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Abstract. In this paper, we are interested in the following bilinear fractional integral operator
BIα defined by

BIα( f ,g)(x) =
∫

Rn

f (x− y)g(x+ y)
|y|n−α dy,

with 0 < α < n . We prove the weighted boundedness of BIα on the Morrey type spaces.
Moreover, an Olsen type inequality for BIα is also given.

1. Introduction

In 1992, Grafakos [14] studied the multilinear fractional integral operator Iα ,�θ
with its definition defined by

Iα ,�θ (�f )(x) =
∫

Rn

1

|y|n−α

m

∏
i=1

fi(x−θiy)dy,

where
�f = ( f1, · · · , fm)

and
�θ = (θ1,θ2, ...,θm)

is a fixed vector with distinct nonzero components.
For a special case of Iα ,�θ , the following bilinear fractional integral was also

studied by Kenig and Stein in [30].

BIα( f ,g)(x) =
∫

Rn

f (x− y)g(x+ y)
|y|n−α dy, 0 < α < n.
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As the operator BIα can be regarded as a variant version of the bilinear Hilbert
transform if we take α → 0, many authors pay much attention to such operator and
they proved the boundedness of BIα on variant product function spaces. One may see
[2, 3, 4, 5, 10, 43, 45] et al. for more details.

Meanwhile, it is well known that in the last 70s, Muckenhoupt and Wheeden
([36, 37]) introduced the Ap and A(p,q) weight classes which are very adopted for
the weighted estimates of the singular integrals and fractional integrals. Now, let us
introduce the definitions of ω ∈ Ap and ω ∈ A(p,q) respectively.

DEFINITION 1. ([36]) We say a non-negative function ω(x) belongs to the Muck-
enhoupt class Ap with 1 < p < ∞ if

[ω ]Ap := sup
Q

(
1
|Q|
∫

Q
ω(x)dx

)(
1
|Q|
∫

Q
ω(x)1−p′dx

)p−1

< ∞ (1)

for any cube Q and 1/p+1/p′ = 1.
In case p = 1, ω ∈ A1 is understood as there exists a positive constant C such that

1
|Q|
∫

Q
ω(y)dy � Cω(x) (2)

for a.e. x ∈ Q and any cube Q . For the case p = ∞ , we define A∞ =
⋃

1<p<∞
Ap .

DEFINITION 2. ([37]) We say that a non-negative function ω(x) belongs to A(p,q)
weight class with 1 < p < q < ∞ if

[ω ]Ap,q := sup
Q

(
1
|Q|
∫

Q
ω(x)qdx

)1/q( 1
|Q|
∫

Q
ω(x)−p′dx

)1/p′

< ∞. (3)

Since the last 90s, the multilinear theory for the singular integral operators was
developed a lot. For example, in 2002, Grafakos and Torres [15] introduced the mul-
tilinear C-Z theory. Later, Lerner et al. [32] introduced a new kind of multiple weight
which is very adopted for the weighted norm inequalities of the multilinear C-Z op-
erator. Following their work, Chen and Xue [7], as well as Moen independently [33],
introduced a new type of multiple fractional type A(�P,q) weight class . Now, let us give
the definition of A(�P,q) weight class.

DEFINITION 3. ([7, 33]) Let 1 � p1, · · · , pm,1/p = 1/p1 + · · ·+1/pm and q > 0.
Suppose that �ω = (ω1, · · · ,ωm) and each ωi is a nonnegative function on Rn . We say
that �ω ∈ A(�p,q) if it satisfies

[�ω ]A(�P,q)
:= sup

Q

(
1
|Q|
∫

Q
νq

�ω (x)dx

)1/q m

∏
i=1

(
1
|Q|
∫

Q
ω−p′i

i (x)dx

)1/p′i
< ∞, (4)
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where ν�ω =
m
∏
i=1

ωi . Moreover, for the case pi = 1,
(

1
|Q|
∫
Q ω−p′i

i

)1/p′i
is understood as

(inf
Q

ωi)−1 .

Chen and Xue, as well as Moen independently, proved the following theorem.

THEOREM A. ([7, 33]) Suppose that 0 < α < mn, 1 < p1, · · · , pm < ∞ . If 1/p =
m
∑
i=1

1/pi and 1/q = 1/p−α/n. Then, �ω ∈ A(�P,q) if and only if the following multiple

weighted norm inequalities holds:

‖Iα ,m(�f )‖Lq(νq
�ω) � C

m

∏
i=1

‖ fi‖Lpi(ω pi
i ).

Here, Iα ,m denotes the multilinear fractional integral operator and its definition can
be stated as

Iα ,m(�f )(x) =
∫

(Rn)m

f1(y1) f2(y2), · · · , fm(ym)
(|x− y1|+ · · ·+ |x− ym|)mn−α dy1dy2 · · ·dym.

For the study of the weighted theory for BIα with the multiple fractional type
weight class, Hoang and Moen [18, 34] did some excellent work to show that the op-
erator BIα satisfy several weighted estimates on the product Lp spaces. Recently,
Komori-Furuya [27, 28] also got some important weighted norm inequalities of BIα
with power weights.

On the other hand, in order to study the local behavior of solutions to second order
elliptical partial differential equations, Morrey [35] introduced the Morrey space. The
Morrey space M p

q (Rn), 0 < q � p < ∞, is the collection of all measurable functions
f with its definition defined by

M p
q (Rn) :=

⎧⎪⎨
⎪⎩ f ∈ M p

q (Rn) : ‖ f‖M p
q (Rn) = sup

Q⊂Rn

Q:cubes

|Q|1/p−1/q‖ f χQ‖Lq(Rn) < ∞

⎫⎪⎬
⎪⎭ .

Many authors studied the weighted norm inequalities for integral operators on the Mor-
rey type spaces, readers may see [20, 22, 25, 26, 29] et al. or the summary article [21]
to find more details. Here we would like to mention that in [20, 22, 25], Iida et al.
introduced the following new fractional type multiple weight condition as follows.

[�ω ]q0,q,�P := sup
Q⊂Q′

Q,Q′:cubes

( |Q|
|Q′|
)1/q0

(
1
|Q|
∫
Q(ω1(x)ω2(x))qdx

)1/q

×
m
∏
i=1

(
1

|Q′|
∫
Q′ ωi(yi)−p′idyi

)1/p′j
< ∞.

Iida et al. [20, 22, 25] found that the above multiple weight condition is very
adopted for the weighted norm inequalities of the operator Iα ,m on the Morrey type
space and they proved the following theorem.
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THEOREM B. ([20, 25]) Let 0 < α < mn, 1 < p1, · · · , pm < ∞ , 1/p =
m
∑
i=1

1/pi .

Then,we assume that 0 < p � p0 < ∞ and 0 < q � q0 < ∞ with 1/q0 = 1/p0−α/n and
q/q0 = p/p0 . Moreover, for �f = ( f1, · · · , fm) and �ω = (ω1,ω2, · · · ,ωm) , we denote

‖�f‖M
p0
�P

:= sup
Q⊂Rn

|Q| 1
p0

m

∏
i=1

(
1
|Q|
∫

Q
| fi(yi)|pidyi

) 1
pi

,

and

ν�ω (x) =
m

∏
i=1

ωi(x).

If there exist a > 1 satisfying
[�ω ]aq0,q,�P < ∞

where �P = (p1, · · · , pm) and a > 1 , then there exist a positive constant C independent
of fi , such that

‖Iα ,m(�f )ν�ω‖M
q0
q

� C‖( f1ω1, · · · , fmωm)‖M
p0
�P

.

In [17], He and Yan studied the weighted bounedness of BIα on M p
q (Rn) with

0 < q < 1. Thus, it is natural to ask whether we can prove the weighted norm inequali-
ties for BIα on M p

q (Rn) with q > 1? In this paper, we will give a positive answer to
this question.

Motivated by the above backgrounds, in this paper, we will give the weighted
boundedness of BIα on the Morrey type space with the fractional type multiple weights
condition proposed by Iida et al. Our results can be stated as follows.

THEOREM 1. Suppose 0 < α < n, p1 > r > 1 , p2 > s > 1 , 1/r+1/s= 1 , 1/p =
1/p1 +1/p2 , 1 < p1, p2 < ∞ , 0 < p � p0 < ∞ , 0 < q � q0 < ∞ . Let

1/q0 = 1/p0−α/n, q/q0 = p/p0 and ν�ω (x) =
2

∏
i=1

ωi(x).

