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BOUNDS OF NUMERICAL RADIUS OF BOUNDED

LINEAR OPERATORS USING t –ALUTHGE TRANSFORM
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(Communicated by M. S. Moslehian)

Abstract. We develop a number of inequalities to obtain bounds for the numerical radius of a
bounded linear operator defined on a complex Hilbert space using the properties of t -Aluthge
transform. We show that the bounds obtained are sharper than the existing bounds.

1. Introduction

Let B(H) denote the C∗ -algebra of all bounded linear operators defined on a complex
Hilbert space H . For T ∈ B(H) , the numerical range of T is defined as

W (T ) = {〈Tx,x〉 : x ∈ H,‖x‖ = 1}.
The numerical radius, w(T ) , is defined as the radius of the smallest circle with centered
at the origin and containing the numerical range, i.e.,

w(T ) = sup{|λ | : λ ∈W (T )}.
The Crawford number of T is defined as

m(T ) = inf{|λ | : λ ∈W (T )}.
The Cartesian decomposition of T is given by T = Re(T )+ i Im(T ) , where Re(T ) =
T+T∗

2 and Im(T ) = T−T∗
2i . The spectral radius of T is defined as

r(T ) = sup{|λ | : λ ∈ σ(T )}
where σ(T ) is the collection of all spectral values of T . It is well-known that w(T )
defines a norm on B(H) , which is equivalent to the operator norm ‖.‖ , satisfying the
following inequality

1
2
‖T‖ � w(T ) � ‖T‖.
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The first inequality becomes an equality if T 2 = 0 and the second inequality becomes
an equality if T is normal. Various mathematicians [2, 3, 4, 7, 8, 11, 12, 13] have
studied and improved on the numerical radius inequality over the years using different
techniques. One of the substantive improvement of the upper bound of the numerical
radius was done by Kittaneh [8, Th. 1], in which he proved that

w(T ) � 1
2

(
‖T‖+‖T2‖ 1

2

)
. (1)

Using the Cartesian decomposition of an operator, Kittaneh [7, Th. 1] also proved that

1
4
‖T ∗T +TT ∗‖ � w2(T ) � 1

2
‖T ∗T +TT ∗‖. (2)

For T ∈ B(H) , the Aluthge transform of T , denoted as T̃ , is defined as

T̃ = |T | 1
2U |T | 1

2 ,

where |T | = (T ∗T )
1
2 and U is the partial isometry associated with the polar decompo-

sition of T and so T = U |T |, kerT = kerU. It follows easily from the definition of T̃
that ‖T̃‖ � ‖T‖ and r(T̃ ) = r(T ) , also w(T̃ ) � w(T ) (see [6]). Okubo [10] general-
ized the Aluthge transform, known as the t -Aluthge transform as follows:
For t ∈ [0,1] , the t -Aluthge transform is defined by,

T̃t = |T |tU |T |1−t .

Here, |T |0 is defined as U∗U . In particular, T̃0 = U∗U2|T | , T̃1 = |T |UU∗U = |T |U ,

T̃1
2

= |T | 1
2U |T | 1

2 = T̃ (the Aluthge transform of T ).

Using the Aluthge transform, Yamazaki in [12, Th. 2.1] proved that if T ∈ B(H) , then

w(T ) � 1
2

(
‖T‖+w(T̃)

)
. (3)

He also proved that this inequality is better than inequality (1) obtained by Kittaneh
[8, Th. 1]. Abu-Omar and Kittaneh [1, Th. 3.2] improved on inequality (3) using
t -Aluthge transform to prove that

w(T ) � 1
2

(
‖T‖+ min

t∈[0,1]
w(T̃t)

)
. (4)

Clearly inequality (4) is sharper than (3) and hence (1). We observe that inequalities (1)
and (2) as well as (4) and (2) are not comparable, in general. In this paper, we develop
a number of inequalities using the properties of t -Aluthge transform. We show that our
inequalities improve inequalities (1), (2) and (3). We also obtain an upper bound for the
numerical radius and show by an example that the bound is better than that obtained in
inequality (4) for some certain operators.
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2. Main results

We begin this section with two notations Hθ and Kθ , defined as follows:
For T ∈ B(H) and θ ∈ R, Hθ := Re(eiθ T ) and Kθ := Im(eiθ T ) .

The following lemma (see [12]) will be used repeatedly to reach our goal in this
present article.

