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Abstract. We investigate Hlawka-like inequalities for three vectors and determine necessary and
sufficient conditions such that

a1

3

∑
i=1

‖xi‖+a2 ∑
1�i< j�3

∥
∥xi + x j

∥
∥+a3‖x1 + x2 + x3‖ � 0

is satisfied for all x1,x2,x3 in a Hlawka space. In addition, we show that any such inequal-
ity can be obtained as a linear combination with nonnegative coefficients of three fundamental
inequalities, one of which is Hlawka’s inequality.

In the case of four vectors in an inner product space, we prove that any (valid) inequality
of the form

a1

4

∑
i=1

‖xi‖+a2 ∑
1�i< j�4

∥
∥xi + x j

∥
∥+a3 ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥+a4

∥
∥
∥
∥
∥

4

∑
i=1

xi

∥
∥
∥
∥
∥

� 0

can be written as a linear combination with nonnegative coefficients of six fundamental inequal-
ities.

1. Introduction

Hlawka’s inequality (see [7], [8], or [9] for various proofs) asserts that for any
x1,x2,x3 in an inner product space E, the following inequality is satisfied:

3

∑
i=1

‖xi‖− ∑
1�i< j�3

∥
∥xi + x j

∥
∥+‖x1 + x2 + x3‖ � 0.

Equality holds iff

(i) xi = αiu,1 � i � 3, for some u ∈ E and αi � 0 or

(ii) xi = αiu,1 � i � 3, for some u ∈ E, two of the scalars αi are positive, and
α1 + α2 + α3 � 0 or

(iii) x1 + x2 + x3 = 0.
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Normed linear spaces satisfying Hlawka’s inequality are called Hlawka spaces
according to [10] or quadrilateral spaces according to [8]. Clearly, any inner prod-
uct space is a Hlawka space. However, the class of Hlawka spaces is significantly
larger than that of inner product spaces. For example, Lp([0,1]) is a Hlawka space for
1 � p � 2 (see [11]) and so is any two-dimensional normed linear space (see [5]). The
normed space of smallest dimension that is not a Hlawka space is R

3 with
∥
∥(x,y,z)

∥
∥ =

max(|x|, |y|, |z|). The typical counterexample is given by the vectors (1,1,−1),(1,−1,1),
and (−1,1,1).

Hlawka’s inequality has been generalized in several directions by many authors
(see, e.g., [1], [2], [3], or [4]). Our approach in extending Hlawka’s inequality is some-
what modest in that we consider inequalities of the form

a1

3

∑
i=1

‖xi‖+a2 ∑
1�i< j�3

∥
∥xi + x j

∥
∥+a3‖x1 + x2 + x3‖ � 0

and

a1 ∑
1�i�4

‖xi‖+a2 ∑
1�i< j�4

∥
∥xi + x j

∥
∥+a3 ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥+a4

∥
∥
∥
∥
∥

4

∑
i=1

xi

∥
∥
∥
∥
∥

� 0

with ai ∈ R. We refer to these inequalities as Hlawka-like inequalities. We began our
study of these inequalities in [6] where we proved the following result

THEOREM 1. The inequality

a1 ∑
1�i�4

‖xi‖+a2 ∑
1�i< j�4

∥
∥xi + x j

∥
∥+a3 ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥+a4

∥
∥
∥
∥
∥

4

∑
i=1

xi

∥
∥
∥
∥
∥

� 0

is satisfied for all xi,1 � i � 4, in an inner product space iff the following inequalities
hold

a1 +a2 +a3 � 0,

a1 +2a2 +a3 � 0,

a1 +3a2 +3a3 +a4 � 0,

2a1 +3a2 +3a3 +a4 � 0,

5a1 +9a2 +3a3 +a4 � 0.

In Section 2 of this paper, we obtain a similar characterization for inequalities in-
volving three vectors, with the significant difference that we only assume that the three
vectors x1,x2,x3 are in a Hlawka space. As a consequence, we obtain that any Hlawka-
like inequality involving three vectors can be obtained as a linear combination with
nonnegative coefficients of three fundamental inequalities, one of which is Hlawka’s
inequality. In Section 3, we prove that any Hlawka-like inequality for four vectors
in an inner product space can be obtained as a linear combination with nonnegative
coefficients of six fundamental inequalities. We also show that at least five of these
inequalities are valid in any Hlawka space, thus leaving open the question of whether
or not all Hlawka-like inequalities for four vectors are valid in a Hlawka space.
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2. Hlawka-like inequalities for three vectors

LEMMA 1. If E is a Hlawka space, then the following inequality

−
3

∑
i=1

‖xi‖+ ∑
1�i< j�3

∥
∥xi + x j

∥
∥+‖x1 + x2 + x3‖ � 0

is satisfied for all x1,x2,x3 ∈ E. Equality holds if and only if

(i) x1 + x2 + x3 = 0 or

(ii) xi = αiu,1 � i � 3, for some u ∈ E, α1 + α2 + α3 � 0, and (exactly) two of the
numbers α1 + α2,α1 + α3,α2 + α3 are nonnegative.