Moreover, assume that either p or q satisfies one of the following condition:

p > 1 or q >
1
2
.

If there exists a > 1 , such that [�ω]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

) < ∞ , that is

sup
Q⊂Q′

Q,Q′ :cubes

( |Q|
|Q′|
) 1

aq0
(

1
|Q|
∫

Q
ν�ω(x)qdx

)1/q( 1
|Q′|

∫
Q′

ω1(x)
− p1r

p1−r

)1/r−1/p1

×
(

1
|Q′|

∫
Q′

ω2(x)
− p2s

p2−s

)1/s−1/p2

< ∞.
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Then, there exists a positive constant C independent of f and g, such that

‖BIα( f ,g)ν�ω‖M
q0
q

� C[�ω ]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

)‖( fω1,gω2)‖M
p0
�P

. (5)

REMARK 1. Note that for the operator Iα ,2 ,

Iα ,2(�f )(x) =
∫

(Rn)m

f1(y1) f2(y2)
(|x− y1|+ |x− y2|)2n−α dy1dy2.

As mentioned in [34, p.629], if we denote δ is the point mass measure at the origin,
then we know that the kernel of Iα ,2 ,

Kα (u,v) = (|u|+ |v|)−2n+α

has a singularity at the origin in R2n as opposed to the kernel of BIα

kα(u,v) =
δ (u+ v)
|u|n−α ,

which has a singularity along a line. Thus, we conclude that Theorem 1 parallel ear-
lier results by the authors [25] for the less singular bilinear fractional integral operator
Iα ,2 .

If we choose p = p0 and q = q0 in Theorem 1, we can easily obtain the following
result proved by Hoang and Moen [18].

COROLLARY 1. ([18]) Suppose that there exist real numbers α, p1,r, p2,s, p and
q satisfying the same conditions as in Theorem 1. If 1/p1 + 1/p2 − 1/q = α/n and
�ω ∈ A(( p1s

p1+s ,
p2r

p2+r

)
,q
) , then there exists a positive constant C independent of f and g,

such that
‖BIα( f ,g)‖Lq(νq

�ω) � C‖ f‖Lp1(ω p1
1 )‖g‖Lp2(ω p2

2 ). (6)

Proof. By the definition of the Morrey space, it suffices to show

[�ω ]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

) < ∞ (q = q0). (7)

In fact, as �ω ∈ A(( p1s
p1+s ,

p2r
p2+r

)
,q
) , we have νq

�ω =
2
∏
i=1

ωq
i ∈ A2q or νq

�ω ∈ A1+q(1−1/p) .

Then, we know that νq
�ω satisfies the reversed Hölder inequality (see Section 2). That

is, if we choose a = 1+ ε where ε ∈ R+ and ε is small enough, there is(
1
|Q|
∫

Q
ν�ω(x)aqdx

)1/aq

� C

(
1
|Q|
∫

Q
ν�ω(x)qdx

)1/q

.

Recalling that q = q0 , we may have

( |Q|
|Q′|
) 1

aq0
(

1
|Q|
∫

Q
(ω1(x)ω2(x))qdx

)1/q( 1
|Q′|

∫
Q′

ω1(x)
− p1r

p1−r dx

)1/r−1/p1
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×
(

1
|Q′|

∫
Q′

ω2(x)
− p2s

p2−s dx

)1/s−1/p2

�
( |Q|
|Q′|
) 1

aq0
(

1
|Q|
∫

Q
(ω1(x)ω2(x))aqdx

)1/aq( 1
|Q′|

∫
Q′

ω1(x)
− p1r

p1−r dx

)1/r−1/p1

×
(

1
|Q′|

∫
Q′

ω2(x)
− p2s

p2−s dx

)1/s−1/p2

=
(

1
|Q′|

∫
Q
(ω1(x)ω2(x))aqdx

)1/aq( 1
|Q′|

∫
Q′

ω1(x)
− p1r

p1−r dx

)1/r−1/p1

×
(

1
|Q′|

∫
Q′

ω2(x)
− p2s

p2−s dx

)1/s−1/p2

�
(

1
|Q′|

∫
Q′

(ω1(x)ω2(x))aqdx

)1/aq( 1
|Q′|

∫
Q′

ω1(x)
− p1r

p1−r dx

)1/r−1/p1

×
(

1
|Q′|

∫
Q′

ω2(x)
− p2s

p2−s dx

)1/s−1/p2

�
(

1
|Q′|

∫
Q′

(ω1(x)ω2(x))qdx

)1/q( 1
|Q′|

∫
Q′

ω1(x)
− p1r

p1−r dx

)1/r−1/p1

×
(

1
|Q′|

∫
Q′

ω2(x)
− p2s

p2−s dx

)1/s−1/p2

< ∞,

where the second to last inequality follows from the reversed Hölder inequality for
νq

�ω = (ω1ω2)q and we obtain (7).

REMARK 2. For the case 0 < q < 1 in Theorem 1, our result is also different from
[17, Theorem 4.6].

2. Preliminaries

In this section, we will give some lemmas and definitions that will be useful
throughout this paper.

LEMMA 1. (The reversed Hölder inequality, [16]) Let 1 < p < ∞ and ω ∈Ap(Rn) .
Then, there exist positive constants C and ε , depending only on p and the Ap condi-
tion of ω , such that for any cube Q, there is

(
1
|Q|
∫

Q
ω(x)1+εdx

) 1
1+ε

� C

(
1
|Q|
∫

Q
ω(x)dx

)
. (8)

LEMMA 2. ([6, 19]) Let 1 � p1, p2, · · · , pm � ∞ , 1/p =
m
∑
i=1

1/pi and 0 < q < ∞ .

A vector �ω of weights satisfies �ω ∈ A(�P,q) if and only if
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(i) νq
�ω ∈ A

1+q
(
m− 1

p

) ;

(ii)ω−p′i
i ∈ A1+p′i·si(i = 1, · · · ,m) where si = 1/q+m−1/p− 1

p′i
.

Moreover, Moen [33] gave another characterization of A(�P,q) .

LEMMA 3. ([33]) Suppose 1 < p1, · · · , pm < ∞ and �ω ∈ A(�P,q) . Then

νq
�ω ∈ Amq and ω−p′i ∈ Amp′i .

From Lemmas 2 or 3, we know that if [�ω ]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

) < ∞ , then

νq
�ω∈A1+q(1−1/p)(p > 1),ω−r( p1

r )′
1 ∈A

1+r( p1
r )′
(

1
q− 1

p2
+ 1

s

),ω−s( p2
s )′

2 ∈A
1+s( p2

s )′
(

1
q− 1

p1
+ 1

r

),
or

νq
�ω ∈ A2q

(
q >

1
2

)
, ω

−r( p1
r )′

1 ∈ A
2r( p1

r )′ , ω
−s( p2

s )′
2 ∈ A

2s( p2
s )′ .

Thus, we conclude that the functions νq
�ω , ω−r( p1

r )′
1 and ω−s( p2

s )′
2 all satisfy the

reversed Hölder inequality throughout the proof of Theorem 1.
Next, we introduce some maximal functions (see [32] or [37]).
The maximal function M and the fractional maximal function Mα are defined by

M f (x) = sup
Q�x

1
|Q|
∫

Q
| f (y)|dy

and

Mα f (x) = sup
Q�x

1

|Q|1−α/n

∫
Q
| f (y)|dy, (0 < α < n)

with Q runs over all cubes containing x respectively.
Furthermore, for any p > 1, we denote

M(p) f (x) = sup
Q�x

(
1
|Q|
∫

Q
| f (y)|pdy

)1/p

.

Before giving the next two lemmas which are the most important throughout this
paper, we introduce some notations. First, we define the set of all dyadic grids. For
more details about dyadic grids, one may see [31] et al. to find more details.

A dyadic grid D is a countable collection of cubes that satisfies the following
properties:

(i) Q ∈ D ⇒ l(Q) = 2−k for some k ∈ Z .
(ii) For each k ∈ Z , the set

{
Q ∈ D : l(Q) = 2−k

}
forms a partition of Rn .

