+q)2 .

It is clear that u′1(q) > 0 for all 0 < q < 1 which yields u1(q) is increasing on (0,1) .
Since u1(1) = 0, then u1(q) < 0 for all 0 < q < 1.

Regarding to the v1(q) , using (17) gives

v1(q) > −1−q
q

+
2(1−q)2

q
=

(1−q)(1−2q)
q

.

It is obvious that v1(q) < 0 if 0 < q < 1/2. In view of the above, we get α(q) < δ (q)
for all 0 < q < 1/2.

On the other hand, from (11) and (13) at x = 1, we get

α(q)− δ (q) < 1− 1−q
q logq

β1(2)− 1
2q

(
β1(1)+

1−q
logq

β2(0)
)

= − logq
720(1−q)3

(−60(1−q)2−30(1−q) logq+(1+4q+q2) log2 q
)

= − (1+4q+q2) logq
720(1−q)3 u2(q)v2(q)
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where

u2(q) = logq− 15+
√

15
√

4q2 +16q+19
1+4q+q2 (1−q)

and

v2(q) = logq− 15−√
15
√

4q2 +16q+19
1+4q+q2 (1−q).

It is clear that u2(q) < 0 for all 0 < q < 1. Differentiation gives

v′2(q) =
−s(q)

q(1+4q+q2)2

( √
15√

19+16q+4q2
− �(q)

s(q)

)
.

where
s(q) = 87q+90q2+45q3 +12q4

and
�(q) = 1+83q+48q2−7q3 +q4.

Let the function

z(q) =
15

19+16q+4q2 −
(

�(q)
s(q)

)2

= − (1+4q+q2)2n(q)
(19+16q+4q2)s2(q)

where
n(q) = 19+3018q−2646q2−4658q3−1281q4−72q5 +4q6.

Differentiations give

n′(q) = 3018−5292q−13974q2−5124q3−360q4 +24q5

n′′(q) = −5292−27948q−15372q2−1320q3−120q3(1−q).

It is obvious that n′′(q) < 0 for all 0 < q < 1 which leads to n′(q) is decreasing on
(0,1) . Since n′(0) = 3018 and n′(1) = −21708, then there exists q0 ∈ (0,1) such that
n′(q) > 0 for all q < q0 and n′(q) < 0 for all q > q0 which yield n(q) is increasing
on (0,q0) and decreasing on (q0,1) . Since n(0) = 19 and n(1) = −5616, then there
exists q1 ∈ (q0,1) such that n(q) > 0 for all q < q1 and n(q) < 0 for all q > q1 which
yield z(q) > 0 for all q > q1 and z(q) < 0 for all q < q1 . This concludes that v′2(q) > 0
for all q < q1 and z(q) < 0 for all q > q1 which leads to v2(q) is increasing on (0,q1)
and decreasing on (q1,1) . Since v2(0) =−∞ and v2(1) = 0, then there exists a unique
root at q = q2 (q2 � 0.278909 numerically by Mathematica) such that v2(q) < 0 for
all q < q2 and v2(q) � 0 for all q > q2 . In conclusion, the function α(q)− δ (q) < 0
for all q > q2 � 0.278909.

LEMMA 3. The function

λ (k) =
k

∑
r=1

1−qr + r logq
r(1−qr)

− 1−qk + k logq
1−qk

(19)

is nonnegative for all k ∈ N and q ∈ (0,1) .
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Proof. Let Δ be the forward shift operator and Δn = Δ(Δn−1) . Then

Δλ (k) =
λ1(k)

(k+1)(1−qk)(1−qk+1)

where
λ1(k) = (1−qk)(1−qk+1)+ k(k+1)(1−q)qk logq.

Again, Δλ1(k) = (1−q)qkλ2(k) where

λ2(k) = (1+q)(1−qk+1)− (k+1)(k(1−q)−2q) logq

and then, we get

Δλ2(k) = (1−q2)qk+1−2(k+1)(1−q) logq+2q logq.

In view of (17), we get −2logq > 1−q2 and (k+1)(1−q) > 1−qk+1 , which yield

Δλ2(k) > (1−q2)qk+1 +(1−q2)(1−qk+1)+2q logq = 1−q2 +2q logq.