LEMMA 1. Let T ∈ B(H). Then

w(T ) = sup
θ∈R

‖Hθ‖ = sup
θ∈R

‖Re(eiθ T )‖.

Replacing T by iT in the above equation, we have

w(T ) = sup
θ∈R

‖Kθ‖ = sup
θ∈R

‖Im(eiθ T )‖.

We next prove the following proposition which states that T 2 = 0 and T̃t = 0, for
any t ∈ [0,1] are equivalent. To achieve it, we need the Heinz inequality (see [5]) given
below.

LEMMA 2. [5] Let A,B,X ∈ B(H) where A and B be positive operators. Then

‖ArXBr‖ � ‖AXB‖r‖X‖1−r,

where r ∈ [0,1].

PROPOSITION 1. Let T ∈ B(H). Then (i) T 2 = 0 and (ii) T̃t = 0 , t ∈ [0,1] are
equivalent.

Proof. We first prove the easier part (ii) ⇒ (i). It follows from the fact that T 2 =
U |T |U |T | = U |T |1−t |T |tU |T |1−t |T |t = U |T |1−t T̃t |T |t for any t ∈ [0,1].
We next prove (i) ⇒ (ii). We claim that

‖T̃t‖ �
{
‖T 2‖t‖T‖1−2t, 0 � t � 1

2

‖T 2‖1−t‖T‖2t−1, 1
2 � t � 1.

Consider 0 � t � 1
2 . Then ‖T̃t‖ = ‖|T |tU |T |1−t‖ . Using Lemma 2, we get ‖T̃t‖ �

‖|T |tU |T |t‖‖|T |1−2t‖ � ‖|T |U |T |‖t‖U‖1−t‖T‖1−2t = ‖T 2‖t‖T‖1−2t .
Next consider 1

2 � t � 1. Then using Lemma 2, we get ‖T̃t‖ = ‖|T |tU |T |1−t‖ �
‖|T |2t−1‖‖|T |1−tU |T |1−t‖� ‖T‖2t−1‖|T |U |T |‖1−t‖U‖t = ‖T‖2t−1‖T 2‖1−t . The proof
now easily follows from the claim established.

Next we present the following numerical radius inequality in terms of the Aluthge
transform, which improves on one of the upper bound obtained by Yamazaki in [12,
Th. 2.1].
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THEOREM 1. (i) Let T ∈ B(H). Then

w(T ) � min
t∈[0,1]

{
1
2
w(T̃t )+

1
4

(‖T‖2t +‖T‖2−2t)} .

In particular,

w(T ) � 1
2
w(T̃ )+

1
2
‖T‖.

(ii) If dim H < ∞ then the equalities hold in the above inequalities if and only if T

is either unitarily similar to [a]⊕B, ‖B‖� |a| or to

(
a 0
b 0

)
⊕C, ‖C‖� (|a|2 + |b|2) 1

2

and w(C̃t ) � |a|.
(iii) When H is an arbitrary Hilbert space, then the equalities hold if T 2 = 0 or T is
normaloid, i.e., w(T ) = ‖T‖.

Proof. (i) It follows from arithmetic-geometricmean inequality that 2‖T‖� ‖T‖2t

+‖T‖2−2t for all t ∈ [0,1] . Using this and inequality (4), we get

w(T ) � min
t∈[0,1]

{
1
2
w(T̃t )+

1
4

(‖T‖2t +‖T‖2−2t)} .

Considering t = 1
2 , we get

w(T ) � 1
2
w(T̃ )+

1
2
‖T‖.

(ii) Let us assume that T is an n× n matrix. Then following [4, Th. 4.2] we can
conclude that the equalities hold if and only if T is either unitarily similar to [a]⊕B,

‖B‖ � |a| or to

(
a 0
b 0

)
⊕C, ‖C‖ � (|a|2 + |b|2) 1

2 and w(C̃t ) � |a|.
(iii) The proof is obvious.

Next we prove the following inequality for the numerical radius which improves
on the upper bound obtained by Kittaneh in [8, Th. 1].

THEOREM 2. Let T ∈ B(H). Then

w2(T ) � 1
2
‖T‖

(
min

t∈[0,1]
‖T̃t‖

)
+

1
4
‖T ∗T +TT ∗‖.

In particular,

w2(T ) � 1
2
‖T‖‖T̃‖+

1
4
‖T ∗T +TT ∗‖.