(iii) Q,P ∈ D ⇒ Q∩P ∈ {P,Q, /0} .



902 X. YU, X. TAO, H. ZHANG AND J. RUAN

One very clear example (see [18, 31]) for this concept is the dyadic grid that is
formed by translating and then dilating the unit cube [0,1)n all over Rn . More pre-
cisely, it can be formulated as

D =
{

2−k([0,1)n +m) : k ∈ Z,m ∈ Zn
}

.

In practice, we also make extensive use of the family of dyadic grids as follows.

D t =
{

2−k
(
[0,1)n +m+(−1)kt

)
: k ∈ Z,m ∈ Zn

}
,t ∈ {0,1/3}n.

In [31], Lerner proved the following theorem.

LEMMA 4. ([31]) Given any cube in Rn , there exists a t ∈ {0,1/3}n and a cube
Qt ∈ D t , such that Q ⊂ Qt and l(Qt ) � 6l(Q) .

Next, let us give a decomposition result related to cubes. Suppose that Q0 is a
cube and let f be a locally integrable function. Then, we set

D(Q0) ≡ {Q ∈ D : Q ⊂ Q0}.

Moreover, suppose that 3Q0 is the unique cube concentric to Q0 and have the
volume 3n|Q0| . Then, we denote

m3Q0(| f |r , |g|s) =
(

1
|3Q0|

∫
3Q0

| f (x)|rdx

)1/r( 1
|3Q0|

∫
3Q0

|g(x)|sdx

)1/s

,

where r,s > 1 and 1/r+1/s = 1.
Next, we introduce the sparse family of Calderón-Zygmund cubes. That is, for

each k ∈ Z+ ,

Dk ≡
⋃{

Q : Q ∈ D(Q0),m3Q0(| f |r , |g|s) > ak
}

,

where a will be chosen later.
Considering the maximal cubes with respect to inclusion, we write

Dk =
⋃
j

Qk, j,

where the cubes {Qk, j} ⊂ D(Q0) are nonoverlapping. That is, {Qk, j} is a family of
cubes satisfying

∑
j

χQk, j � χQ0 (9)

for almost everywhere. By the maximality of Qk, j , there is

ak < m3Qk, j (| f |r, |g|s) < 22nak. (10)
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For the properties of Qk, j , there is
(iv) For any fixed k , Qk, j are nonoverlapping for different j .
(v) If k1 < k2 , then there exists i , such that Qk2, j ⊂ Qk1,i for any j ∈ Z .

Next, we will use the following decomposition of Q0 from a clever idea proposed
by Tanaka in [42].

Let E0 = Q0 \D1,Ek, j = Qk, j \Dk+1 . Then, we have the following lemma.

LEMMA 5. The set {E0}⋃{Ek, j} forms a disjoint family of sets, which decom-
poses Q0 , and satisfies

|Q0| � 2|E0|, |Qk, j| � 2|Ek, j|. (11)

Proof. We adopt some basic techniques from [18] to prove this lemma. By the
definitions of Qk, j and Dk+1 , there is

∣∣∣Qk, j

⋂
Dk+1

∣∣∣= ∑
Qk+1,i⊂Qk, j

|Qk+1,i|

� 1
ak+1 ∑

i

[(
|Qk+1,i|

(
1

|3Qk+1,i|
∫

3Qk+1,i

| f (x)|rdx

))1/r

×
(
|Qk+1,i|

(
1

|3Qk+1,i|
∫

3Qk+1,i

|g(x)|sdx

))1/s
]

� 1
ak+1

(
∑
i

|Qk+1,i|
(

1
|3Qk+1,i|

∫
3Qk+1,i

| f (x)|rdx

))1/r

×
(

∑
i

|Qk+1,i|
(

1
|3Qk+1,i|

∫
3Qk+1,i

|g(x)|sdx

))1/s

� 1
ak+1

(
|Qk, j|

(
1

|3Qk, j|
∫

3Qk, j

| f (x)|rdx

))1/r(
|Qk, j|

(
1

|3Qk, j|
∫

3Qk, j

|g(x)|sdx

))1/s

,

where the last inequality follows from the fact Qk+1,i ⊂ Qk, j and Qk, j are nonoverlap-
ping.
Then, using (10), we get∣∣∣Qk, j

⋂
Dk+1

∣∣∣
� 1

ak+1

(
|Qk, j|

(
1

|3Qk, j|
∫

3Qk, j

| f (x)|rdx

))1/r(
|Qk, j|

(
1

|3Qk, j|
∫

3Qk, j

|g(x)|sdx

))1/s

� 22n

ak+1 |Qk, j|ak =
22n

a
|Qk, j|.
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Thus, if we choose a = 22n+1 , we have∣∣∣Qk, j

⋂
Dk+1

∣∣∣� 1
2
|Qk, j|. (12)

Similarly, we can also get

|D1| � 1
2
|Q0|. (13)

Thus, we obtain (11) from (12) and (13).

LEMMA 6. ([1]) Let 0 < α < n, 1 < q � p < ∞ and 1 < t � s < ∞ . Assume
1/s = 1/p− α

n , t
s = q

p . Then, there exists a positive constant C such that

‖Mα f‖M s
t

� ‖Iα f‖M s
t

� C‖ f‖M p
q
.

LEMMA 7. Suppose that there exists real numbers t,q, p satisfying 1 < t < q �
p < ∞ . Then, we have

∥∥ f �
∥∥1/�

M
p/�
q/�

= ‖ f‖M p
q

with 1 < � < q.

Proof. Lemma 7 follows directly from the definition of the Morrey space and we
omit the details here.

LEMMA 8. ([25]) Let 0 � α < mn, �P = (p1, · · · , pm) , �R = (r1, · · · ,rm) , 0 < ri <
pi < ∞ , 0 < q � q0 < ∞ , 0 < p � p0 < ∞ , 1/q0 = 1/p0−α/n, q

q0
= p

p0
and 1/p =

m
∑
i=1

1/pi . Then, we have

‖Mα ,�R(�f )‖M
q0
q

� C‖�f‖M
p0
�P

,

where

Mα ,�R(�f )(x) := sup
Q�x

l(Q)α
m

∏
i=1

(
1
|Q|
∫

Q
fi(yi)dyi

)1/ri

.

3. Proof of Theorem 1

For the proof of (5), we decompose the proof into two cases: q > 1 and q � 1.

3.1. The case q > 1

Fix a cube Q0 = Q(x0,δ ) with δ > 0. Then, for any x ∈ Q0 , we may decompose
BIα as

BIα( f ,g)(x) =
∫

Rn

f (x− t)g(x+ t)
|t|n−α dt

=
∫
|t|�2δ

f (x− t)g(x+ t)
|t|n−α dt +

∫
|t|>2δ

f (x− t)g(x+ t)
|t|n−α dt
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=: I + II.

First, we decompose II as

II =
∞

∑
k=0

∫
2·2kδ<|t|�2·2k+1δ

f (x− t)g(x+ t)
|t|n−α dt

�
∞

∑
k=0

1
(2 ·2k+1δ )n−α

∫
|t|�2·2k+1δ

| f (x− t)g(x+ t)|dt

�
∞

∑
k=0

1
(2 ·2k+1δ )n−α

(∫
|t|�2·2k+1δ

| f (x− t)|rdt

)1/r(∫
|t|�2·2k+1δ

|g(x+ t)|sdt

)1/s

.

Then, by a change of variables and the fact x ∈ Q0 = Q(x0,δ ) , we obtain

|Q0|
1
q0

− 1
q

(∫
Q0

|II|q
(

2

∏
i=1

ωi(x)

)q

dx

)1/q

�C|Q0|
1
q0

− 1
q

∞

∑
k=0

(
2 ·2kδ

)α−n
(∫

Q0

2

∏
i=1

ωi(x)qdx

)1/q

×
(∫

2k+3Q0

| f (u)|rdu

)1/r(∫
2k+3Q0

|g(v)|sdv

)1/s

.

For
(∫

2k+3Q0
| f (u)|rdu

)1/r
, by the Hölder inequality, there is

(∫
2k+3Q0

| f (u)|rdu

)1/r

�
(∫

2k+3Q0

| f (u)ω1(u)|p1du

)1/p1
(∫

2k+3Q0

|ω1(u)|−r( p1
r )′du

)1/r−1/p1

.