It is easy to see that Δλ2(k) > 0 for all positive integer k and 0 < q < 1, which yields
that the function λ2(k) is increasing for all k � 1. To show the positivity of λ2(k) , we
have

λ2(1) = (1+q)(1−q2)−2(1−q) logq+4q logq > 2(1−q2 +2q logq) > 0.

Also, we have
λ1(1) = (1−q)(1−q2+2q logq) > 0.

Hence, λ1(k) > 0 for all k ∈ N which lead to the function λ (k) is increasing for all
k ∈ N . Since λ (1) = 0, then λ (k) � 0 for all k ∈ N .

LEMMA 4. The function

μ(k) =
k(k−1)2(k−2)

1−qk +2k
k−1

∑
r=1

r(3r−1)
1−qr −2

k−1

∑
r=1

r(6r2−3r+1)
1−qr (20)

is nonnegative for all k ∈ N and q ∈ (0,1) .

Proof. Forward shift operator gives

Δμ(k) = 2
k

∑
r=1

r(3r−1)
1−qr +

k2(k2 −1)
1−qk+1 − k2(k+1)2

1−qk .

The second forward shift operator gives

Δ2μ(k) =
k2(k+1)2

1−qk
− 2k(k+1)3

1−qk+1 +
k(k+1)2(k+2)

1−qk+2

=
k(k+1)2(1−q)qkt(k)

(1−qk)(1−qk+1)(1−qk+2)
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where

t(k) = k(1−q)(1+qk+1)−2q(1−qk). (21)

Then, we have

Δt(k) = (1−q)(1−qk+1(1+(1−q)(k+1)))

Δ2t(k) = (1−q)3qk+1(k+2) � 0, k � −2.

Since Δt(−1) = 0, then Δt(k) � 0 for all k � −1. Also, since t(0) = 0, then t(k) � 0
for all k � 0 which reveals that Δ2μ(k) � 0 for all k � 0. It is not difficult to see that
Δμ(1) = 0 which leads to Δμ(k) � 0 for all k ∈ N . Since μ(1) = 0, then μ(k) � 0
for all k ∈ N .

LEMMA 5. The function

η(k) =
k(k−1)2

1−qk +2
k−1

∑
r=1

r(k−3r)
1−qr − 2(k−1)

logq
(22)

is nonnegative for all k ∈ N and q ∈ (0,1) .

Proof. Forward shift operator gives

Δη(k) =
k2(k+1)
1−qk+1 − k(k+1)2

1−qk
+2

k

∑
r=1

r
1−qr −

2
logq

and

Δ2η(k) =
(k+1)2(1−q)qkt(k)

(1−qk)(1−qk+1)(1−qk+2)

where t(k) is defined in (21), which yields that the function Δ2η(k) > 0. Computing
Δη(1) gets

Δη(1) =
−2(1−q2 +q logq)

(1−q2) logq
> 0

which means that Δη(k) > 0 for all k ∈ N . Since η(1) = 0, then η(k) > 0 for all
k ∈ N .

LEMMA 6. Let a and q be positive reals with 0 < q < 1 and

ϕa(x) =
(1−qx)2

qx log2 q
ψ ′

q(x+1)+
2a(1−qx)

logq
+ax. (23)

Then there exists x > 0 such that ϕa(x) � 0 for all x � x and ϕa(x) > 0 for all x > x .
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Proof. Differentiations give

ϕ ′
a(x) =

(1−qx)2

qx log2 q
ψ ′′

q (x+1)− 1−q2x

qx logq
ψ ′

q(x+1)−2aqx+a, (24)

ϕ ′′
a (x) =

(1−qx)2

qx log2 q
ψ ′′′

q (x+1)− 2(1−q2x)
qx logq

ψ ′′
q (x+1)+

1+q2x

qx ψ ′
q(x+1)−2aqx logq.

(25)

Inserting the identity (9) and its derivatives into the last equation with supposing φ(x) =
q−xϕ ′′

a (x) yields

φ(x) =
(1−qx)2

q2x log2 q
ψ ′′′

q (x)− 2(1−q2x)
q2x logq

ψ ′′
q (x)+

1+q2x

q2x ψ ′
q(x)−2a logq (26)

which has the derivative

q2x log2 q
(1−qx)2 φ ′(x)=ψ(4)

q (x)−2(2+qx) logq
1−qx ψ ′′′

q (x)+
(5+q2x) log2 q

(1−qx)2 ψ ′′
q (x)− 2log3 q

(1−qx)2 ψ ′
q(x).