Proof. By applying Hlawka’s inequality to 1
2a, 1

2b, 1
2c we obtain

1
2
(‖a‖+‖b‖+‖c‖)− 1

2
(‖a+b‖+‖a+ c‖+‖b+ c‖)+

1
2
‖a+b+ c‖� 0.

The triangle inequality applied three times yields

1
2
(‖a‖+‖b‖+‖c‖)+

1
2
(‖b+ c‖+‖a+ c‖+‖a+b‖)

− 1
2
(‖b+ c−a‖+‖a+ c−b‖+‖a+b− c‖) � 0.

By adding the two inequalities above, we have

‖a‖+‖b‖+‖c‖− 1
2

(‖a+b− c‖+‖a+ c−b‖+‖b+ c−a‖)+
1
2
‖a+b+ c‖� 0.

Finally, by relabeling x1 = 1/2(a+b−c),x2 = 1/2(b+c−a),x3 = 1/2(a+c−b), we
have x1 + x2 = b,x1 + x3 = a,x2 + x3 = c,x1 + x2 + x3 = 1/2(a+b+ c), we obtain the
conclusion of the lemma.

The equality case can be ascertained by combining the equality cases in Hlawka’s
inequality and the triangle inequality.

Next, we consider real numbers a1,a2,a3 with the goal of finding necessary and
sufficient conditions for a1,a2,a3 ensuring that the expression

Ha(x) := a1

3

∑
i=1

‖xi‖+a2 ∑
1�i< j�3

∥
∥xi + x j

∥
∥+a3‖x1 + x2 + x3‖

is nonnegative for all x1,x2,x3 ∈ E, where E is a Hlawka space, a = (a1,a2,a3),
and x = (x1,x2,x3). Note that H(1,−1,1)(x) is the left side in Hlawka’s inequality and
H(−1,1,1)(x) is the left sides in the inequality in the previous lemma.



1008 M. MUNTEANU

PROPOSITION 1. Let E be a Hlawka space and let a1,a2,a3 be real numbers.
The inequality

Ha(x) � 0

is satisfied for all x ∈ E3 if and only if the following inequalities are satisfied

a1 +a2 � 0,

a1 +2a2 +a3 � 0,

3a1 +2a2 +a3 � 0.

Proof. If Ha(x) � 0 for all x = (x1,x2,x3) ∈ E3, then we can consider the follow-
ing three special cases:

(i) x2 = x3 = 0,x1 �= 0,

(ii) x1 = −x2,x1 �= 0,x3 = 0,

(iii) x1 = −x2 = −x3,x1 �= 0.

The corresponding values for Ha(x) are (a1 + 2a2 + a3)‖x1‖ ,2(a1 + a2)‖x1‖ , and
(3a1 + 2a2 + a3)‖x1‖ , respectively. Thus, the three inequalities in a1,a2,a3 in the
lemma must be satisfied.

Conversely, let us show that Ha(x) � 0 as long as a1,a2,a3 satisfy the inequalities
above. First, let us note that

Ha(x)=
3a1 +2a2 +a3

2
H(1,−1,1)(x)+

a1 +2a2 +a3

2
H(−1,1,1)(x)+(a1+a2)H(0,1,−2)(x).

(1)
Observe that H(1,−1,1)(x) � 0 is Hlawka’s inequality and H(−1,1,1)(x) � 0 by lemma 1.
Since

H(0,1,−2)(x) = ∑
1�i< j�3

∥
∥xi + x j

∥
∥−2‖x1 + x2 + x3‖ � 0

by the triangle inequality, the conclusion of the lemma follows.

OBSERVATION 1. Based on relation 1, any (valid) Hlawka-like inequality in a
Hlawka space can be written as a linear combination with nonnegative coefficients
of H(1,−1,1) � 0,H(−1,1,1) � 0, and H(0,1,−2) � 0. In fact, the space of Hlawka-like
inequalities is isomorphic to the polyhedral cone determined by the three inequali-
ties in a1,a2,a3 from the proposition above. As it can be easily seen, the vectors
(1,−1,1),(−1,1,1), and (0,1,−2) are the generators of this cone.

