athematical
nequalities
& fapplications

Volume 23, Number 3 (2020), 1015-1025 doi:10.7153/mia-2020-23-78

REMARKS ON WEIGHTED ORLICZ
SPACES ON LOCALLY COMPACT GROUPS

SEYYED MOHAMMAD TABATABAIE*, ALIREZA BAGHERI SALEC AND MARYAM
Z ARE SANJARI

(Communicated by S. Varosanec)

Abstract. In this paper, we give some equivalent condition for a weighted Orlicz space L2 (G)
on a locally compact group G to be a convolution Banach algebra, and by Jensen’s inequality
we study a hereditary property for weighted Orlicz algebras on quotient spaces. In addition, we
characterize compact convolution operators from L (G) into LE(G).

1. Introduction

If 1 < p < and G be alocally compact group, it is well-known that the Lebesgue
space L”(G) is a convolution Banach algebra if and only if G is compact. The first
results related to this fact is due to [19, 18]. This problem has been studied for Orlicz
spaces, as a generalization of Lebesgue spaces. For any Young function @ satisfying
A; -condition, H. Hudzik, A. Kamiska and J. Musielak in [9] prove that the Orlicz space
L®(G) is a Banach algebra under convolution if and only if L®(G) C L'(G). In [17],
it is proved that if @ satisfies a given sequence condition, then L®(G) is a Banach
algebra if and only if f g exists for all f,g € L®(G). Similar prorblems about the
weighted Lebesgue spaces have been studied in several papers. For instance, Yu. N.
Kuznetsovain [10, 1 1] gives some conditions under which the weighted Lebesgue space
L%(G) is a Banach algebra under the convolution. Recently, A. Osangliol and S. Oztop
in [12] studied the weighted Orlicz algebras under the convolution and proved that if
the inclusion L2 (G) C L} (G) holds, then L?(G) is a convolution Banach algebra. In
this paper, we study a hereditary property for weighted Orlicz algebras, and prove that
if H is a compact normal subgroup of a locally compact group G and L2(G) is a
convolution Banach algebra, then L2(G/H) is a Banach algebra under a product ®
given by the formula (11) induced by the usual convolution product, where w(xH ) :=
infyeyy w(xy) for all x € G. In section 4, we look at LE(G) as an L} (G)-module,
and prove that a convolution operator from the weighted group algebra L} (G) into
a weighted Orlicz space L®(G) is compact if and only if a related function (given
by the formula (14)) vanishes at infinity. The main motivation for this study is the
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characterization of compact elements of L. (G) by F. Ghahramani [5, Theorem 1].
One can find similar results about weakly compact elements of L. (G) in [6], and an
extension of them on locally compact hypergroups in [7, 8]. The obtained results in
section 4 can be considered as improvements of well-known results about compact
elements from S. Sakai, C. Akemann and F. Ghahramani in [16, 2, 5]. In particular,
some results for compact convolution operators into a weighted Lebesgue space L} (G)
are provided.

In next section, we recall some basic definitions and notations about Orlicz spaces
as an important extension of Lebesgue spaces; see the monograph [13].

2. Preliminaries

Let G be a locally compact group. The set of all bounded Radon measures on
G is denoted by M(G). Throughout, G is a locally compact group, and the integrals
without any specified measure are considered with a given left Haar measure. Also, all
(weighted) Lebesgue spaces on G are given by a left Haar measure. For any y € M(G)
and measurable functions f and g on G denote

(f*g)(x /f )g(v'x)dy, (uxg)( /gy Y)du(y

for all x € G, while these integrals exist.

Now, we recall some basic definitions and notations about Orlicz spaces. A convex
even mapping @ : R — [0, 0] satisfying ®(0) = lim,_,o P(x) =0 and limy_... P(x) =
oo, is called a Young function. The complementary of a Young function ® is given by

W(x) = sup{ylr| —®(y) : y 20}, (xER).

In this case, (®@,P) is called a Young pair.
We say that a Young function @ satisfies A -condition (and write ® € A,) if for
some constants ¢ > 0 and xy > 0,

D(2x) < cD(x), (x=x0p).

In sequel, (®@,¥) is a Young pair and ® € A,. A Borel measurable function f
belongs to L?(G) if there exists a number ¢« > 0 such that

[ (el <=

Two elements f,g € L®(G) are considered the same if f = g a.e. For every
f € L®(G) we put

= sup{ L 1r@slax: | wghar< 1}.

The complete normed space (L®(G), || |lo) is called an Orlicz space. In particu-
lar, if p > 1 and the Young function @ is defined by ®(x) := |x|? for all x € R, then
L®(G) is same as the Lebesgue space L”(G).