Proof. Since Hθ = 1
2 (eiθ T + e−iθT ∗) for all θ ∈ R , we have

4Hθ
2 = e2iθ T 2 + e−2iθT ∗2 +T ∗T +TT ∗
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= e2iθU |T |U |T |+ e−2iθ |T |U∗|T |U∗ +T ∗T +TT ∗

= e2iθU |T |1−t |T |tU |T |1−t |T |t + e−2iθ |T |t |T |1−tU∗|T |t |T |1−tU∗

+(T ∗T +TT ∗)

= e2iθU |T |1−t T̃t |T |t + e−2iθ |T |t T̃ ∗
t |T |1−tU∗ +T ∗T +TT ∗.

Hence,

4‖Hθ‖2 � ‖e2iθU |T |1−t T̃t |T |t‖+‖e−2iθ |T |t T̃ ∗
t |T |1−tU∗‖+‖T∗T +TT ∗‖

� 2‖T‖‖T̃t‖+‖T∗T +TT ∗‖.

Therefore,

‖Hθ‖2 � 1
2
‖T‖‖T̃t‖+

1
4
‖T ∗T +TT ∗‖.

Taking supremum over θ ∈ R in the above inequality and then using Lemma 1, we get

w2(T ) � 1
2
‖T‖‖T̃t‖+

1
4
‖T ∗T +TT ∗‖.

This inequality holds for all t ∈ [0,1] , and so taking minimum we get,

w2(T ) � 1
2
‖T‖

(
min

t∈[0,1]
‖T̃t‖

)
+

1
4
‖T ∗T +TT ∗‖.

Considering the case t = 1
2 , we get

w2(T ) � 1
2
‖T‖‖T̃‖+

1
4
‖T ∗T +TT ∗‖.

REMARK 1. If T 2 = 0 or T is a normaloid operator then inequalities in Theorem
2 become equalities. If T 2 = 0 then w(T ) = 1

2

√‖T ∗T +TT ∗‖ , (see [2, Th. 2.3]) and
1
2‖T‖

(
mint∈[0,1] ‖T̃t‖

)
+ 1

4‖T ∗T +TT ∗‖ = 1
4‖T ∗T +TT ∗‖. Thus we get the equalities

if T 2 = 0. Also note that w2(T ) � 1
2‖T‖

(
mint∈[0,1] ‖T̃t‖

)
+ 1

4‖T ∗T + TT ∗‖ � ‖T‖2

and so normaloid condition forces the inequlities to be equalities.

REMARK 2. Kittaneh in [8, Th. 1] proved that for T ∈ B(H) ,

w(T ) � 1
2

(
‖T‖+‖T2‖ 1

2

)
.

We know that ‖T̃‖ � ‖T 2‖ 1
2 (see [12, (2.1)]) and ‖T ∗T +TT ∗‖ � ‖T‖2 + ‖T 2‖ (see

[9, Lemma 7]) and so from our Theorem 2, we get

w2(T ) � 1
2
‖T‖‖T 2‖ 1

2 +
1
4

(‖T‖2 +‖T 2‖) .
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Hence,

w(T ) � 1
2

(
‖T‖+‖T2‖ 1

2

)
.

Thus our bound obtained in Theorem 2 is better than bound (1) obtained by Kittaneh
in [8, Th. 1]. Also there are operators for which bound obtained by us in Theorem 2 is
better than that obtained in inequality (4) obtained by Abu-Omar and Kittaneh [1, Th.

3.2]. As for example we consider T =

⎛⎝0 2 0
0 0 0
0 0 1

⎞⎠ . It is easy to see that ‖T‖= 2 and T

has the polar decomposition T = U |T | , where |T | =
⎛⎝0 0 0

0 2 0
0 0 1

⎞⎠ and U =

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠ .

Hence T̃t = |T |tU |T |1−t =

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠ for all t ∈ [0,1] , and so w(T̃t ) = ‖T̃t‖ = 1 for all

t ∈ [0,1] . It follows that

1
2

(
‖T‖+ min

t∈[0,1]
w(T̃t)

)
=

1
2
(2+1) =

3
2
,

1
2
‖T‖

(
min

t∈[0,1]
‖T̃t‖

)
+

1
4
‖T ∗T +TT ∗‖ =

1
2
×2×1+

1
4
×4 = 2.