(27)
With using (8), the binomial theorem and the Cauchy product rule lead to

(1−qx)−1ψ ′′′
q (x) = log4 q

∞

∑
k=1

qxk
k

∑
r=1

r3

1−qr ,

(1−qx)−2ψ ′′
q (x) = log3

∞

∑
k=1

qxk
k

∑
r=1

r2(k− r+1)
1−qr ,

(1−qx)−2ψ ′
q(x) = log2 q

∞

∑
k=1

qxk
k

∑
r=1

r(k− r+1)
1−qr

which can be inserted into (27) to obtain

q2x

(1−qx)2 log3 q
φ ′(x) =

∞

∑
k=2

qxk

{
k4

1−qk +
k

∑
r=1

r(k(5r−2)−9r2 +7r−2)
1−qr

}

−2
∞

∑
k=2

qxk
k−1

∑
r=1

r3

1−qr +
∞

∑
k=3

qxk
k−2

∑
r=1

r2(k− r−1)
1−qr

=
∞

∑
k=3

qxk

{
k(k−1)2(k−2)

1−qk +
k−1

∑
r=1

r(k(5r−2)−11r2 +7r−2)
1−qr

}

+
∞

∑
k=3

qxk
k−1

∑
r=1

r2(k− r−1)
1−qr =

∞

∑
k=3

qxkμ(k)

where μ(k) defined in (20), which means that φ ′(x) < 0 for all x � 0 and so the
function φ(x) is decreasing on (0,∞) . From (25), we have

φ(0) = ϕ ′′
a (0) = 2ψ ′

q(1)−2a logq > 0
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and from (26) with aiding (10), we get

lim
x→∞

φ(x) =
2log2 q
1−q2 − 2log2 q

1−q
−2a logq =

−2logq
1−q2 [q logq+a(1−q2)].

Consequently, we have two cases:

The first case: When a �− q logq
1−q2 , then φ(x) > 0 for all x � 0 and so does the function

ϕ ′′
a (x) which leads to ϕ ′

a(x) is increasing on (0,∞) . It is not difficult, from (24),
to show that

ϕ ′
a(0) = −a < 0 and lim

x→∞
ϕ ′

a(x) = a > 0 (28)

and so there exists x0 > 0 such that ϕ ′
a(x) < 0 for all x < x0 and ϕ ′

a(x) > 0 for
all x > x0 which yields ϕa(x) is decreasing on (0,x0) and increasing on (x0,∞) .

The second case: When a < − q logq
1−q2 , then there exists 0 < x1 < ∞ such that φ(x) > 0

for all x < x1 and φ(x) < 0 for all x > x1 and so does the function ϕ ′′
a (x) which

reveals that ϕ ′
a(x) is increasing on (0,x1) and decreasing on (x1,∞) . By virtue of

(28), we see that ϕ ′
a(x1) > 0 and so there exists 0 < x2 < x1 such that ϕ ′

a(x) < 0
for all x < x2 and ϕ ′

a(x) > 0 for all x > x2 .

In view of both cases for all a > 0, we conclude that there exists 0 < x̃ < ∞ such that
ϕa(x) is decreasing on (0, x̃) and increasing on (x̃,∞) . From (23), we get ϕa(0) = 0
and limx→∞ ϕa(x) = ∞ which mean that ϕa(x̃) < 0 and there exists x > x̃ > 0 such that
ϕa(x) � 0 for all x � x and ϕa(x) > 0 for all x > x .

3. The main results

In this section, we prove the following refinements of (4) and (5).

THEOREM 1. Let q be positive real. Then

[x]
x−q̂−1γq̂
q q

(x−1)(qγq−1− 1
2 )H(q−1) exp

(
Li2(1−qx)−Li2(1−q)

logq

)

�Γq(x) � [x]
x− 1

2
q exp

(
Li2(1−qx)−Li2(1−q)

logq

)
, (29)

for every x � 1 . The constants q̂−1γq̂ and 1
2 are the best possible for all q > 0 . More-

over, the left-hand side inequality holds for all x > 0 and the right-hand side inequality
is reversed for all x � 1 .