Similarly, we have

(∫
2k+3Q0

|g(v)|sdu

)1/s

�
(∫

2k+3Q0

|g(v)ω2(v)|p2dv

)1/p2
(∫

2k+3Q0

|ω2(v)|−s( p2
s )′dv

)1/s−1/p2

.

Thus, using the condition [�ω ]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

) < ∞ and a > 1, we get

|Q0|
1
q0

− 1
q

(∫
Q0

|II|q
(

2

∏
i=1

ωi(x)

)q

dx

)1/q
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�C
∞

∑
k=1

(
2k+2δ

)α−n |Q0|1/q0−1/q

(∫
Q0

2

∏
i=1

ωi(x)qdx

)1/q

×
(∫

2k+3Q0

| f (u)ω1(u)|p1du

)1/p1
(∫

2k+3Q0

|ω1(u)|−r( p1
r )′du

)1/r−1/p1

×
(∫

2k+3Q0

|g(v)ω2(v)|p2dv

)1/p2
(∫

2k+3Q0

|ω2(v)|−s( p2
s )′dv

)1/s−1/p2

�C‖( fω1,gω2)‖M
p0
�P

∞

∑
k=1

(
2kδ
)α−n |Q0|1/q0−1/q+1/q|2k+3Q0|1/p−1/p0+1/r−1/p1+1/s−1/p2

×
( |Q0|
|2k+3Q0|

)− 1
aq0
( |Q0|
|2k+3Q0|

) 1
aq0

(
1

|Q0|
∫

Q0

2

∏
i=1

ωi(x)q

)1/q

×
(

1
|2k+3Q|

∫
2k+3Q0

| f (u)ω1(u)|p1du

)1/p1
(∫

2k+3Q0

|ω1(u)|−r( p1
r )′du

)1/r−1/p1

×
(

1
|2k+3Q|

∫
2k+3Q0

|g(v)ω2(v)|p2dv

)1/p2
(∫

2k+3Q0

|ω2(v)|−s( p2
s )′dv

)1/s−1/p2

�C[�ω ]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

)‖( fω1,gω2)‖M
p0
�P

,

which implies

‖II ·ν�ω‖M
q0
q

� C[�ω ]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

)‖( fω1,gω2)‖M
p0
�P

. (14)

Thus, it remains to give the estimates of ‖I · ν�ω‖M
q0
q

. First, we prove the following

lemma.

LEMMA 9. Denote I =
∫
|t|�2δ

f (x−t)g(x+t)
|t|n−α dt and Q0 = Q(x0,δ ) with δ > 0 . There

exists a positive constant independent of f and g, such that

I � C ∑
Q∈D(Q0)

l(Q)αm3Q(| f |r, |g|s)χQ(x). (15)

Proof. By the definition I , we may get

I =
∫
|t|�2δ

f (x− t)g(x+ t)
|t|n−α dt

=
+∞

∑
k=0

∫
2·2−k−1δ<|t|�2·2−kδ

f (x− t)g(x+ t)
|t|n−α dt

�
+∞

∑
k=0

1
(2 ·2kδ )n−α

∫
|t|�2·2−kδ

f (x− t)g(x+ t)dt
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�
+∞

∑
k=0

1
(2 ·2−kδ )n−α

(∫
|t|�2·2−kδ

| f (x− t)|rdt

)1/r(∫
|t|�2·2−kδ

|g(x+ t)|sdt

)1/s

.

Then, by a change of variables and the fact x ∈ Q0 , it is easy to see

I �C
+∞

∑
k=0

1
(2 ·2−kδ )n−α

(∫
|u−x|�2·2−kδ

| f (u)|rdu

)1/r(∫
|v−x|�2·2−kδ

|g(v)|sdv

)1/s

�C
+∞

∑
k=0

∑
Q∈D(Q0)
l(Q)=2−kδ

l(Q)α−n
(∫

|u−x|�2l(Q)
| f (u)|rdu

)1/r

×
(∫

|v−x|�2l(Q)
|g(v)|sdv

)1/s

χQ(x)

�C
+∞

∑
k=0

∑
Q∈D(Q0)
l(Q)=2−kδ

l(Q)α−n
(∫

3Q
| f (u)|rdu

)1/r(∫
3Q

|g(v)|sdv

)1/s

χQ(x)

=C ∑
Q∈D(Q0)

l(Q)αm3Q(| f |r, |g|s)χQ(x),

which implies
I � C ∑

Q∈D(Q0)
l(Q)αm3Q(| f |r, |g|s)χQ(x).

Thus, the proof of Lemma 9 has been finished.
Next, we recall some notations from Section 2. For r,s > 1 with 1/r + 1/s = 1,

we set
D0(Q0) ≡ {Q ∈ D(Q0) : m3Q(| f |r, |g|s) � a}

and
Dk, j(Q0) ≡

{
Q ∈ D(Q0) : Q ⊂ Qk, j,a

k < m3Q(| f |r, |g|s) � ak+1
}

,

where a is the same as in Section 2. Thus, we have

D(Q0) = D0(Q0)
⋃(⋃

k, j

Dk, j(Q0)

)
.

As q > 1, by duality, there is(∫
Q0

|I|q(ω1(x)ω2(x))qdx

)1/q

= sup
‖h‖

Lq′ (Q0)�1

‖Iω1ω2h‖L1(Q0).

Then, we denote

I0 := ∑
Q∈D0(Q0)

l(Q)αm3Q(| f |r , |g|s)
∫

Q
ω1(x)ω2(x)h(x)dx,

and
Ik, j := ∑

Q∈Dk, j(Q0)
l(Q)αm3Q(| f |r, |g|s)

∫
Q

ω1(x)ω2(x)h(x)dx.
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From D(Q0) = D0(Q0)
⋃(⋃

k, j
Dk, j(Q0)

)
and (15), we get

(∫
Q0

|I|q|ω1(x)ω2(x)|qdx

)1/q

� I0 + Ik, j. (16)

For Ik, j , recall that q > 1, a > 1 and α > 0. Then, using (10), the Hölder inequality,
Lemmas 5 and the property of D , we obtain

Ik, j �ak+1 ∑
Q∈Dk, j(Q0)

l(Q)α
∫

Q
ω1(x)ω2(x)h(x)dx

�Cak+1l(Qk, j)α
∫

Qk, j

ω1(x)ω2(x)h(x)dx

�Cam3Qk, j(| f |r, |g|s)l(Qk, j)α
∫

Qk, j

ω1(x)ω2(x)h(x)dx

�Cam3Qk, j(| f |r, |g|s)l(Qk, j)α |Qk, j|

×
(

1
|Qk, j|

∫
Qk, j

(ω1(x)ω2(x))aqdx

)1/aq( 1
|Qk, j|

∫
Qk, j

|h(x)|(aq)′dx

)1/(aq)′

�Ca|Ek, j|m3Qk, j (| f |r, |g|s)l(Qk, j)α

×
(

1
|Qk, j|

∫
Qk, j

(ω1(x)ω2(x))aqdx

)1/aq( 1
|Qk, j|

∫
Qk, j

|h(x)|(aq)′dx

)1/(aq)′

�Ca
∫

Ek, j

m3Qk, j (| f |r, |g|s)l(Qk, j)α
(

1
|Qk, j|

∫
Qk, j

(ω1(y)ω2(y))aqdy

)1/aq

×
(

1
|Qk, j|

∫
Qk, j

|h(y)|(aq)′dy

)1/(aq)′

dx

�Ca
∫

Ek, j

[
M(h(aq)′)(x)

] 1
(aq)′ M̃ aq

α ,r,s( f ,g, �ω)(x)dx,

where

M̃ aq
α ,r,s( f ,g, �ω)(x) = sup

Q�x
l(Q)αm3Q(| f |r , |g|s)

(
1
|Q|
∫

Q
(ω1(y)ω2(y))aqdy

)1/aq

.

Similarly, there is

I0 � Ca
∫

E0

[
M
(
h(aq)′

)
(x)
] 1

(aq)′ M̃ aq
α ,r,s( f ,g, �ω)(x)dx.