In Lemma 1 we, in fact, showed that in any normed space H(1,−1,1)(x) � 0 implies
H(−1,1,1)(x) � 0. While we suspect that the converse is not valid, we do not have a
counterexample.

QUESTION 1. In a normed space, does the inequality H(−1,1,1)(x) � 0 for all x
imply that H(1,−1,1)(x) � 0 for all x?
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By relation 1, studying the equality case in H(a1,a2,a3)(x) � 0 amounts to identify-
ing when H(1,−1,0)(x) = 0,H(−1,1,1)(x) = 0, and H(0,1,−2)(x) = 0. As we have already
discussed when the first two equalities hold, we would like to note that since H(0,1,−2) �
0 can be obtained from the triangle inequality, it can be easily seen that H(0,1,−2)(x) � 0
iff there exists u ∈ E and real numbers αi,1 � i � 3 such that αi + α j � 0 for all
1 � i < j � 3. Consequently, by combining the various equality cases, we obtain the
following.

OBSERVATION 2. If a1,a2,a3 satisfy the three conditions in proposition 1 and at
least one of them is different from zero, then Ha(x) = 0 if and only if we have one of
the following cases:

(i) If a1 + 2a2 + a3 = 0,3a1 + 2a2 + a3 > 0,a1 + a2 > 0 then xi = αiu, for some
u ∈ E and αi � 0.

(ii) If a1 +a2 = 0,3a1 +2a2 +a3 > 0,a1 +a2 +a3 > 0 then x1 + x2 + x3 = 0.

(iii) If two of the expressions 3a1 +2a2 +a3,a1 +2a2 +a3,a1 +a2 are zero, then, by
relation 1, H(a1,a2,a3)(x) is a positive multiple of either H(1,−1,1)(x),H(−1,1,1)(x),
or H(0,1,−2)(x). Thus, H(a1,a2,a3)(x) = 0 iff H1,−1,1(x) = 0,H(−1,1,1)(x) = 0, or
H(0,1,−2)(x) = 0.

3. Hlawka-like inequalities for four vectors

In this section we extend our investigations to Hlawka-like inequalities involving
four vectors and obtain a result similar to Proposition 1 which can be seen as a minor
improvement of Theorem 1. In the process, we show that any such inequality can be
obtained as a linear combination of six fundamental inequalities. We begin by proving
several lemmas that will show that at least five of the six fundamental inequalities are
valid not only on inner product spaces but also on Hlawka spaces.

LEMMA 2. In any Hlawka space E , the following inequality is satisfied

b1

4

∑
i=1

‖xi‖+b2 ∑
1�i< j�4

∥
∥xi + x j

∥
∥+(3b2−b1) ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥+b3

∥
∥
∥
∥
∥

4

∑
i=1

xi

∥
∥
∥
∥
∥

� 0.

(2)
for all x1,x2,x3,x4 ∈ E and all b1,b2,b3 satisfying

b2 � 0,

−2b1 +12b2 +b3 � 0,

2b1 +12b2 +b3 � 0.

Proof. For any permutation {i, j,k, l} of {1,2,3,4}, Proposition 1 applied to the
vectors xi,x j,xk + xl yields

a1(‖xi‖+
∥
∥x j

∥
∥+‖xk + xl‖)+a2(

∥
∥xi + x j

∥
∥+

∥
∥xi + x j + xk

∥
∥+

∥
∥xi + x j + xl

∥
∥)

+a3
∥
∥xi + x j + xk + xl

∥
∥ � 0.
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By adding all these inequalities, we obtain

3a1

4

∑
i=1

‖xi‖+(a1 +a2) ∑
1�i< j�4

∥
∥xi + x j

∥
∥+3a2 ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥

+6a3‖x1 + x2 + x3 + x4‖ � 0.

After relabeling b1 = 3a1,b2 = a1 + a2,b3 = 6a3 and rewriting the inequalities in-
volving a1,a2,a3 in Proposition 1 in terms of b1,b2,b3, the conclusion of the lemma
follows.

LEMMA 3. In any Hlawka space E, the following inequality is satisfied

b1 ∑
1�i�4

‖xi‖+b2 ∑
1�i< j�4

∥
∥xi + x j

∥
∥+b3 ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥ � 0

for all x1,x2,x3,x4 ∈ E and any b1,b2,b3 satisfying

2b1 +3b2 � 0,

b1 +3b2 +3b3 � 0,

b1 +b2 +b3 � 0.