Proof. Let the function

Sq(x) = logΓq(x)−
(

x− 1
2

)
log[x]q − Li2(1−qx)−Li2(1−q)

logq
(30)
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be defined for all x,q ∈ R
+ , where Li2(z) is the dilogarithm function defined for all

complex argument z as [1]

Li2(z) = −
∫ z

0

log(1− t)
t

dt, z �∈ (1,∞)

which satisfies the identity

Li2

(
z−1

z

)
= −Li2(1− z)− 1

2
log2 z. (31)

Let 0 < q < 1. Differentiating (30) gives

S′q(x) = ψq(x)− log[x]q − 1
2

qx logq
1−qx = −1

2

∞

∑
k=1

qxk

k(1−qk)
s(y), y = qk

where

s(y) = (1− y) logy−2logy−2(1− y) = y
∞

∑
n=3

logn(1/y)
n!

(n−2) > 0

which yields that S′q(x) < 0 for all x > 0 and so the function Sq(x) is decreasing on
(0,∞) . Since Sq(1) = 0, then Sq(x) > 0 for all x ∈ (0,1) and Sq(x) < 0 for all x ∈
(1,∞) . When q � 1, in view of (2), (30) and (31), we get Sq−1(x) = Sq(x) . Hence, for
all q ∈ R

+ , we get Sq(x) > 0 for all x ∈ (0,1) and Sq(x) < 0 for all x ∈ (1,∞) . Also,
let the function

Tq(x) = logΓq(x)− (x− q̂−1γq̂) log[x]q− Li2(1−qx)−Li2(1−q)
logq

− (x−1)(2qγq−1 −1)
2

H(q−1) logq (32)

be defined for all x,q ∈ R
+ . Differentiation gives

T ′
q(x) = ψq(x)− log[x]q− γqqx−1 logq

1−qx = −qx logq
1−qx τ(x), 0 < q < 1

where

τ(x) = − 1−qx

qx logq
(ψq(x)− log[x]q)+q−1γq. (33)

Differentiation gives

qx logq
qx −1

τ ′(x) = − logq
1−qx (ψq(x)− log[x]q)+ ψ ′

q(x)+
qx logq
1−qx .

Using (7) and Cauchy product rule yield

qx

1−qx τ ′(x) =
∞

∑
k=1

qxkλ (k).
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Lemma 3 tells that τ ′(x) > 0 for all x > 0 which yields that τ(x) is increasing on
(0,∞) . It is clear from (6) and (33) that the function τ(1) = 0 which gives τ(x) < 0
if x ∈ (0,1) and τ(x) > 0 if x ∈ (1,∞) and so does the function T ′

q(x) . Therefore, the
function Tq(x) is decreasing on (0,1) and increasing on (1,∞) . In conclusion, since
Tq(1) = 0, then we get Tq(x) � 0 for all x > 0. When q � 1, in view of (2), (31) and
(32), we get Tq(x) = Tq−1(x) . Hence Tq(x) > 0 for all x > 0 and q > 0. The inequality
(29) can be rewritten as

1
2

< U(x;q) < q̂−1γq̂−
(x−1)(2qγq−1 −1)

2log[x]q
H(q−1) logq

where

U(x;q) =
Li2(1−qx)−Li2(1−q)

logq log[x]q
+

x log[x]q − logΓq(x)
log[x]q

.

With the Euler-Maclaurin formula, Moak [12] obtained the following q -analogue of
Stirling formula (see also [24])

logΓq(x) ∼
(

x− 1
2

)
log[x]q +

Li2(1−qx)
logq

+
1
2
H(q−1) logq+Cq̂, x → ∞ (34)

where Cq̂ is appropriate constant depending on the value of q . This asymptotic expan-
sion can be exploited to compute

lim
x→∞

U(x;q) =
1
2
, q > 0

Also, using l’Hôpital’s rule yields

lim
x→1

U(x;q) = q−1γq, 0 < q < 1.

When q � 1, we find

lim
x→1

( (x−1)(2qγq−1 −1)
2log[x]q

logq

)
=

1−q
2q

(1−2qγq−1)

and thus

lim
x→1

(
U(x;q)+

(x−1)(2qγq−1 −1)
2log[x]q

H(q−1) logq

)
= q−1γq +

1−q
2q

(1−2qγq−1).

