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Abstract. We prove a generalization to matrices and tensors of the Szőkefalvi-Nagy inequality
and the Grüss-Popoviciu inequality. Our more general version is required in the analysis of
variance (ANOVA).

1. Introduction and main result

The next theorem is our main result, it relates the sum of squares of a real array x
with its range. The assumption is that x has zero mean in all directions. This is a stan-
dard assumption in the statistics applications that motivate our results, see Remark 1.
Our result is a generalization of the Szőkefalvi-Nagy and Grüss-Popoviciu inequalities,
see Section 3. Let n1, . . . ,nN ∈ {2,3, . . .} .

THEOREM 1. Let x be an (n1× . . .×nN) array of real numbers such that x has
zero mean in each of its N directions,

nk

∑
ik=1

xi1,...,ik,...,iN = 0, for any fixed {i1, . . . , iN} \ {ik}.

Let xmin and xmax denote the smallest and largest entries of x , respectively, and let δ
denote the range of x ,

δ = xmax− xmin.

Let j1 ∈ {1,2, . . . ,N} such that n j1 is (one of) the smallest n j , and define

C1 =
1
2
·

N

∏
j=1

n′j, n′j =

⎧⎨⎩
1, if j = j1

n j

n j−1
, otherwise.
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If at least one n j is odd, then let j2 ∈ {1,2, . . . ,N} such that n j2 is (one of) the smallest
of the odd n j . Define

C2 =
1
4
·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N

∏
j=1

n j, if all n j are even,

N

∏
j=1

n′′j , if at least one n j is odd.

n′′j =

⎧⎨⎩n j− 1
n j

, j = j2,

n j, otherwise.

Then the following holds.

(i) We have the following bounds for the total sum of squares:

C1 ·δ 2 � ∑
i1�n1

...
in�nN

x2
i1,...,in � C2 ·δ 2 .

(ii) The lower bound is sharp. The extremal arrays are the tensor products v of
(possibly permuted) vectors v j of the following form,

v =
δ
2
·v1⊗ . . .⊗vN , v j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1,−1,0, . . . ,0︸ ︷︷ ︸
n j−2

), j = j1,

(
1,− 1

n j−1
, . . . ,− 1

n j−1︸ ︷︷ ︸
n j−1

)
, j ∈ {1,2, . . . ,N} \ { j1} .

(iii) The upper bound is sharp if all n j are even (Case I, define p = 2 ), or if one n j0 is
odd and divides all the other n j (Case II, define p = n j0 ). An example extremal
is the Hankel tensor defined by first

(x1,1,1,...,1, . . . ,xp,1,1,...,1) =
δ
2
·

⎧⎪⎪⎨⎪⎪⎩
(1,−1), Case I,

(1, . . . ,1︸ ︷︷ ︸
�p/2�

,−1, . . . ,−1︸ ︷︷ ︸
�p/2	

)+
1
p
, Case II,

and secondly by the p-periodic Hankel property

xi1,...,in = xi′1,...,i′n for i1 + . . .+ in ≡ i′1 + . . .+ i′n mod p .

REMARK 1. Our results are required in the analysis of variance (ANOVA) exper-
imental design. They refine the computation of the worst case power—the power (i.e.,
the power function evaluated under the alternative) is the complement of the type II
error probability—and thus they help decreasing the experimental size [19]. The “zero
mean in all directions” condition is a standard assumption to ensure identifiability of
parameters [5, pp. 157, 169, 178], [12, Sec. 3.3.1.1], [13, Sec. 5], [14, Sec. 5], [15,
Sec. 4.1, p. 92], [16, p. 415, Sec. 7.2.i].
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lower 2 3 4 5 6 7

1 0.75 0.66 0.62 0.6 0.58

Table 1: Lower bounds for the sum of squares of (n1× n2) matrices with range δ =
xmax−xmin = 1 that have zero mean rows and columns. The lower bound from Theorem
1 is tabled as a function of max(n1,n2) . The lower bounds are sharp.