REMARKS ON WEIGHTED ORLICZ SPACES 1017

Set
Il =int{2>0: [ @G Irwhar<t). (7€),

Then, || || is also a norm on L®(G) and for each f € L*(G),

Iflle < [lflle < 2[l7 o

If f< L®(G) and g € LY(G), then by [13, Page 58] we have

[ 1rg)1dx <21 fllo gl M)

which is the Holder’s inequality for Orlicz spaces. If H is a compact group with a
normalized Haar measure, and f is a real-valued measurable function on A such that
Jg f(x)dx and [; (f(x))dx exist, then by the Jensen’s inequality [13, Proposition 5,
Chapter III] we have

cp( /H f(x)dx) < /H O(f(x)) dx. @)

In this paper, w is a continuous positive function on G (called a weight). We write
wl:= L. The weighted Orlicz space LY(G) consists all measurable functions f on
G such that wf € L®(G). It is known that (LE(G), || -||e.v) is a Banach space, where
| fllow == [[wflle for all f € L2(G). The set of all elements u € M(G) such that
wi € M(G) is denoted by M,,(G), and for each y € M,,(G) we put ||| := ||wu.
Easily one can see that for each f € L®(G) and u € M,,(G),

(| £

The set of all functions f : G — C such that % € Co(G) is denoted by Cy'(G),
where Cy(G) is the space of all complex-valued continuous functions on G vanishing
atinfinity. For each f € Cif(G) we put || f1[e := || £ |- . In general, we have C(G)* =
M,,(G). The weighted Orlicz space LE(G) is called a convolution Banach algebra if
there exists a constant ¢ > 0 such that f* g € L®(G) and

IIf gl

forall f,g € LY(G). In sequel, we assume that for each x,y € G, w(xy) < w(x)w(y).

o <[l 1 f1@w-

ow < cllf]

O ‘g‘ [ORVR)

3. Weighted Orlicz convolution algebras
In this section, we give some sufficient and necessary condition for a weighted
Orlicz space on a locally compact group to be a convolution Banach algebra.

Since ®@ € A,, same as non-weighted case [13, Page 111] (see also [12]) we have
(L2(G)) = L$,1 (G) with the duality formula

(f.g) = /G F)g(x)dx. 3)
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Let y € G. The right translation of a function g : G — C is defined by
Ryg:G—C, Ryg(x):=g(xy)
for all x € G. Also, for each x,y € G we define

w(xy)
w(x)w(y)

The following result is an extension of Proposition 2.1 in [1].

Q(x7y) =

PROPOSITION 1. Let (®,¥) be an Orlicz pair with ® € Ay. Then, LE(G) is a
convolution Banach algebra if and only if there is a constant k > 0 such that for each
fEL®(G) and g € LY (G),

| [10Rsatna| <Hslolel. @
G v

Proof. Note that the mapping
Ly(G) = L%(G), frfw

is an isometric isomorphism. The statement can be concluded from the well known
fact that if there is an associative multiplication on a Banach space A, then it makes A
a Banach algebra if and only if the dual space A* is a Banach module over A by the
natural module action.

Now, we intend to study a hereditary property for weighted Orlicz algebras. For this,
let H be a compact normal subgroup of a locally compact group G with a normalized
Haar measure dy, and let L®(G) be a Banach algebra under the convolution product.
For each x € G we denote x :=xH. By [14, Theorem 3.4.6], there is a left-invariant
Radon measure dx on the quotient space G/H satisfying

/Gf(X)dx=/G/H/Hf(xy)dydx7 (5

for all f € L'(G). This relation is called Weil’s formula which plays a key role in the
sequel.
For each f € C.(G) we define

PsH) = [ flw)dy, (x€G),
By [14, Theorem 3.5.4], for each f,g € C.(G) we have
PPy = Ppsg.

Also, P: f — Py is a surjective function from C.(G) to C.(G/H) [4, Proposition 2.48].
If W is defined by

W(aH) 1= infw(xy),  (x€G)
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then, w is a weight on G/H and w(xy) < w(x)w(y) forall x,y € G.
Now, since @ is a convex (and so an increasing) function, for each & > 0 we have

/G @ (Pt di = /G o ( /H o f(xy)[ienlgw(xt)dy) dx

<[, ( / af(xy)w(xy)dy) s
<[ » | @(artaw) dyds

_ /G @ (0f ()w(x)) dx

thanks to the Jensen’s inequality (2) and the Weil’s formula (5). This implies that

1Pl < 2/Pfllgm <
This inequality shows that .# := ker(P) is closed in C.(G). Also,
C:(G)
j )
where == is a linear isomorphism. By [14, Lemma 3.4.4] we have
LY(G)
j )