When q � 1, the logarithmic derivative of (2) at x = 1 gives

q−1γq +
1−q
2q

(1−2qγq−1) = qγq−1 .

Therefore, the constants 1
2 and q̂−1γq̂ are the best possible for all q > 0.
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THEOREM 2. Let q > 0 . Then

fq(x) = logΓq(x+1)−α(q̂)x log[x]q − x(x−1)(1−2α(q−1))
2

H(q−1) logq (35)

is non-negative for all x � 0 , where α(q) is defined in (18).

Proof. Let 0 < q < 1. Differentiation gives

f ′q(x) = ψq(x+1)−α(q) log[x]q +
α(q)xqx logq

1−qx (36)

and
(1−qx)2

qx log2 q
f ′′q (x) = ϕα(q)(x)

where ϕα(q)(x) defined as in (23). By virtue of the results obtained in Lemma 6, there
exists x > 0 such that the function f ′q(x) is decreasing on (0, x) and increasing on
(x ,∞) . Let x � 1 and since f ′q(1) = 0, then f ′q(x) > 0 for all x ∈ (0,1) and so fq(x) is
increasing on (0,1) which contradicts with fq(0) = fq(1) = 0. Hence, we have to take
x < 1. Since f ′q(x) is increasing on (x ,1)⊂ (x ,∞) , then f ′q(x) < 0. From (36), we get
limx→0 f ′q(x) = ∞ and limx→∞ f ′q(x) = −(1−α(q)) log(1−q) > 0, where α(q) < 1/2

by Lemma 2, which yields that there exists 0 < x < x < 1 such that f ′q(x) > 0 for

all x ∈ (0, x)∪ (1,∞) and f ′q(x) < 0 for all x ∈ (x ,1) and so fq(x) is increasing on

(0, x)∪ (1,∞) and decreasing on (x ,1) . In conclusion, since fq(0) = fq(1) = 0, then
fq(x) � 0 for all x � 0. In view of (2) and (35), we get fq(x) = fq−1(x) for all q � 1
which concludes that fq(x) � 0 for all x � 0 and q > 0.

THEOREM 3. Let q > 0 . Then

gq(x) = (x− q̂−1γq̂) log[x]q − logΓq(x+1)− (x−1)(x−2qγq−1)
2

H(q−1) logq (37)

is non-negative for all x > 0 .

Proof. Let 0 < q < 1. Differentiation gives

g′q(x) = log[x]q − (x−q−1γq)qx logq
1−qx −ψq(x+1) (38)

and

(1−qx)2

qx log2 q
g′′q(x) = −2(1−qx)

logq
− x+q−1γq− (1−qx)2

qx log2 q
ψ ′

q(x+1) � θ (x). (39)

The function θ (x) can be represented by using (9) as

θ (x) = −2(1−qx)
logq

− x+q−1γq− (1−qx)2

qx log2 q
ψ ′

q(x)+1.
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Differentiation gives

θ ′(x) = 2qx−1− (1−qx)2

qx log2 q
ψ ′′

q (x)+
1−q2x

qx logq
ψ ′

q(x) (40)

and

qx log2 q
(1−qx)2 θ ′′(x) =

2q2x log3 q
(1−qx)2 −ψ ′′′

q (x)+
2(1+qx) logq

1−qx ψ ′′
q (x)− (1+q2x) log2 q

(1−qx)2 ψ ′
q(x)

which can be represented as

qx log2 q
(1−qx)2 θ ′′(x) = − log4 q

∞

∑
k=2

qxkη(k)

where η(k) defined in (22), and so θ ′′(x) < 0 for all x > 0 which reveals that θ ′(x) is
decreasing on (0,∞) . According to the equation (40), θ ′(0)= 1 > 0 and limx→∞ θ ′(x)=
−1 < 0, then there exists x0 > 0 such that θ ′(x) > 0 for all x < x0 and θ ′(x) < 0 for all
x > x0 which yields that θ (x) is increasing on (0,x0) and decreasing on (x0,∞) . Since,
from (39), θ (0) = q−1Γq > 0 and limx→∞ θ (x) = −∞ , then there exists x1 > x0 > 0
such that θ (x) > 0 for all x < x1 and θ (x) < 0 for all x > x0 and does the function
g′′q(x) which reveals that g′q(x) is increasing on (0,x1) and decreasing on (x1,∞) . By
using the relations (6), (9) and (38), we get g′q(1) = 0 and limx→∞ g′q(x) = 0 which
mean that x1 > 1 and g′q(x) < 0 for all x < 1 and g′q(x) > 0 for all x > 1 and so gq(x)
is decreasing on (0,1) and increasing on (1,∞) . Since gq(1) = 0, then gq(x) � 0 for
all x > 0. In view of (2) and (37), we get gq(x) = gq−1(x) for all q � 1 which concludes
that gq(x) � 0 for all x > 0 and q > 0.