Therefore, Theorem 2 gives w(T ) �
√

2, whereas (4) gives w(T ) � 3
2 .

We next obtain an upper bound for the numerical radius which improves on the
bound (1) obtained by Kittaneh in [8, Th. 1]. To achieve it, we need the following
inequality obtained by Abu-Omar and Kittaneh [1].

THEOREM 3. [1, Th. 2.2] Let A1,A2,B1,B2 ∈ B(H). Then

r(A1B1 +A2B2) � 1
2

(w(B1A1)+w(B2A2))

+
1
2

√
(w(B1A1)−w(B2A2))

2 +4‖B1A2‖‖B2A1‖.

We now prove the following theorem.

THEOREM 4. Let T ∈ B(H). Then

w2(T ) � min
t∈[0,1]

(
1
4
w

(
T̃t

2
)

+
1
4
‖T‖‖T̃t‖

)
+

1
4
‖T ∗T +TT ∗‖.

In particular,

w2(T ) � 1
4
w(T̃ 2)+

1
4
‖T‖‖T̃‖+

1
4
‖T ∗T +TT ∗‖.
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Proof. Since Hθ = 1
2 (eiθ T + e−iθT ∗) for all θ ∈ R , we have

4Hθ
2 = e2iθ T 2 + e−2iθT ∗2 +T ∗T +TT ∗

= e2iθU |T |U |T |+ e−2iθ |T |U∗|T |U∗ +T ∗T +TT ∗

= e2iθU |T |1−t |T |tU |T |1−t |T |t + e−2iθ |T |t |T |1−tU∗|T |t |T |1−tU∗

+T ∗T +TT ∗.

Hence,

4‖Hθ‖2 � ‖e2iθU |T |1−t |T |tU |T |1−t |T |t + e−2iθ |T |t |T |1−tU∗|T |t |T |1−tU∗‖
+‖T∗T +TT ∗‖

= r
(
e2iθU |T |1−t |T |tU |T |1−t |T |t + e−2iθ |T |t |T |1−tU∗|T |t |T |1−tU∗)

+‖T∗T +TT ∗‖, r(S) = ‖S‖ for hermitian operator S

= r
(
A1B1 +A2B2

)
+‖T ∗T +TT ∗‖,

where A1 = e2iθU |T |1−t |T |tU |T |1−t ,B1 = |T |t ,A2 = e−2iθ |T |t and
B2 = |T |1−tU∗|T |t |T |1−tU∗. Then using Theorem 3, we get

4‖Hθ‖2 � w
(
T̃t

2
)

+
√
‖|T |2t‖‖T̃t

∗|T |1−tU∗U |T |1−t T̃t‖+‖T∗T +TT ∗‖

= w
(
T̃t

2
)

+
√
‖T‖2t‖T̃t

∗|T |2−2t T̃t‖+‖T∗T +TT ∗‖

� w
(
T̃t

2
)

+
√
‖T‖2t‖T̃t‖2‖T‖2−2t +‖T∗T +TT ∗‖

= w
(
T̃t

2
)

+‖T‖‖T̃t‖+‖T∗T +TT ∗‖.

Taking supremum over θ ∈ R in the above inequality and then using Lemma 1, we get

w2(T ) � 1
4
w

(
T̃t

2
)

+
1
4
‖T‖‖T̃t‖+

1
4
‖T ∗T +TT ∗‖.

This holds for all t ∈ [0,1] , and so taking minimum we get,

w2(T ) � min
t∈[0,1]

(
1
4
w

(
T̃t

2
)

+
1
4
‖T‖‖T̃t‖

)
+

1
4
‖T ∗T +TT ∗‖.

Considering the case t = 1
2 , we get

w2(T ) � 1
4
w(T̃ 2)+

1
4
‖T‖‖T̃‖+

1
4
‖T ∗T +TT ∗‖.

REMARK 3. We observe that mint∈[0,1]

(
1
4w

(
T̃t

2
)

+ 1
4‖T‖‖T̃t‖

)
= 0 if T 2 = 0.