Thus, using the boundedness of the Hardy-Littlewood maximal function, the Hölder
inequality and the fact q′ > (aq)′ , we obtain

I0 +∑
k, j

Ik, j � C

(∫
Q0

|M̃ aq
α ,r,s( f ,g, �ω)(x)|qdx

)1/q
(∫

Q0

[
M
(
h(aq)′

)
(x)
] q′

(aq)′
)1/q′
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� C

(∫
Q0

|M̃ aq
α ,r,s( f ,g, �ω)(x)|qdx

)1/q(∫
Q0

|h(x)|q′dx

)1/q′

� C
∥∥M̃ aq

α ,r,s( f ,g, �ω)
∥∥

Lq(Q0)
,

which implies

I0 +∑
k, j

Ik, j � C
∥∥M̃ aq

α ,r,s( f ,g, �ω)
∥∥

Lq(Q0)
. (17)

From the Hölder inequality and the reversedHölder inequality for ω
−r(p1

r )
′

1 and ω
−s(p2

s )
′

2 ,
there is

m3Q(| f |r, |g|s) =
(

1
|3Q|

∫
3Q

| f |rdx

)1/r( 1
|3Q|

∫
3Q

|g|sdx

)1/s

�|3Q|−1
(∫

3Q
(| f (x)|rω1(x)r)

p1r
ar dx

) 1
r

ar
p1
(∫

3Q
ω1(x)

−r
p1

p1−ar dx

) 1
r − a

p1

×
(∫

3Q
(|g(x)|sω2(x)s)

p2s
as dx

) 1
s

as
p2
(∫

3Q
ω2(x)

−s
p2

p2−as dx

) 1
s − a

p2

�|3Q|−1|3Q|a/p1+a/p2+1/r−a/p1+1/s−a/p2

(
1

|3Q|
∫

3Q
(| f (x)|rω1(x)r)

p1
ar r dx

) 1
r

ar
p1

×
(

1
|3Q|

∫
3Q

(|g(x)|sω2(x)s)
p2
as s dx

) 1
s

as
p2
(

1
|3Q|

∫
3Q

ω2(x)
−s

p2
p2−as dx

) 1
s − a

p2

×
(

1
|3Q|

∫
3Q

ω1(x)
−r

p1
p1−ar dx

) 1
r − a

p1

�
(

1
|3Q|

∫
3Q

| f (x)ω1(x)|
p1
a dx

) a
p1
(

1
|3Q|

∫
3Q

|g(x)ω2(x)|
p2
a dx

) a
p2

×
(

1
|3Q|

∫
3Q

ω1(x)
− rp1

p1−r dx

) 1
r − 1

p1
(

1
|3Q|

∫
3Q

ω2(x)
− sp2

p2−s dx

) 1
s − 1

p2
.

Thus, recalling the definition of Mα ,�R(�f )(x) in Section 2, we obtain

M̃ aq
α ,r,s( f ,g, �ω)(x) � C[�ω ]

aq0,q,
(

sp1
s+p1

,
rp2

r+p2

)M
α ,

�P
a
( fω1,gω2)(x). (18)

Using Lemma 8 and (16)-(18), we have

‖I ·ν�ω‖M
q0
q

� C[�ω ]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

)
∥∥∥∥Mα ,

�P
a
( fω1,gω2)

∥∥∥∥
M

q0
q

� C[�ω ]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

)‖( fω1,gω2)‖M
p0
�P

,
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which implies

‖I ·ν�ω‖M
q0
q

� C[�ω ]
aq0,q,

(
sp1

s+p1
,

rp2
r+p2

)‖( fω1,gω2)‖M
p0
�P

. (19)

Combining (14) and (19), we finish the proof of Theorem 1 for the case q > 1.

3.2. The case q � 1

First, we denote

L :=

(
∑

Q∈D(Q0)
l(Q)αm3Q(| f |r, |g|s)χQ(x)

)q

.

Since q � 1, we have

L � ∑
Q∈D(Q0)

l(Q)qαm3Q(| f |r, |g|s)qχQ(x)

�

⎛
⎝ ∑

Q∈D0(Q0)
+∑

k, j
∑

Q∈Dk, j(Q0)

⎞
⎠ l(Q)qαm3Q(| f |r , |g|s)qχQ(x).

Recall that ν�ω (x) = ω1(x)ω2(x) . Then, we obtain
∫

Q0

|BIα( f ,g)(x)|q(ω1(x)ω2(x))qdx

�C

⎛
⎝ ∑

Q∈D0(Q0)
+∑

k, j
∑

Q∈Dk, j(Q0)

⎞
⎠ l(Q)αqm3Q(| f |r, |g|s)q

∫
Q
(ω1(x)ω2(x))qdx

:=C(I′0 +∑
k, j

I′k, j).

For I′k, j , there is

I′k, j = ∑
Q∈Dk, j(Q0)

l(Q)αqm3Q(| f |r , |g|s)q
∫

Q
(ω1(x)ω2(x))qdx

� l(Qk, j)αq
(
ak+1

)q ∫
Qk, j

(ω1(x)ω2(x))qdx

� Ca|Qk, j|l(Qk, j)αq
(
ak+1

)q
m3Qk, j(| f |r , |g|s)q

(
1

|Qk, j|
∫

Qk, j

(ω1(x)ω2(x))qdx

)

� Ca|Ek, j|l(Qk, j)αqm3Qk, j(| f |r , |g|s)q
(

1
|Qk, j|

∫
Qk, j

(ω1(x)ω2(x))qdx

)

� Ca
∫

Ek, j

[
l(Qk, j)αm3Qk, j (| f |r, |g|s)

(
1

|Qk, j|
∫

Qk, j

(ω1(y)ω2(y))qdy

)1/q
]q

dx
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� Ca
∫

Ek, j

M̃ q
α ,r,s( f ,g,ω1,ω2)(x)qdx,

where

M̃ q
α ,r,s( f ,g,ω1,ω2)(x) = sup

Q�x
l(Q)αm3Q(| f |r, |g|s)

(
1
|Q|
∫

Q
(ω1(y)ω2(y))qdy

)1/q

.

Similarly, there is

I′0 � Ca
∫

E0

M̃ q
α ,r,s( f ,g, �ω)(x)qdx.

Thus, we obtain

I′0 +∑
k, j

I′k, j � C
∫

Q0

M̃ q
α ,r,s( f ,g, �ω)(x)qdx.

Then, by a similar argument as in the proof of (18), there is

M̃ q
α ,r,s( f ,g, �ω)(x) � [�ω ]

aq0,q,
(

sp1
s+p1

,
rp2

r+p2

)M
α ,

�P
a
( fω1,gω2)(x). (20)

Now, using Lemma 8 and the definition of the Morrey space, we finish the proof of
Theorem 1 with q � 1.

4. Two-weight norm inequalities for BIα

In this section, we are going to give the two-weight norm inequalities for BIα
on the Morrey type spaces. Suppose that v and �ω = (ω1,ω2) satisfy the following
condition:

[v, �ω ]q0,q,�P := sup
Q⊂Q′

Q,Q′ :cubes

( |Q|
|Q′|
)1/q0

(
1
|Q|
∫

Q
v(x)qdx

)1/q 2

∏
i=1

(
1
|Q|
∫

Q′
ωi(yi)−p′idyi

)1/p′i
.

Obviously, if [v, �ω ]
q0,q,

(
sp1

s+p1
,

rp2
r+p2

) < ∞ , we cannot get the reversed Hölder inequality

for v , ω−r( p1
r )′

1 and ω−s( p2
s )′

2 .

By checking the proof of Theorem 1, we obtain

THEOREM 2. Suppose 0 < α < n, p1 > r > 1 , p2 > s > 1 , 1/r+1/s= 1 , 1/p =
1/p1 +1/p2 , 1 < p1, p2 < ∞ , 0 < p � p0 < ∞ , 0 < q � q0 < ∞ . Assume that

1/q0 = 1/p0−α/n, q/q0 = p/p0.

Case 1. If q > 1 , suppose that there exists a satisfying 1 < a < min
{ p1

s′ ,
p2
r′
}

,
such that

[v, �ω ]
aq0,aq,

(
sp1

as+p1
,

rp2
ar+p2

) < ∞.
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Then, there exists a positive constant C independent of f and g, such that

‖BIα( f ,g)v‖M
q0
q

� C[v, �ω ]
aq0,aq,

(
sp1

as+p1
,

rp2
ar+p2

)‖( fω1,gω2)‖M
p0
�P

. (21)

Case 2. If 0 < q � 1 , suppose that there exists a satisfying 1 < a < min
{ p1

s′ ,
p2
r′
}

,
such that

[v, �ω]
aq0,q,

(
sp1

as+p1
,

rp2
ar+p2

) < ∞.