upper I 2 3 4 5 6 7

2 1 1.33 2 2.40 3 3.42

3 2 2.66 3.33 4 4.66

4 4 4.80 6 6.85

5 6 7.20 8.40

6 9 10.29

7 12

upper II 2 3 4 5 6 7

2 1 ← 2 ← 3 ←
3 2 ←↑ 2.61 4 ←
4 4 ← 6 ←
5 6 ←↑ 7.38

6 9 ←
7 12

Table 2: Upper bounds for the sum of squares of (n1× n2) matrices with range δ =
xmax− xmin = 1 that have zero mean rows and columns. In the first table (upper I) the
upper bound from Theorem 1 is tabled as a function of n1 and n2 . The upper bound
is not sharp, in general, but the sharp bound cannot be less than the entry in the second
table (upper II). In the second table the integer values are the sharp cases from Theorem
1. The non-integer values are obtained from examples found by local minimization, see
Example 2(iv). The arrows point to neighboring values that can be re-used by padding
the smaller matrix with zeros, see also Example 2(iv).
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2. Examples

For N = 1, see Section 3. We summarize Theorem 1(i) for N = 2,3.

EXAMPLE 1. (i) Let x be a real (n1× n2) matrix with zero mean rows and
columns,

∑
i

xi, j0 = ∑
j

xi0, j = 0, for any i0, j0 .

Let m2 = max(n1,n2) . If at least one of n1,n2 is odd, then let p1 denote the
least odd number of n1,n2 and let p2 denote the other number. Then for δ =
xmax− xmin , we have

δ 2

2
· m2

m2−1
� ∑

i, j
x2
i, j � δ 2

4
·

⎧⎪⎨⎪⎩
n1n2, n1,n2 even,(

p1− 1
p1

)
· p2, otherwise.

(ii) Let x be a real (n1×n2×n3) array with zero mean in all three directions,

∑
i

xi, j0,k0 = ∑
j

xi0, j,k0 = ∑
k

xi0, j0,k = 0, for any i0, j0,k0 .

Let m1 � m2 � m3 denote n1,n2,n3 sorted from least to greatest. If at least one
of n1,n2,n3 is odd, then let p1 denote the least odd number of n1,n2,n3 and let
p2, p3 denote the other two numbers. Then for δ = xmax− xmin , we have

δ 2

2
· m2m3

(m2−1)(m3−1)
� ∑

i, j,k

x2
i, j,k � δ 2

4
·

⎧⎪⎨⎪⎩
n1n2n3, n1,n2,n3 even,(

p1− 1
p1

)
· p2p3, otherwise.

We further illustrate Theorem 1 for N = 2.

EXAMPLE 2. (i) For (3× 6) matrices with zero mean rows and columns, we
have

3
5
·δ 2 � ∑

i, j
x2
i, j � 4 ·δ 2,

and lower/upper extremals (with δ = 1) are

1
10
·
⎛⎝ 5 −1 −1 −1 −1 −1
−5 1 1 1 1 1
0 0 0 0 0 0

⎞⎠ ,
1
3
·
⎛⎝ 2 −1 −1 2 −1 −1
−1 −1 2 −1 −1 2
−1 2 −1 −1 2 −1

⎞⎠ .

(ii) For (4×6) matrices with zero mean rows and columns, we have

3
5
·δ 2 � ∑

i, j
x2
i, j � 6 ·δ 2,
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and lower/upper extremals (with δ = 1) are

1
10
·

⎛⎜⎜⎝
5 −1 −1 −1 −1 −1
−5 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎠ ,
1
2
·

⎛⎜⎜⎝
1 −1 1 −1 1 −1
−1 1 −1 1 −1 1
1 −1 1 −1 1 −1
−1 1 −1 1 −1 1

⎞⎟⎟⎠ .

(iii) For (5×5) matrices with zero mean rows and columns, we have

5
8
·δ 2 � ∑

i, j
x2
i, j � 6 ·δ 2,

and lower/upper extremals (with δ = 1) are

1
8
·

⎛⎜⎜⎜⎜⎝
4 −1 −1 −1 −1
−4 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,
1
5
·

⎛⎜⎜⎜⎜⎝
3 3 −2 −2 −2
3 −2 −2 −2 3
−2 −2 −2 3 3
−2 −2 3 3 −2
−2 3 3 −2 −2

⎞⎟⎟⎟⎟⎠ .