Also, as discussed in Remark 1, if T 2 = 0 or T is a normaloid operator then inequalities
in Theorem 4 become equalities.
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REMARK 4. It is easy to observe that the inequality obtained by us in Theorem4 is
sharper than the inequality obtained in Theorem 2 and so it is sharper than inequality (1)

obtained by Kittaneh in [8, Th. 1]. Also if we take the same matrix T =

⎛⎝0 2 0
0 0 0
0 0 1

⎞⎠ as

in Remark 2 then Theorem 4 gives w(T ) �
√

7
4 , whereas (4) gives w(T ) � 3

2 . Thus for
this matrix, our inequality obtained in Theorem 4 is better than inequality (4) obtained

by Abu-Omar and Kittaneh [1, Th. 3.2]. Infact, if we consider T =

⎛⎝0 a 0
0 0 0
0 0 b

⎞⎠ where

a,b ∈ C , then we see that the bound in Theorem 4 is always less than or equal to the
bound in [1, Th. 3.2], obtained by Abu-Omar and Kittaneh.

Next using Theorem 4 we obtain the following inequality for the numerical radius
in terms of iterated t -Aluthge transform. For a non-negative integer n , we denote the

n th iterated t -Aluthge transform T̃tn , i.e., T̃tn = ˜̃Ttn−1 and T̃t0 = T .

THEOREM 5. Let T ∈ B(H) . Then

w2(T ) �
∞

∑
n=1

1
4n

(
‖T̃tn−1‖‖T̃tn‖+‖T̃∗

tn−1
T̃tn−1 + T̃tn−1 T̃

∗
tn−1

‖
)

,

for all t ∈ [0,1].

Proof. By using Theorem 4 repeatedly, we get

w2(T ) � 1
4

(
‖T‖‖T̃t‖+‖T∗T +TT ∗‖

)
+

1
4
w

(
T̃ 2
t

)
� 1

4

(
‖T‖‖T̃t‖+‖T∗T +TT ∗‖

)
+

1
4
w2(T̃t)

� 1
4

(
‖T‖‖T̃t‖+‖T∗T +TT ∗‖

)
+

1
42

(
‖T̃t‖‖T̃t2‖+‖T̃∗

t T̃t + T̃t T̃
∗
t ‖

)
+

1
42 w

(
T̃ 2
2

)
� 1

4

(
‖T‖‖T̃t‖+‖T∗T +TT ∗‖

)
+

1
42

(
‖T̃t‖‖T̃t2‖+‖T̃∗

t T̃t + T̃t T̃
∗
t ‖

)
+

1
42 w2(T̃2)

� 1
4

(
‖T‖‖T̃t‖+‖T∗T +TT ∗‖

)
+

1
42

(
‖T̃t‖‖T̃t2‖+‖T̃∗

t T̃t + T̃t T̃
∗
t ‖

)
+

1
43

(
‖T̃t2‖‖T̃t3‖+‖T̃∗

t2 T̃t2 + T̃t2 T̃
∗
t2‖

)
+

1
43 w

(
T̃ 2
3

)
� . . .

�
∞

∑
n=1

1
4n

(
‖T̃tn−1‖‖T̃tn‖+‖T̃∗

tn−1
T̃tn−1 + T̃tn−1 T̃

∗
tn−1

‖
)

.

Using Theorem 5, we obtain the following inequality.
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COROLLARY 1. Let T ∈ B(H). Then

w2(T ) � 1
2

[
‖T 2‖ 1

2

(
1
2
‖T‖+

1
2
‖T 2‖ 1

2

)
+

1
2
‖T ∗T +TT ∗‖

]
.

Proof. Let T̃n be the n -th iterated Aluthge transform. Then from Theorem 5
(for t = 1

2 ) , we get

w2(T ) �
∞

∑
n=1

1
4n

(
‖T̃n−1‖‖T̃n‖+‖T̃∗

n−1T̃n−1 + T̃n−1T̃
∗
n−1‖

)
=

1
4

(
‖T‖‖T̃‖+‖T∗T+TT ∗‖

)
+

∞

∑
n=2

1
4n

(
‖T̃n−1‖‖T̃n‖+‖T̃ ∗

n−1T̃n−1+T̃n−1T̃
∗
n−1‖

)
� 1

4

(
‖T‖‖T̃‖+‖T∗T +TT ∗‖

)
+

∞

∑
n=2

1
4n

(
‖T̃n−1‖‖T̃n‖+2‖T̃n−1‖2

)
� 1

4

(
‖T‖‖T̃‖+‖T ∗T+TT ∗‖

)
+

∞

∑
n=2

1
4n

(
3‖T̃‖2

)
, using ‖T̃n‖�‖T̃n−1‖,n � 2

� 1
4

(
‖T‖‖T 2‖ 1

2 +‖T∗T +TT ∗‖
)