Then, there exists a positive constant C independent of f and g, such that

‖BIα( f ,g)v‖
M

q0
q

� C[v, �ω ]
aq0,q,

(
sp1

as+p1
,

rp2
ar+p2

)‖( fω1,gω2)‖M
p0
�P

. (22)

In order to prove Theorem 2, recalling the definition of M̃ aq
α ,r,s( f ,g, �ω)(x) and

M̃ q
α ,r,s( f ,g, �ω)(x) in Section 3, we need the following lemma.

LEMMA 10. Under the same conditions as in Theorem 2, we have the following
estimates for M̃ aq

α ,r,s and M̃ q
α ,r,s .

Case 1. For the case q > 1 , suppose that there exists a satisfying 1 < a <
min
{ p1

s′ ,
p2
r′
}

, such that
[v, �ω ]

aq0,aq,
(

sp1
as+p1

,
rp2

ar+p2

) < ∞.

Then

M̃ aq
α ,r,s( f ,g, �ω)(x) � C[v, �ω ]

aq0,aq,
(

sp1
as+p1

,
rp2

ar+p2

)M
α ,

�P
a
( fω1,gω2)(x).

Case 2. For the case q � 1 , suppose that there exists a satisfying 1 < a <
min
{ p1

s′ ,
p2
r′
}

, such that
[v, �ω]

aq0,q,
(

sp1
as+p1

,
rp2

ar+p2

) < ∞.

Then
M̃ q

α ,r,s( f ,g, �ω)(x) � C[v, �ω ]
aq0,q,

(
sp1

as+p1
,

rp2
ar+p2

)M
α ,

�P
a
( fω1,gω2)(x).

If we check the proof of (18) and (20) carefully, we can easily get Lemma 10 and
we omit the details here.

Moreover, we can generalize Theorem 2 to a more general case.
Suppose that another quantity of two-weight type multiple weights [v, �ω ]q0,r0,q,�P

is defined as follows.

[v, �ω ]q0,r0,q,�P

:= sup
Q⊂Q′

Q,Q′ :cubes

( |Q|
|Q′|
)1/q0

|Q′|1/r0

(
1
|Q|
∫

Q
v(x)qdx

)1/q 2

∏
i=1

(
1
|Q|
∫

Q′
ωi(yi)−p′idyi

)1/p′i
<∞.

By checking the proof of Theorem 1 again, we have
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THEOREM 3. Suppose 0 < α < n, p1 > r > 1 , p2 > s > 1 , 1/r+1/s= 1 , 1/p =
1/p1 +1/p2 , 1 < p1, p2 < ∞ , 0 < p � p0 < ∞ , 0 < q � q0 < ∞ . Assume that

q/q0 = p/p0, 1/q0 = 1/p0 +1/r0−α/n, r0 � n
α

.

Case 1. If q > 1 , suppose that there exists a satisfying 1 < a < min
{

r0
q0

, p1
s′ ,

p2
r′
}

,

such that
[v, �ω ]

aq0,r0,aq,
(

sp1
as+p1

,
rp2

ar+p2

) < ∞.

Then, there exists a positive constant C independent of f and g, such that

‖BIα( f ,g)v‖M
q0
q

� C[v, �ω ]
aq0,r0,aq,

(
sp1

as+p1
,

rp2
ar+p2

)‖( fω1,gω2)‖M
p0
�P

. (23)

Case 2. If 0 < q � 1 , suppose that there exists a satisfying 1 < a < min
{

r0
q0

, p1
s′ ,

p2
r′
}

,

such that
[v, �ω]

aq0,r0,q,
(

sp1
as+p1

,
rp2

ar+p2

) < ∞.

Then, there exists a positive constant C independent of f and g, such that

‖BIα( f ,g)v‖M
q0
q

� C[v, �ω ]
aq0,r0,q,

(
sp1

as+p1
,

rp2
ar+p2

)‖( fω1,gω2)‖M
p0
�P

. (24)

Similarly, to prove Theorem 2, we need the following lemma.

LEMMA 11. Under the same conditions as in Theorem 3, we have the following
estimates for M̃ aq

α ,r,s and M̃ q
α ,r,s .

Case 1. For the case q > 1 , suppose that there exists a satisfying 1 < a <

min
{

r0
q0

, p1
s′ ,

p2
r′
}

, such that

[v, �ω ]
aq0,r0,aq,

(
sp1

as+p1
,

rp2
ar+p2

) < ∞.

Then

M̃ aq
α ,r,s( f ,g, �ω)(x) � C[v, �ω]

aq0,r0,aq,
(

sp1
as+p1

,
rp2

ar+p2

)M
α− n

r0
,
�P
a
( fω1,gω2)(x).

Case 2. For the case 0 < q � 1 , suppose that there exists a satisfying 1 < a <

min
{

r0
q0

, p1
s′ ,

p2
r′
}

, such that

[v, �ω]
aq0,r0,q,

(
sp1

as+p1
,

rp2
ar+p2

) < ∞.

Then

M̃ q
α ,r,s( f ,g, �ω)(x) � C[v, �ω ]

aq0,r0,q,
(

sp1
as+p1

,
rp2

ar+p2

)M
α− n

r0
,
�P
a
( fω1,gω2)(x).

REMARK 3. For the case 0 < q � 1, the results of (22) and (24) are still different
from [17, Theorem 4.2].
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5. An Olsen type inequality for BIα

In this section, we will give an Olsen type inequality for BIα . Recall the frac-
tional integral

Iα( f )(x) =
∫

Rn

f (y)
|x− y|n−α dy, 0 < α < n.

For the study of Iα on the Morrey space, one may see [1, 23, 24] et al. to find
more details.

Particularly, Sawano, Sugano and Tanaka obtained the following result.

THEOREM C. ([40]) Suppose that the indices α, p0,q0,r0, p,q,r1 satisfy

1 < p � p0 < ∞, 1 < q � q0 < ∞,1 < r1 � r0 < ∞

and
r1 > q, 1/p0 > α/n � 1/r0.

Also assume
q/q0 = p/p0, 1/p0 +1/r0−α/n = 1/q0.

Then, for all f ∈ M p0
p (Rn) and h ∈ M r0

r1 (Rn), there is

‖h · Iα( f )‖M
q0
q (Rn) � C‖ f‖M

p0
p (Rn) ‖h‖M

r0
r1 (Rn) , (25)

where C is a positive constant independet of f and g.

The above inequality was first proposed by Olsen in [38] and Olsen found that
(25) plays an important role in the study of Schrödinger equation. Conlon and Redondo
proved (25) for the case n = 3 in [9] essentially. In fact, some analogous inequalities
on a generalized case were obtained in [40, 41, 44] et al. Moreover, we would like to
mention that readers may see [12, 13] et al. to find more applications about Olsen type
inequalities in the study of PDEs.

For the Olsen type inequality of BIα , we would like to mention that if we take
v = h and �ω = (1,1, · · · ,1) in Theorem 3, we may obtain

THEOREM 4. Under the same conditions as in Theorem 3, there is
Case 1. For the q > 1 , we have

‖h ·BIα( f ,g)‖M
q0
q

� C‖h‖M
r0
r1
‖( f ,g)‖M

p0
�P

� C‖h‖M
r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2

, (26)

for all h ∈ M r0
r1 , 1/q1 +1/q2 = 1/p0 and r1 = aq.