(6)

C.(G/H) =
CIH,H/(CC(G/H)) = (7)

where ¢ is the closure of .# in LE(G) and
1Pl =

forall f € C.(G). The relation = in (7) is an isometrically isomorphism.
Easily, one can see that

1Pl < 2[1Py |’ (®)

forall f € C.(G). Foreach f € ¢, the equality in (8) holds. If f ¢ ¢, then by [3,
corollary 6.8, Chapter III], there is an element g € L\:,l (G) orthogonalto ¢ such that

1

(fre)=1lglyy1 =757
IRl

©))

Since g is orthogonal to ¢, for each x € H we have g(xy) = g(y) for locally
almost every y € G. So, by [14, Proposition 3.6.13], there is a measurable function
h:G/H — C such that g(x) = h(x), for all x € G. For each ot > 0 we have

/G/H‘.P<MW( )dx /G/H/ (MW )|)dydx
</, / ( <>|)dydx
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where M := sup, . w(y). This shows that

M o
> Il st S MR gt < I8l -

Hence,

= APl
T M

||

@,

2
L=[{f:8)| = [(Pr, )| <[Pyl vt < 37 Prllo ]

and so
M /
S <

@) (10)

forall f € C.(G). Then, by inequalities (8) and (10), the norms || - |
equivalent on C.(G/H), and so by (7) we have

o, and ||| are

~ LV(G)
LR (G/H) = 22,
via the mapping
< LG .
P: % —LY(G), P(f+ 7):=lim Py,
n—oo *

where f € L®(G) and {f,} is a sequence in C.(G) that converges to f in LL(G).
Now, if we define a product ® on LE(G/H) by

P(f+ 7)®P(g+ 7):=P((f=g)+ 7), (f.g<€Ly(G)), (11)

then (L®(G/H),®) is a Banach algebra. In general, the product ® on L?(G/H) is
different from the usual convolution product on this space. Although, for each f,g €
C.(G) we have

P(f+ f)@P(g+ )= PPy
Now, we can write the following result:
THEOREM 1. Let H be a compact normal subgroup of a locally compact group

G. If L2(G) is a convolution Banach algebra, then LE(G/H) is a Banach algebra
under the product ® induced by the usual convolution given via the formula (11).

Compared the conclusion in [1, Proposition 3.1], we have the following corollary.

COROLLARY 1. Let 1 < p < oo and H be a compact normal subgroup of a locally
compact group G. If Li(G) is a convolution Banach algebra, then LL(G/H) is a
Banach algebra under the product & given by the formula (11), setting ®(x) := |x|?.
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4. Compact convolution operators

In this section, we give an equivalent condition for compactness of a convolution
operator from the weighted group algebra L. (G) into a weighted Orlicz space L(G).
Here, L®(G) is not necessarily an algebra, rather it is considered as an L! (G)-module.
The main idea of the proof comes from [5, Theorem 1], but the details are different. For
this, we need the following theorem which is a new version of [5, Lemma 2].

THEOREM 2. Let g € L2(G), and suppose that the bounded linear operator Ty :
LY (G) — L2(G) is defined by

TL(f)=f+*g (fE€L,(G)).
Then, T, is compact if and only if the mapping T, : My,(G) — LE(G) defined by
To(w)==pxg, (1 eMy(G)), (12)

is a compact operator.

Proof. Let T, be compact. There is a net {eq }qer which is the bounded (left)
approximate identity of L!(G) and the (left) approximate identity of L (G) (see [12,
Theorem 4.2] and its proof). Then,

{Ty(u) = lnllw <1} Celoyw ({To(uxeq) : € lu € My(G), ||l <1}), (13)

where clg,,(E) means the || -[|@,-closure of a set E C LY(G). Indeed, for each
u € M,(G) we have

1 Te(1) = Te(xeq)||g,,, = 158 =+ (ea s g) low < 1l I8 = (ea &) o,

and this implies that

in L‘Ej(G). So, the inclusion (13) holds. The right side of (13) is a compact subset of
L2(G) because Ty is a compact operator and the set

{uxeq: aelpueMy(G),|ulw <1}

is bounded in L} (G). So, T, is a compact operator. Conversely, let the operator 7, be
compact. Then, easily its restriction 7| 11,() = Tg 1s also compact.
The following result is a generalization of a similar one from F. Ghahramani [5, Theo-
rem 1].

For each x,y € G and g: G — C we denote L,g(y) := (6:xg)(y) = g(x~1y).