+
∞

∑
n=2

1
4n

(
3‖T 2‖) , using ‖T̃‖ � ‖T 2‖ 1

2

=
1
4

(
‖T‖‖T 2‖ 1

2 +‖T∗T +TT ∗‖
)

+
3
42 ‖T 2‖

∞

∑
n=0

1
4n

=
1
4

(
‖T‖‖T 2‖ 1

2 +‖T∗T +TT ∗‖
)

+
1
4
‖T 2‖

=
1
2

[
‖T 2‖ 1

2

(
1
2
‖T‖+

1
2
‖T 2‖ 1

2

)
+

1
2
‖T ∗T +TT ∗‖

]
.

REMARK 5. Our inequality in Corollary 1 is better than inequality (1), it follows
from the fact that

1
2

[
‖T 2‖ 1

2

(
1
2
‖T‖+

1
2
‖T 2‖ 1

2

)
+

1
2
‖T ∗T +TT ∗‖

]
=

1
4
‖T 2‖ 1

2 ‖T‖+
1
4
‖T 2‖+

1
4
‖T ∗T +TT ∗‖

� 1
4
‖T 2‖ 1

2 ‖T‖+
1
4
‖T 2‖+

1
4
‖T 2‖+

1
4
‖T‖2

� 1
2
‖T 2‖ 1

2 ‖T‖+
1
4
‖T 2‖+

1
4
‖T‖2

=
(

1
2
‖T‖+

1
2
‖T 2‖ 1

2

)2

.

We also observe that bound obtained in Corollary 1 is sharper than that in the right hand
inequality of (2), if ‖T‖‖T 2‖ 1

2 +‖T 2‖ � ‖TT ∗ +T ∗T‖.
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Next we obtain an upper bound for the numerical radius and give an example to
show that this bound improves on bound (3).

THEOREM 6. Let T ∈ B(H). Then

w4(T ) � 1
16

min
t∈[0,1]

(
w

(
T̃t

2
)

+‖T‖‖T̃t‖
)2

+
1
8
w(T 2P+PT2)+

1
16

‖P‖2,

where P = T ∗T +TT ∗. In particular,

w4(T ) � 1
16

(
w(T̃ 2)+‖T‖‖T̃‖

)2
+

1
8
w(T 2P+PT 2)+

1
16

‖P‖2.

Proof. Since Hθ = 1
2 (eiθ T + e−iθT ∗) for all θ ∈ R , we have

4Hθ
2 = e2iθ T 2 + e−2iθT ∗2 +P

⇒ 16Hθ
4 =

(
e2iθ T 2 + e−2iθT ∗2)2 +2Re(e2iθ (T 2P+PT 2))+P2.

Hence,

16‖Hθ‖4 � ‖e2iθT 2 + e−2iθT ∗2‖2 +2‖Re(e2iθ (T 2P+PT2))‖+‖P‖2

� r2(e2iθ T 2 + e−2iθT ∗2)+2w(T 2P+PT 2)+‖P‖2,

r(S) = ‖S‖ for hermitian operator S

= r2(e2iθU |T |U |T |+ e−2iθ |T |U∗|T |U∗)+2w(T 2P+PT2)+‖P‖2.

Then using the same technique as in Theorem 4, we get

‖Hθ‖4 � 1
16

(
w

(
T̃t

2
)

+‖T‖‖T̃t‖
)2

+
1
8
w(T 2P+PT 2)+

1
16

‖P‖2.

Taking supremum over θ ∈ R in the above inequality and then using Lemma 1, we get

w4(T ) � 1
16

(
w

(
T̃t

2
)

+‖T‖‖T̃t‖
)2

+
1
8
w(T 2P+PT2)+

1
16

‖P‖2.

This holds for all t ∈ [0,1] , and so taking minimum we get,

w4(T ) � 1
16

min
t∈[0,1]

(
w

(
T̃t

2
)

+‖T‖‖T̃t‖
)2

+
1
8
w(T 2P+PT2)+

1
16

‖P‖2.

Considering the case t = 1
2 , we get

w4(T ) � 1
16

(
w(T̃ 2)+‖T‖‖T̃‖)2 +

1
8
w(T 2P+PT 2)+

1
16

‖P‖2.