Case 2. For the case 0 < q � 1 , we have

‖h ·BIα( f ,g)‖M
q0
q

� C‖h‖M
r0
q
‖�f‖M

p0
�P

� C‖h‖M
r0
q
‖ f‖M

q1
p1
‖g‖M

q2
p2

, (27)

for all h ∈ M r0
q and 1/q1 +1/q2 = 1/p0 .
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According to the conditions of Theorem 3, we find that the exponent r1 = aq in

(26) should satisfy the condition r1 ∈
(
q,q ·min

{
r0
q0

, p1
s′ ,

p2
r′
})

� (q,r0) . Then, com-

paring (25) with (26), it is natural to ask whether we can get the following Olsen type
inequality for BIα ,

‖h ·BIα( f ,g)‖
M

q0
q

� C‖h‖
M

r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2

(28)

with any r1 ∈ (q,r0] and q > 1. In this section, we will give a positive answer to this
question. The main result of this section is

THEOREM 5. Suppose that there exist real numbers α,qi, pi (i = 1,2),r0, r1,s,q0

and q satisfying 0 < α < n,1 < qi � pi < ∞,1 < q � q0 < ∞,1 < r1 � r0, p1 > r >
1, p2 > s > 1 and

r1 > q,1/r0 < α/n < 1/q1 +1/q2 < 1,1/s+1/r = 1.

Furthermore, we assume that

1/q0 = 1/r0 +1/q1 +1/q2−α/n

and q
q0

=
p1

q1
=

p2

q2
. (29)

Then, there exists a positive constant C independent of f and g, such that

‖h ·BIα( f ,g)‖
M

q0
q

� C‖h‖
M

r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2

for any h ∈ M r0
r1 (Rn) .

The method for the proof of Theorem 5 is also adapted to the case q = ∞ and
h≡ 1. Thus, we may obtain the following Spanne type estimates for BIα and it is also
a new result with its independent interest as far as we know.

COROLLARY 2. (The Spanne type estimate for BIα ) Suppose that there exist real
numbers α,qi, pi (i = 1,2),r,s,q0 and q satisfying 0 < α < n,1 < pi � qi < ∞,1 <
q � q0 < ∞, p1 > r > 1, p2 > s > 1 and

α/n < 1/q1 +1/q2 < 1, 1/s+1/r = 1.

Furthermore, we assume that

1/q0 = 1/q1 +1/q2−α/n

and q0

q
=

q1

p1
=

q2

p2
.

Then, there exists a positive constant C independent of f and g, such that

‖BIα( f ,g)‖M
q0
q

� C‖ f‖M
q1
p1
‖g‖M

q2
p2

.
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REMARK 4. Here we would like to mention that we cannot get Theorems 5 di-
rectly from Corollary 2 and the Hölder inequality for functions on the Morrey spaces
([26, p.1377]). Readers may see [39, 40, 44] for details. In fact, from Corollary 2 and
the Hölder inequality for functions on the Morrey spaces, there is

‖h ·BIα( f ,g)‖M
q0
q

� C‖h‖M
r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2

, (30)

where r0

r1
=

q0

q
=

q1

p1
=

q2

p2
(31)

and the other conditions are the same as in Theorem 5.

REMARK 5. Comparing (29) with (31), we find that the restriction of (31) is much
more stronger than (29).

REMARK 6. In [11], Fan and Gao [11, Corollary 2.5] got an Olsen type inequality
for BIα which is similar to (30). If we check [11, Corollary 2.5] carefully, we find that
the exponents q,q0,r1,r0,q1, p1,q2, p2 in [11, Corollary 2.5] also satisfy (31). How-
ever, our result shows that the condition (31) is unnecessary as the method used in this
paper is quite different and more difficult from [11].

5.1. Proof of Theorem 5

Without loss of generality, we may assume that both f and g are non-negative
functions. From Lemma 4 and the fact q � q0 , then for any cube Q ⊂ Rn , there is

|Q|1/q0−1/q
(∫

Q
|h(x)BIα( f ,g)(x)|qdx

)1/q

(32)

�6n
3n

∑
t=1

|Qt |1/q0−1/q
(∫

Qt

|h(x)BIα( f ,g)(x)|qdx

)1/q

,

where Qt ∈ D t , Q ⊂ Qt and l(Qt) � 6l(Q) .

Thus, we only need to estimate |Q0|1/q0−1/q
(∫

Q0
|h(x)BIα( f ,g)(x)|qdx

)1/q
with

Q0 ∈ D t .
From (ii) in Section 2, we know that the set {Q ∈ D t : l(Q) = 2−ν} forms a

partition of Rn with a fixed t and each ν ∈ Z . Moreover, we denote Q ∈ D t
ν with

l(Q) = 2−ν and let 3Q be made up of 3n dyadic grids of equal size and have the same
center of Q . Then, using the notations as in Section 2, we can decompose BIα as
follows.

BIα( f ,g)(x) =
∫

Rn

f (x− y)g(x+ y)
|y|n−α dy = ∑

ν∈Z

∫
2−ν−1<|y|�2−ν

f (x− y)g(x+ y)
|y|n−α dy

� ∑
ν∈Z

∑
Q∈D t

ν

2ν(n−α)χQ(x)
∫

2−ν−1<|y|�2−ν
f (x− y)g(x+ y)dy.
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Then, by a geometric observation, we have B(x,2−ν)⊂ 3Q if x∈Q ∈D t
ν . Thus, using

the Hölder inequality with 1/r+1/s = 1 (r,s > 1) and a change of variables, there is∫
2−ν−1<|y|�2−ν

f (x− y)g(x+ y)dy

�
(∫

2−ν−1<|y|�2−ν
| f (x− y)|rdy

)1/r(∫
2−ν−1<|y|�2−ν

|g(x+ y)|sdy

)1/s

�
(∫

2−ν−1<|x−u|�2−ν
| f (u)|rdu

)1/r(∫
2−ν−1<|x−z|�2−ν

|g(z)|sdz

)1/s

�
(∫

B(x,2−ν)
| f (u)|rdu

)1/r(∫
B(x,2−ν)

|g(z)|sdz

)1/s

�
(∫

3Q
| f (u)|rdu

)1/r(∫
3Q

|g(z)|sdz

)1/s

.

Then, for any cube fixed cube Q0 ∈ D t , as Q ∈ D t
ν , we denote

I = h(x) ∑
ν∈Z

∑
Q∈D t

ν ,Q⊃Q0

χQ(x)2ν(n−α)
(∫

3Q
| f (u)|rdu

)1/r(∫
3Q

|g(z)|sdz

)1/s

and

II = h(x) ∑
ν∈Z

∑
Q∈D t

ν ,Q⊂Q0

χQ(x)2ν(n−α)
(∫

3Q
| f (u)|rdu

)1/r(∫
3Q

|g(z)|sdz

)1/s

.

Thus, it is easy to see
h(x) ·BIα( f ,g)(x) � I + II.

For I , let Qk be the unique cube containing Q0 and satisfy |Qk| = 2kn|Q0| . Set ν =
−log2|Qk| 1

n . Then, we denote

Ek = |Q0|1/q0−1/q

{∫
Q0

∣∣∣∣∣2ν(n−α)χQk(x)h(x)
(∫

3Qk

| f (u)|rdu

)1/r

×
(∫

3Qk

|g(z)|sdz

)1/s
∣∣∣∣∣
q

dx

}1/q

.

Next, we will give the estimates of Ek . By the definition of the Morrey space and the
condition 1/r+1/s = 1 with r,s > 1, we see that

(∫
3Qk

| f (u)|rdu

)1/r(∫
3Qk

|g(z)|sdz

)1/s

�
(∫

3Qk

| f (u)|p1du

)1/p1

|3Qk|1/r−1/p1

(∫
3Qk

|g(z)|p2dz

)1/p2

|3Qk|1/s−1/p2
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�‖ f‖M
q1
p1
|3Qk|1/r−1/p1−1/q1+1/p1‖g‖M

q2
p2
|3Qk|1/s−1/p2+1/p2−1/q2

�‖ f‖M
q1
p1
‖g‖M

q2
p2
|3Qk|1−1/q1−1/q2 .

Thus, we obtain

Ek � ‖ f‖M
q1
p1
‖g‖M

q2
p2
|3Qk|1−1/q1−1/q2 |Q0|1/q0−1/q2ν(n−α)

(∫
Q0

|h(x)|qdx

)1/q

� ‖ f‖M
q1
p1
‖g‖M

q2
p2
|3Qk|1−1/q1−1/q2 |Q0|1/q0−1/q+1/q−1/r12ν(n−α)

(∫
Q0

|h(x)|r1dx

)1/r1

� ‖h‖M
r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2
|Q0|1/q0−1/r0 |Qk|1−1/q1−1/q22ν(n−α).