Proof. If we apply lemma 1 for all triples xi,x j,xk,1 � i < j < k � 4 and add the
resulting inequalities, we obtain

3a1

4

∑
i=1

‖xi‖+2a2 ∑
1�i< j�4

∥
∥xi + x j

∥
∥+a3 ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥ � 0.

The conclusion follows by relabeling b1 = 3a1,b2 = 2a2,b3 = a3.
As before, for any a = (a1,a2,a3,a4) ∈ R

4 and any (x1,x2,x3,x4) ∈ E4, we intro-
duce the following notation:

Ha(x) = a1 ∑
1�1�4

‖xi‖+a2 ∑
1�i< j�4

∥
∥xi + x j

∥
∥+a3 ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥+a4

∥
∥
∥
∥
∥

4

∑
i=1

xi

∥
∥
∥
∥
∥
.

LEMMA 4. In any Hlawka space E, for all x1,x2,x3,x4 ∈ E we have

H(1,0,−1,2)(x) =
4

∑
i=1

‖xi‖− ∑
1�i< j<k�4

∥
∥xi + x j + xk

∥
∥+2‖x1 + x2 + x3 + x4‖ � 0,

H(−1,0,1,2)(x) = −
4

∑
i=1

‖xi‖+ ∑
1�i< j<k�4

∥
∥xi + x j + xk

∥
∥+2‖x1 + x2 + x3 + x4‖ � 0,

H(0,1,−1,0)(x) = ∑
1�i< j�4

∥
∥xi + x j

∥
∥− ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥ � 0,

H(3,−2,1,0)(x) = 3 ∑
1�i�4

‖xi‖−2 ∑
1�i< j�4

∥
∥xi + x j

∥
∥+ ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥ � 0,

H(0,0,1,−3)(x) = ∑
1�i< j<k�4

∥
∥xi + x j + xk

∥
∥−3‖x1 + x2 + x3 + x4‖ � 0,
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for all x1,x2,x3,x4 ∈ E.

Proof. To show that H(1,0,−1,2)(x) � 0 and H(1,0,−1,2)(x) � 0, it is enough to ap-
ply Lemma 2 for b1 = 1,b2 = 0,b3 = 2 and b1 = −1,b2 = 0,b3 = 2, respectively.
For H(0,1,−1,0)(x) � 0 and H(3,−2,1,0)(x) � 0, we can use Lemma 3 for b1 = 3,b2 =
−2,b3 = 1 and b1 = 0,b2 = 1,b3 = −1, respectively.

Finally, H(0,0,1,−3)(x) � 0 follows by applying the triangle inequality for the four
vectors xi + x j + xk,1 � i < j < k � 4.

OBSERVATION 3. The inequality H(1,0,−1,2)(x) � 0 is not only implied by but
actually equivalent to Hlawka’s inequality. Indeed, if we choose x4 = 0 in H(1,0,−1,2)(x)
we obtain Hlawka’s inequality for x1,x2,x3.

THEOREM 2. Let E be a Hlawka space on which the inequality

−2 ∑
1�i�4

‖xi‖+ ∑
1�i< j�4

∥
∥xi + x j

∥
∥+ ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥−2‖x1 + x2 + x3 + x4‖ � 0

is satisfied. Given ai ∈ R,1 � i � 4, the inequality

Ha(x) � 0

is satisfied for all x1,x2,x3,x4 ∈ E iff the following inequalities hold

a1 +a2 +a3 � 0,

a1 +2a2 +a3 � 0,

a1 +3a2 +3a3 +a4 � 0,

2a1 +3a2 +3a3 +a4 � 0,

5a1 +9a2 +3a3 +a4 � 0.

Proof. For the direct implication, we can obtain the five inequalities in a1,a2,a3,a4

by considering the following special cases:

(i) If x1 = −x2 = −x3 = x4 �= 0, then Ha(x) =‖x1‖(a1 +a2 +a3) � 0.

(ii) If x1 = −x2 �= 0,x3 = x4 = 0, then Ha(x) = 2‖x1‖(a1 +2a2 +a3) � 0.

(iii) If x2 = x3 = x4 = −x1 �= 0, then Ha(x) = 2‖x1‖(2a1 +3a2 +a3 +a4) � 0.

(iv) If x1 �= 0,x2 = x3 = x4 = 0, then Ha(x) =‖x1‖(a1 +3a2 +3a3 +a4) � 0.