REMARK 6. We observe that as discussed in Remark 1, if T 2 = 0 or T is a nor-
maloid operator then inequalities in Theorem 6 become equalities.
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We now give an example to show that the bound obtained in Theorem 6 improves
on bound (3) obtained by Yamazaki in [12, Th. 2.1].

EXAMPLE 1. We consider T=

⎛⎝0 2 0
0 0 3
0 0 0

⎞⎠ . Then it is easy to see that P=

⎛⎝4 0 0
0 13 0
0 0 9

⎞⎠ ,

|T | =
⎛⎝ 0 0 0

0 2 0
0 0 3

⎞⎠ and U =

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠ , where U is the partial isometry in the polar de-

composition of T , i.e., T = U |T | . So,

T̃t = |T |tU |T |1−t =

⎛⎝0 0 0
0 0 2t31−t

0 0 0

⎞⎠ .

Therefore, w(T̃t) = 2t31−t

2 , ‖T̃t‖ = 2t31−t , ‖P‖ = 13 and w(T 2P+PT2) = 39. So, the
inequality obtained by us in Theorem 6 gives w(T ) � 2.05076838. But inequality (3)
obtained by Yamazaki in [12, Th. 2.1] gives w(T ) � 2.11237244.

Our next goal is to improve on both upper and lower bounds of the numerical
radius obtained by Kittaneh in [7, Th. 1]. Before doing so, we first give an alternative
proof of the following theorem proved by Kittaneh in [7, Th. 1].

THEOREM 7. [7, Th. 1] Let T ∈ B(H) , then

1
4
‖T ∗T +TT ∗‖ � w2(T ) � 1

2
‖T ∗T +TT ∗‖.

Proof. Since Hθ = 1
2 (eiθ T +e−iθ T ∗) and Kθ = 1

2i (e
iθ T −e−iθT ∗) for all θ ∈ R ,

we have H2
θ +K2

θ = 1
2(T ∗T +TT ∗) and so 1

2‖T ∗T +TT ∗‖ = ‖H2
θ +K2

θ‖ � ‖Hθ‖2 +
‖Kθ‖2 � 2w2(T ) , using Lemma 1. Thus 1

4‖T ∗T +TT ∗‖ � w2(T ). This completes the
proof of the first inequality.
Again, from H2

θ +K2
θ = 1

2(T ∗T +TT ∗) we get, H2
θ − 1

2 (T ∗T +TT ∗) =−K2
θ � 0. Thus

H2
θ � 1

2 (T ∗T +TT ∗) and so ‖H2
θ‖ � 1

2‖T ∗T +TT ∗‖. Taking supremum over θ ∈ R

and then using Lemma 1, we get w2(T ) � 1
2‖T ∗T +TT ∗‖.

We now prove the desired inequality which improves on inequality (2) obtained
by Kittaneh in [7, Th. 1].

THEOREM 8. Let T ∈ B(H). Then

1
4
m

((
Re(T 2)

)2 )
+

1
16

‖T ∗T +TT ∗‖2 � w4(T ) � 1
2
w2(T 2)+

1
8
‖T ∗T +TT ∗‖2.

Proof. We first prove the left hand inequality. Let x ∈ H with ‖x‖ = 1. Since
Hθ = 1

2 (eiθ T + e−iθT ∗) and Kθ = 1
2i (e

iθ T − e−iθT ∗) for all θ ∈ R , we have

1
8

[
4
(
Re(e2iθ T 2)

)2
+(T ∗T +TT ∗)2

]
= H4

θ +K4
θ



1002 S. BAG, P. BHUNIA AND K. PAUL

⇒ 1
2
〈
(
Re(e2iθ T 2)

)2
x,x〉+ 1

8
〈(T ∗T +TT ∗)2 x,x〉 = 〈H4

θ x,x〉+ 〈K4
θ x,x〉

⇒ 1
2
〈
(
Re(e2iθ T 2)

)2
x,x〉+ 1

8
〈(T ∗T +TT ∗)2 x,x〉 � 2w4(T ).

This inequality holds for all θ ∈ R . So taking θ = 0, we get

1
2
〈(Re(T 2)

)2
x,x〉+ 1

8
〈(T ∗T +TT ∗)2 x,x〉 � 2w4(T )

⇒ 1
2
m

(
(Re(T 2))2)+

1
8
〈(T ∗T +TT ∗)2 x,x〉 � 2w4(T ).