By the facts 2ν(n−α)=
(

2−log2|Qk |
1
n

)n−α
= |Qk|− 1

n (n−α) = |Qk| α
n −1 and |Qk|=2kn|Q0| ,

we get

Ek � ‖h‖M
r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2
|Q0|1/q0−1/r0+α/n−1/q1−1/q22kn(α/n−1/q1−1/q2)

� ‖h‖
M

r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2

2kn(α/n−1/q1−1/q2).

Recall that Qk is the unique cube containing Q0 . By the condition that 1/q1 +1/q2−
α/n > 0, and the definitions of I and Ek , we obtain

|Q0|1/q0−1/q
(∫

Q0

|I|qdx

)1/q

� C‖h‖M
r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2

. (33)

Next, we recall some notations from Section 3. For r,s > 1 with 1/r+1/s = 1, we set

D t
0(Q0) ≡ {Q ∈ D t(Q0) : m3Q(| f |r, |g|s) � a}

and
D t

k, j(Q0) ≡
{

Q ∈ D t(Q0) : Q ⊂ Qk, j,a
k < m3Q(| f |r, |g|s) � ak+1

}
,

where a is the same as in Section 2 and D t(Q0) ≡ {Q ∈ D t : Q ⊂ Q0} .
Thus, we have

D t(Q0) = D t
0(Q0)∪

⋃
k, j

D t
k, j(Q0).

By the duality theory, we may choose a function ω ∈ Lq′ , such that

(∫
Q0

|II|qdx

)1/q

� 2
∫

Q0

|II|ω(x)dx. (34)

Thus, we get

(∫
Q0

|II|qdx

)1/q
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= ∑
Q∈D t

0(Q0)
2ν(n−α)

∫
Q

h(x)ω(x)dx

(∫
3Q

| f (u)|rdu

)1/r(∫
3Q

|g(z)|sdz

)1/s

+∑
k, j

∑
Q∈D t

k, j(Q0)
2ν(n−α)

∫
Q

h(x)ω(x)dx

(∫
3Q

| f (u)|rdu

)1/r(∫
3Q

|g(z)|sdz

)1/s

:=II1 + II2.

To estimate II2 , using (10), Lemma 5, the definition of Dk, j(Q0) , the geometric prop-
erty of D and the fact 0 < α

n < 1, there is

II2 � ∑
k, j

∑
Q∈D t

k, j(Q0)
2ν(n−α)

∫
Q

h(x)ω(x)dx|3Q|m3Q(| f |r , |g|s)

� C∑
k, j

∑
Q∈D t

k, j(Q0)
|Q| α

n m3Q(| f |r, |g|s)
∫

Q
h(x)ω(x)dx

= C∑
k, j

∑
Q∈D t

k, j(Q0)
|Q| α

n m3Q(| f |r, |g|s) |Q|
|Q|
∫

Q
h(x)ω(x)dx

� C∑
k, j

∑
Q∈D t

k, j(Q0)
|Q| α

n m3Q(| f |r, |g|s)
∫

Q
M(hω)(x)dx

� C∑
k, j

|Qk, j|
α
n m3Qk, j(| f |r , |g|s)

∫
Qk, j

M(hω)(x)dx

� C∑
k, j

|Qk, j|
α
n m3Qk, j(| f |r , |g|s)mQk, j [M(hω)]|Qk, j|

� C∑
k, j

|Qk, j|
α
n m3Qk, j(| f |r , |g|s)mQk, j [M(hω)]|Ek, j|.

Thus, for any θ satisfying 1 < q < θ < r1 , we have

II2 �C∑
k, j

|Qk, j|
α
n m3Qk, j (| f |r, |g|s)

×|Ek, j|
(

mQk, j

((
M(θ ′)ω

)r′1
))1/r′1 (

mQk, j

((
M(θ)h

)r1))1/r1

=C∑
k, j

|Qk, j| α
n −1/r0m3Qk, j (| f |r, |g|s)|Ek, j|

(
mQk, j

((
M(θ ′)ω

)r′1
))1/r′1

×|Qk, j|1/r0
(
mQk, j

((
M(θ)h

)r1))1/r1

=∑
k, j

|Qk, j| α
n −1/r0m3Qk, j (| f |r, |g|s)|Ek, j|

(
mQk, j

((
M(θ ′)ω

)r′1
))1/r′1

×
(
|Qk, j|

θ
r0

(
1

|Qk, j|
∫

Qk, j

M
(
|h|θ
)

(x)r1/θ dx

)θ/r1
)1/θ
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�C∑
k, j

|Qk, j| α
n −1/r0m3Qk, j (| f |r, |g|s)|Ek, j|

(
mQk, j

((
M(θ)ω

)r′1
))1/r′1

×|Qk, j|1/r0−1/r1

(∫
Qk, j

|h(x)|r1dx

)1/r1

�C‖h‖M
r0
r1

∑
k, j

|Qk, j| α
n −1/r0m3Qk, j(| f |r , |g|s)|Ek, j|

(
mQk, j

((
M(θ ′)ω

)r′1
))1/r′1

,

where the definition of M(θ ′)ω can be found in Section 2.
Similarly, for the estimates of II1 , there is

II1 � C‖h‖M
r0
r1
|Q0| α

n −1/r0m3Q0(| f |r, |g|s)|E0|
(

mQ0

((
M(θ ′)ω

)r′1
))1/r′1

.

Combing the estimates of II1 and II2 and recalling the fact that {E0}⋃{Ek, j}
forms a disjoint family of decomposition for Q0 , the definition of Qk, j and the fact
α/n > 1/r0 , we get

|Q0|1/q0−1/q
∫

Q0

|II|ω(x)dx

�C|Q0|1/q0−1/q‖h‖M
r0
r1

∫
Q0

M(r′1)
(
M(θ ′)ω

)
(x)Mβ1

(| f |r)(x)1/rMβ2
(|g|s)(x)1/sdx

�C|Q0|1/q0−1/q‖h‖M
r0
r1

(∫
Q0

M(r′1)
(
M(θ ′)ω

)
(x)q′dx

)1/q′

×
(∫

Q0

(
Mβ1

(| f |r)(x)1/rMβ2
(|g|s)(x)1/s

)q
dx

)1/q

,

where Mβi
denotes the fractional maximal function and β1 = α1r − nr

2r0
> 0, β2 =

α2s− ns
2r0

> 0 with α1 = α2 = α
2 .

As q′
θ ′ > 1 and q′

r′1
> 1, we can easily get

(∫
Q0

M(r′1)
(
M(θ ′)ω

)
(x)q′dx

)1/q′
� C and it

remains to give the estimate of

|Q0|1/q0−1/q
(∫

Q0

(
Mβ1

(| f |r)(x)1/rMβ2
(|g|s)(x)1/s

)q
dx

)1/q

.

By the Hölder inequality on Morrey spaces and Lemmas 6-7, there is

|Q0|1/q0−1/q
(∫

Q0

(
Mβ1

(| f |r)(x)1/rMβ2
(|g|s)(x)1/s

)q
dx

)1/q

�‖Mβ1
(| f |r)1/rMβ2

(|g|s)1/s‖
M

q0
q

�‖Mβ1
(| f |r)1/r‖

M
μ1
ν1
‖Mβ2

(|g|s)1/s‖
M

μ2
ν2
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=‖Mβ1
(| f |r)‖1/r

M
μ1
r

ν1
r

‖Mβ2
(|g|s)‖1/s

M
μ2
s

ν2
s

�C‖| f |r‖1/r

M
q1
r

p1
r

‖|g|s‖1/s

M
q2
s

p2
s

= C‖ f‖M
q1
p1
‖g‖M

q2
p2

,

where μ1
ν1

= μ2
ν2

= q0
q = q1

p1
= q2

p2
, r

q1
− r

μ1
= rα1

n − r
2r0

= β1
n and s

q2
− s

μ2
= sα2

n − s
2r0

= β2
n .

Thus, we have

|Q0|1/q0−1/q
∫

Q0

|II|ω(x)dx � C‖h‖M
r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2

. (35)

Then, combing (32)-(35), we conclude that

‖h ·BIα( f ,g)‖M
q0
q

� C‖h‖M
r0
r1
‖ f‖M

q1
p1
‖g‖M

q2
p2

. (36)

Consequently, the proof of Theorem 5 has been finished.
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eree for his/her valuable suggestions.
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