THEOREM 4. Let q > 0 . Then

hq(x) = logΓq(x+1)− [δ (q̂)(x−1)+ α(q̂)] log[x]q

− (x−1)[(1−2δ (q−1))x+2(δ (q−1)−α(q−1)]
2

H(q−1) logq (41)

is negative for all x ∈ (0,1) and positive for all x ∈ (1,∞) , where α(q) and δ (q) are
defined in (18).

Proof. Let 0 < q < 1. Differentiation gives

h′q(x) = ψq(x+1)− δ (q) log[x]q +[δ (q)(x−1)+ α(q)]
qx logq
1−qx (42)

and

(1−qx)2

qx log2 q
h′′q(x) =

(1−qx)2

qx log2 q
ψ ′

q(x+1)+
2δ (q)(1−qx)

logq
+ δ (q)(x−1)+ α(q) � ω(x).

(43)



868 A. SALEM

Note that ω(x) = ϕδ (q)(x)+ α(q)− δ (q) where ϕ defined as in (2.8). According to
results obtained in Lemma 2 and in the proof of Lemma 6, there exists x > 0 such that
ω(x) is decreasing on (0, x) and increasing on (x ,∞) . It is easy from (43) to see that
ω(0) = α(q)−δ (q) < 0 (see Lemma 2), ω(1) = 0 and limx→∞ ω(x) = ∞ which mean
that ω(x) < 0 for all x < 1 and ω(x) > 0 for all x > 1 and so the function h′q(x) is
decreasing on (0,1) and increasing on (1,∞) . Since h′q(1) = 0, then h′q(x) � 0 for
all x > 0 and so hq(x) is increasing on (0,∞) . In conclusion, since hq(1) = 0 then,
hq(x) < 0 for all x ∈ (0,1) and hq(x) > 0 for all x ∈ (1,∞) . When q � 1, (2) gives
hq(x) = hq−1(x) . Therefore, hq(x) < 0 if x ∈ (0,1) and hq(x) > 0 if x ∈ (1,∞) for all
q > 0.

THEOREM 5. Let q be a positive real and let α(q) and δ (q) be defined in (18).
Then

[x]
a(x−1)−q̂−1γq̂
q qc1 < Γq(x) < [x]

b(x−1)−q̂−1γq̂
q qc3 (44)

holds for x ∈ (0,1) with the best possible constants a = α(q̂) and b = δ (q̂) .
Also,

[x]
a(x−1)−q̂−1γq̂
q qc3 < Γq(x) < [x]

b(x−1)−q̂−1γq̂
q q−c2 (45)

holds for x ∈ (1,∞) with the best possible constants a = δ (q̂) and b = 1 where

c1 =
x(x−1)(1−2α(q−1))

2
H(q−1),

c2 =
(x−1)(x−2qγq−1)

2
H(q−1),

c3 =
(x−1)((1−2δ (q−1))x+2(δ (q−1)−α(q−1))

2
H(q−1).

Proof. The proof comes immediately from the previous three theorems. It suffices
to prove the constants are the best possible. In order to do this, we note from (44) and
(45), respectively, that

a+
c1 logq

(x−1) log[x]q
< w(x) < b+

c3 logq
(x−1) log[x]q

, x ∈ (0,1)

and

a+
c3 logq

(x−1) log[x]q
< w(x) < b− c2 logq

(x−1) log[x]q
, x ∈ (1,∞)

where

w(x) =
1

x−1

(
q̂−1γq̂ +

logΓq(x)
log[x]q

)
.
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Using l’Hôpital’s rule gets

lim
x→0

(
w(x)− c1 logq

(x−1) log[x]q

)
= α(q̂),

lim
x→1

(
w(x)− c3 logq

(x−1) log[x]q

)
= δ (q̂),

lim
x→∞

(
w(x)+

c2 logq
(x−1) log[x]q

)
= 1.