Taking supremum over x ∈ H,‖x‖ = 1, we get

1
2
m

((
Re(T 2)

)2 )
+

1
8
‖T ∗T +TT ∗‖2 � 2w4(T ).

Thus,

1
4
m

((
Re(T 2)

)2 )
+

1
16

‖T ∗T +TT ∗‖2 � w4(T ).

This completes the proof of the left hand inequality.
We next prove the right hand inequality. As before, we have

H4
θ +K4

θ =
1
8

[
4
(
Re(e2iθ T 2)

)2
+(T ∗T +TT ∗)2

]
and so

1
8

[
4
(
Re(e2iθ T 2)

)2
+(T ∗T +TT ∗)2

]
−H4

θ = K4
θ � 0.

Hence,

H4
θ � 1

8

[
4
(
Re(e2iθ T 2)

)2
+(T ∗T +TT ∗)2

]
.

Therefore,

‖Hθ‖4 � 1
8

∥∥∥∥[
4
(
Re(e2iθ T 2)

)2
+(T ∗T +TT ∗)2

]∥∥∥∥
� 1

8

[
4‖Re(e2iθ T 2)‖2 +‖T∗T +TT ∗‖2

]
� 1

8

[
4w2(T 2)+‖T∗T +TT ∗‖2] , using Lemma 1.

Taking supremum over θ ∈ R in the above inequality and then using Lemma 1, we get

w4(T ) � 1
2
w2(T 2)+

1
8
‖T ∗T +TT ∗‖2.
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REMARK 7. Clearly the left hand inequality obtained in Theorem 8 is sharper
than that of (2) obtained by Kittaneh in [7, Th. 1]. To claim the same for the right hand
inequality we first note that 2‖T 2‖ � ‖T ∗T + TT ∗‖ (see [9]). From the right hand
inequality obtained in Theorem 8 we get,

w4(T ) � 1
2
w2(T 2)+

1
8
‖T ∗T +TT ∗‖2

� 1
2
‖T 2‖2 +

1
8
‖T ∗T +TT ∗‖2

=
1
8
(2‖T 2‖)2 +

1
8
‖T ∗T +TT ∗‖2

� 1
8
‖T ∗T +TT ∗‖2 +

1
8
‖T ∗T +TT ∗‖2

=
1
4
‖T ∗T +TT ∗‖2.

Thus our inequality is sharper than that of Kittaneh [7, Th. 1].

We now turn our attention to the bounds that are not comparable in general. The follow-
ing numerical examples will illustrate the incomparability of some of the upper bounds
of the numerical radius.

EXAMPLE 2. (i) Incomparabilty of 1
2

(
‖T‖+‖T2‖ 1

2

)
and

√
1
2‖T ∗T +TT ∗‖ .

Consider T =
(

1 1
0 −1

)
then 1

2

(
‖T‖+‖T2‖ 1

2

)
= 3+

√
5

4 , whereas
√

1
2‖T ∗T +TT ∗‖=√

3
2 . Again if we consider T =

(
1 2
0 −1

)
then 1

2

(
‖T‖+‖T2‖ 1

2

)
= 2+

√
2

2 , whereas√
1
2‖T ∗T +TT ∗‖ =

√
3. This shows that upper bounds obtained in (1) and (2) are not

comparable.

(ii) Incomparabilty of 1
2

(
‖T‖+mint∈[0,1] w(T̃t )

)
and

( 1
2w2(T 2)+ 1

8‖T ∗T+TT ∗‖2
) 1

4 .

Consider T =

⎛⎝0 2 0
0 0 0
0 0 1

⎞⎠ then
(

1
2w2(T 2)+ 1

8‖T ∗T +TT ∗‖2
) 1

4 =

√√
5
2 , whereas

1
2

(
‖T‖+mint∈[0,1] w(T̃t )

)
= 3

2 .

Again if we consider T =
(

0 1
0 0

)
then

(
1
2w2(T 2)+ 1

8‖T ∗T +TT ∗‖2
) 1

4 =

√√
1
8 ,

whereas 1
2

(
‖T‖+mint∈[0,1] w(T̃t)

)
= 1

2 . This shows that the upper bounds obtained in

(4) and Theorem 8 are not comparable. We observe that inequality (4) is sharper than
(1) and the inequality obtained in Theorem 8 is sharper than (2). Similarly using the
same matrices one can conclude that inequality (2) is not comparable with inequality
(3) and (4).
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