(iv) The upper bound in Theorem 1 is not sharp, in general. The sharp upper bound
requires finding global extremals, which quickly become inaccessible as n1,n2

increase. But it is easy to close in on the sharp upper bound by finding local
extremals, such as the following (3×5) and (5×7) matrices with sum of squares
C = 2.61 ·δ 2 , and C = 7.38 ·δ 2 , respectively,

1
7
·
⎛⎝ 4 −1 −1 −1 −1
−2 4 −3 4 −3
−2 −3 4 −3 4

⎞⎠ ,
1
9
·

⎛⎜⎜⎜⎜⎝
5 5 −2 −2 −2 −2 −2
5 −3 5 5 −4 −4 −4
−3 5 −4 5 5 −4 −4
−4 −3 5 −4 −4 5 5
−3 −4 −4 −4 5 5 5

⎞⎟⎟⎟⎟⎠ .

Another option to close in on the sharp upper bound is padding an array with
zeros that is extremal for a smaller size. For example, attaching a zero column to
an extremal (3×6) matrix yields a (3×7) matrix with the same sum of squares,
C = 4 ·δ 2 ,

1
3
·
⎛⎝ 2 −1 −1 2 −1 −1 0
−1 −1 2 −1 −1 2 0
−1 2 −1 −1 2 −1 0

⎞⎠ .

3. Proof of Theorem 1

The case N = 1 of Theorem1 reduces to the Szőkefalvi-Nagy and Grüss-Popoviciu
inequalities, which we include by the next lemma. The equivalence is immediate, since
the range of observations is invariant if we subtract the mean. In the lemma the lower
bound is the Szőkefalvi-Nagy inequality [7, eq. (1)], [17, eq. (1.5)], see also Remark
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2 below. The upper bound is the Grüss-Popoviciu inequality [1, Sec. 1.7], [9, p. 299,
Sec.X.6], a discrete analogue of Grüss’ inequality [6], referenced to [3, 11]. See also
[2], [10, p. 46, Remark 1.7.9].

We summarize the simple proof from [4, proof of Thm. 2] for the upper bound,
adjusting it slightly such that it also yields the lower bound. The mean of x1, . . . ,xn is
denoted x = (x1 + . . .+ xn)/n .

LEMMA 1. The variance of n real numbers (x1, . . . ,xn) is related with their range
δ = xmax− xmin by

1
2
·δ 2 �

n

∑
i=1

(xi− x)2 � n′

4
·δ 2, n′ =

⎧⎨⎩n, n even,

n− 1
n
, n odd.

The extremals for the lower and upper bounds are the permutations of, repectively,

(xmin,μ , . . . ,μ︸ ︷︷ ︸
n−2

,xmax), μ = (xmax− xmin)/2,

(xmin, . . . ,xmin︸ ︷︷ ︸
k

,xmax, . . . ,xmax︸ ︷︷ ︸
n−k

) , k =

{
n/2, n even,

�n/2� or �n/2	, n odd.

Proof. Fix x1 = xmin and xn = xmax . Let j ∈ {2, . . . ,n− 1} and differentiate the
variance as a function of x j ,

∂
∂x j

n

∑
i=1

(xi− x)2 =
∂

∂x j

[ n

∑
i=1

x2
i −

1
n

( n

∑
i=1

xi

)2 ]
= 2x j−2x = 2(x j− x). (1)

The first derivative contains the factor x j− x and the second derivative 2(1− 1/n) is
a positive number. Thus the lower bound extremals must have x j = x and the upper
bound extremals must have x j = xmin or x j = xmax . Selecting the largest variance
among these upper bound extremal candidates completes the proof.

REMARK 2. The inequalities in Lemma 1 are often studied in a context where
the real numbers xi are roots of a polynomial, such as the eigenvalues of a symmetric
matrix. For example, the original result for the lower bound [18, pp. 42–43, Thm. IX]
is in fact an upper bound for the range δ = xmax−xmin of polynomial roots. The bound
is an expression that is formed by two polynomial coefficients and that is equal to the
variance, see [4], [8, p. 153, eq. (1.10)].