(v) If x1 = x2 = x3 �= 0,x4 = −2x1, then Ha(x) =‖x1‖(5a1 +9a2 +3a3 +a4) � 0.

Conversely, we will show that under the given assumptions on a1,a2,a3, and
a4,Ha(x) can be written as a linear combination with nonnegative coefficients of the
following: H(1,0,−1,2)(x), H(−1,0,1,2)(x), H(0,1,−1,0)(x), H(3,−2,1,0)(x), H(0,0,1,−3)(x),
and H(−2,1,1,−2)(x). Since the first five expressions have been shown to be nonnegative
in Lemma 4 and since H(−2,1,1,−2)(x) is assumed to be nonnegative, the claim will
follow.

To prove that Ha(x) = H(a1,a2,a3,a4)(x) � 0, note that it can be checked that
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(i) If a1 +a2 +3a3 +a4 � 0, then

Ha(x) = λ1H(−2,1,1,−2)(x)+ λ2H1,0,−1,2(x)+ λ3H0,0,1,−3(x)+ λ4H0,−1,1,0(x),

where

λ1 =
a1 +3a2 +3a3 +a4

2
� 0,

λ2 = 2a1 +3a2 +a3 +a4 � 0,

λ3 = a1 +a2 +a3 � 0,

λ4 = −a1 +a2 +3a3 +a4

2
� 0.

(ii) If a1 +a2 +3a3 +a4 � 0, then

Ha(x) =λ1H(1,0,1,−2)(x)+ λ2H(−1,0,1,2)(x)+ λ3H(0,0,1,−3)(x)+ λ4H(3,−2,1,0)(x)

+ λ5H(−2,1,1,−2)(x),

where

λ1 =
5a1 +9a2 +3a3 +a4

2
+

3(a1 +3a2 +3a3 +a4)
2

� 0,

λ2 =
a1 +3a2 +3a3 +a4

2
� 0,

λ3 = a1 +a2 +a3 � 0,

λ4 =
a1 +a2 +3a3 +a4

2
+a1 +3a2 +3a3 +a4 � 0,

λ5 =
3(a1 +3a2 +3a3 +a4)

2
� 0.

OBSERVATION 4. As with Hlawka-like inequalities in three vectors, the space of
Hlawka-like inequalities in four vectors on an inner product space is isomorphic to
the polyhedral cone defined by the five inequalities in a1,a2,a3,a4 from Theorem 1.
By the proof of the previous theorem it can be seen that the generating vectors for
this cone are (1,0,−1,2), (−1,0,1,2), (0,1,−1,0), (3,−2,1,0), (0,0,1,−3), and
(−2,1,1,−2). Each one of these vectors corresponds to a fundamental Hlawka-like
inequality. By Theorem 1, each one of these inequalities is valid in an inner product
space and by Lemma 4, the first five of these inequalities are actually satisfied in a
Hlawka space. While we expect that the inequality H(−2,1,1,−2)(x) � 0 is generally not
valid on a Hlawka space, we do not have a counterexample.

QUESTION 2. If E is a Hlawka space, is the inequality H(−2,1,1,−2)(x) � 0 satis-
fied for all x = (x1,x2,x3,x4) ∈ E4?

Moreover, we were also unable to determine the validity of the converse statement.
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QUESTION 3. If E is a normed space such that the inequality H(−2,1,1,−2)(x) � 0
is satisfied for all x = (x1,x2,x3,x4) ∈ E4, does this imply that E is a Hlawka space?

OBSERVATION 5. The inequality

∑
1�i�4

‖xi‖− ∑
1�i< j�4

∥
∥xi + x j

∥
∥+ ∑

1�i< j<k�4

∥
∥xi + x j + xk

∥
∥+‖x1 + x2 + x3 + x4‖ � 0

obtained in [6] can be written as H(1,−1,1,1)(x) � 0. Since

H(1,−1,1,1)(x) =
1
2
(H(−1,0,1,2)(x)+H(3,−2,1,0)(x)),

this inequality is not optimal.

OBSERVATION 6. Djoković’s inequality ([3]), for n = 4,k = 3 can be written as
H(1,0,−1,2)(x) � 0 and is optimal. On the other hand, for n = 4,k = 2, the inequal-
ity can be written as H(2,−1,0,1)(x) � 0. This is not optimal since H(2,−1,0,1)(x) =
1/2(H(1,0,−1,2)(x)+H(3,−2,1,0))(x).
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