The proof is done.

4. Conclusion

In this paper, the inequalities (29), (44) and (45) for the q -gamma function are
established and proven for all q > 0. The bounds in these inequalities are sharper
than the bounds in inequalities (4) and (5) obtained in [13]. It will be confined in the
following to show the improvements in the case when 0 < q < 1.

4.1. Comparing (29) and (5):

The following theorem shows the bounds in inequality (29) are better than in (5).

THEOREM 6. Let 0 < q < 1 . Then:

• The left hand side of inequality (29) is greater than left hand side of inequality
(5) for all x � 1 .

• The right hand side of inequality (29) is smaller than right hand side of inequality
(5) for all x � 1 .

Proof. Define the function

f (x) =
Li2(1−qx)−Li2(1−q)

logq
+(x(1−α(q))+ α(q))log[x]q.

Differentiation gives

f ′(x) =
α(q)(x−1)qx logq

1−qx +(1−α(q)) log[x]q

and

f ′′(x) =
(2α(q)−1)qx logq

1−qx +
α(q)(x−1)qx log2 q

(1−qx)2 .

It is known from Lemma 2 that 0 < α(q) < 1/2 and so 2α(q)− 1 < 0 which yields
that f ′′(x) > 0 for all x � 1. Thus f ′(x) is increasing on (1,∞) . Since f ′(1) = 0, then
f ′(x) > 0 for all x > 1 which leads to f (x) is increasing on (0,∞) . Since f (1) = 0,
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then f (x) > 0 for all x > 1 which yields exp( f (x)) > 1. Notice that exp( f (x)) is the
ratio of the two lift sides of (29) and (5). This proves the first statement. To prove the
second statement, define the function

g(x) =
Li2(1−qx)−Li2(1−q)

logq
+

1
2

log[x]q.

Differentiation gives

g′(x) =
1
2

(2x−1)qx logq
1−qx < 0, x > 1.

Since g(1) = 0, then g(x) < 0 for all x > 1 which yields exp(g(x)) < 1. Notice that
exp(g(x)) is the ratio of the two right sides of (29) and (5).

4.2. Comparing (44) and (4):

The following theorem shows the intervals in which the bounds in inequality (44)
are better than in (4).

THEOREM 7. Let 0 < q < 1 . Then:

• The left hand side of inequality (44) is greater than left hand side of inequality
(4) for all x ∈ (0,1) .

• The right hand side of inequality (44) is smaller than right hand side of inequality
(4) for all x ∈ (1−α(q)/δ (q),1) whereas the reverse is true for all x ∈ (0,1−
α(q)/δ (q)) .

Proof. It is easy to see that the ratio of two left sides of (44) and (4) is greater
than one and so the left bound in (44) is greater (better) than the bound in (4) for all

x ∈ (0,1) . The ratio of the two right bounds is [x]δ (q)(x−1)+α(q)
q . The exponent is

positive on (1−α(q)/δ (q),1) and negative in (0,1−α(q)/δ (q)) . Indeed, if x < 1
then [x]q < 1 and thus the ratio is greater than one if x ∈ (0,1−α(q)/δ (q)) and less
than one if x ∈ (1−α(q)/δ (q),1) . Therefore, the right bound of (44) is better than
the right bound of (4) if x ∈ (1−α(q)/δ (q),1) , whereas the reverse is true if x ∈
(0,1−α(q)/δ (q)) .

4.3. Comparing (45) and (5):

The following theorem shows the bounds in inequality (45) are better than in (5).

THEOREM 8. Let 0 < q < 1 . Then:

• The left hand side of inequality (45) is greater than left hand side of inequality
(5) for all x > 1 .
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• The right hand side of inequality (45) is smaller than right hand side of inequality
(5) for all x > 1 .

Proof. The ratio of the left pound is [x][δ (q)−α(q)](x−1)
q > 1 due to x > 1 and δ (q)−

α(q) > 0 (Lemma 2). Also the ratio of the two right bounds is less than one. Therefore
the bounds of (45) are better than the bounds of (5).
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