The simple proof of Lemma 1 does not apply to Theorem 1, since in general the
range of x is not invariant, if we project x to mean zero in all directions. Only for N = 1
the range is invariant, since the projection reduces to subtracting the mean x 
→ x− x .
For N = 2,3, . . . , projecting x to mean zero in all directions:

• does not mean subtracting the overall mean or the tensor product of the direc-
tional means,
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• is clearer, if we consider the discrete Fourier transform y of x , it means annihi-
lating certain Fourier coefficients.

To see which coefficients should be set to zero, we formulate the next lemma.

LEMMA 2. Let x be an (n1× . . .×nN) array of real or complex numbers and let
y denote the discrete Fourier transform of x . Then the following equivalences hold:

(i) x has mean zero ⇔ y1,...,1 = 0 ,

(ii) x has mean zero in all directions ⇔ yi1,...,iN = 0 if any i j = 1 .

Proof. The first equivalence follows from the definition of the first Fourier co-
efficient. The second equivalence specializes from the following fact, obtained from
standard properties of the Fourier transform. If X denotes the smaller array obtained
by summing x along the ik direction and if Y denotes the restriction of y to ik = 1,
then Y is the discrete Fourier transform of X .

Proof of Theorem 1.

Proof. Step I (lower bound). Without loss of generality we assume

n1 � . . . � nN . (2)

By permuting the array without affecting the zero mean conditions, we can assume that
the maximum of x is at the (1, . . . ,1) position,

xmax = x1,...,1. (3)

We also assume that x is not constant, thus the minimum has at least one coordinate k
different from the maximum,

xmin = xi1,...,iN , ik �= 1 . (4)

Let X be the restriction of x to ik = 1. Thus X is a layer of x that contains xmax but
avoids xmin . Let Y denote the discrete Fourier transform of X . We use the Fourier
transform normalized such that it is unitary,

∑|X−|2 = ∑|Y−|2, (5)

where the notation means summation over all entries of the array. The Fourier transform
definition thus involves a normalization constant

√
P , where P is the number of entries

of X , which is
P = ∏

1� j�N
j �=k

n j . (6)
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The normalization constant also occurs in the inverse Fourier transform and related
formulas, such as

X1,...,1 =
1√
P
·∑Y−. (7)

Next, the triangle inequality implies(
∑Y−

)2
� K ·∑|Y−|2, (8)

where K is the number of non-zero entries of Y . By Lemma 2 the zero mean conditions
on X imply that the Fourier transform Y vanishes at yi1,...,iN , if i j = 1, for any j ∈
{1, . . . ,N} \ {k} . Hence,

K � ∏
1� j�N

j �=k

(n j−1) . (9)

Combining the above and noting that X is real, we obtain

x2
max = x2

1,...,1 = X2
1,...,1 =

1
P
·
(
∑Y−

)2

� K
P
·∑|Y−|2 =

K
P
·∑|X−|2 =

K
P
·∑X2

− .

(10)

The arguments above for the layer X that contains xmax also work for the parallel layer
X̃ that contains xmin and hence,

x2
max + x2

min � K
P
·∑X2

−+
K
P
·∑ X̃2

−

=
K
P
·
(

∑X2
−+∑ X̃2

−

)
� K

P
·∑x2

− .
(11)

Since

(xmax− xmin)2 � (xmax + xmin)2 +(xmax− xmin)2 = 2(x2
max + x2

min), (12)

we thus conclude that

(xmax− xmin)2

2
· ∏
1� j�N

j �=k

n j

n j−1
� (x2

max + x2
min) ·

P
K

� ∑x2
− . (13)

Step II (upper bound, if all n j are even). Let n = n1 · · ·nN . Reshape the (n1×
. . .×nN) array x into one long vector v of length n . Note v has mean zero. Apply to
v the Grüss-Popoviciu inequality, which is the upper bound in Lemma 1.

Step III (upper bound, if at least one n j is odd). Let n = n1 · · ·nN and let p denote
the least odd number of n1, . . . ,nN . We can split the (n1× . . .×nN) array x into n/p
many vectors vk of length p , such that each vk has mean zero. Apply to each vk the
Grüss-Popoviciu inequality.
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