THEOREM 3. Let (®,V) be a Young pair with ®,¥ € Ay, and g € LY (G). Define
the operator T, : L} (G) — LE(G) by

To(f) = fxg, (f €L,(G)).
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Then, T, is compact if and only if the function F, defined by

1
F:G—R, Fy(x):= WHLxchb,w (14)

forall x € G, belongs to Cy(G).

Proof. Let T, be a compact operator. By [12, Lemma 2.3(ii)], the function F, is
continuous. In contrast, suppose that F, ¢ Co(G). So, there is a number € > 0 such
that for each compact set F C G, there exists an element xz € G\ F such that

de=1

where T, is the operator defined by (12). By Theorem 2, the operator 7, is also com-
pact. Then, by boundedness of the set

1
= —|L €, 15
w(xr) xr&llo. > (1

D

1
——— 0y, ¢ F C G is compact
w(xrp)
in M,,(G), there exists a subnet {xf; } of {xr} and a function & € L®(G) such that
lim7, (——s, ) = (16)
i S\ wxg) i)
in L2(G). By (15), we have ||]|e,, > €. So, since
lloss =sup {| (.1} £ €LY (G, 1 f iy =1},
there is a function 1 € LY, (G) with |[1[ly -1 = 1 such that [(r,1)| > §.

Since C,(G) is dense in L:IV', 1 (G) (notethat ¥ € Ay), there is a function y € C.(G)
such that [|y/|ly -1 < 3 and

£
)l > =,

So, thanks to (16), there exists an index ip such that for each index i, if F;, C F;,

then
[ (emyte) )l

a7)

N M
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But, since ® € A, there is a function y € C¢(G) such that |[g — y||o,w < §. Because

of [12, Lemma 2.3(i)] and the Holder’s inequality (1) we have
(-1 s A (-Ls
) )Y /Nt ) Y

- 1 . 1

(o) = (o)

7

<2 WPyl
D ’
B e W(XF,) XE; D 14 Yol
BTl
2
< ' _ -
<ty ) I = Vo Wl
E
<E Wl
So,
- 1 . 1 .
T, ——a&.,. |, (s ) )¢
() )| [ () )|
> & E gy > &
= 2 4 lI/ \IJ7W—1 8

. For some index i we have

~

Put Ag := supp(y) and A; := supp(y
FyU(AoAT") CF,
and so,

<fy (ﬁa) ,v/> i L vl de o,

a contradiction.
Conversely, let 0 # g € LE(G) and F, € Cy(G). The mappings

S1:L¥(G) = LY [(G), Si(f):=fw (feL¥(G)),

and

5:CH6) ~G(G), S0 =L, (e,

are isometrically isomorphisms. Also, 7, is the adjoint of the operator

S3:Ly 1(G) = CY(G), S3(f):=(gL(-1f) (fELLA(G)).

(18)

19)

(20)

Then, because of Theorem 2 and the Schauder’s Theorem [3, Chapter V1], it would

be sufficient to prove that the operator

Sg LY (G) — Co(G), Sg:= 5,838
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is compact. For this, let {f,} be a bounded sequence in LY(G). For each n € N we

put
1
K, ::cl({xe G: |F(x)| > Z})

Then, for each n we have K, C K,,;1, and since F, vanishes at infinity, K,,’s are com-
pact subsets of G. Also, foreach n € N and x € G\ K,,,

Se(fi) ()] = % (& Lor (W)

1
= W) |(WLxg, fu)
< 2
wi(x

=2[F()| [ fulle < = Supllfmllw

=

=
=

[WLgllo [l /ol

\_/

So, similar to the proof of second part of [5, Theorem 1] (see also [15, Theorem
7.23]), by the diagonal method, there is a subsequence of {S,(f,)} which converges in
Co(G), and this completes the proof.

REMARK 1. In[13, Chapter II], one can find several sufficient conditions for that
the hypothesis @,V € A; in the above theorem holds.

Now, as a direct conclusion one can see an extension of both [2, Theorem 4] and [5,
Corollary 1].

COROLLARY 2. If G is a compact group, then for each g € L®(G), the operator
T, : L'(G) — LE(G) given by

TL(f):=f*g (feL'(G))
is compact.

Setting w = 1, we conclude the following result which is an extension of a well-known
one from S. Sakai [16, Theorem 1] (see also [5, Corollary 3]).

COROLLARY 3. Let G be a locally compact non-compact group and g € L*(G).
If the bounded linear operator Ty : L' (G) — L*(G) defined by

To(f):=f*g (f€L'(G))
is compact, then g = 0.
Proof. 1f g # 0 then for each compact set E C G and x € G\ E we have |F,(x)| =

ILcgllo = llgllo > %[|g]lo, where F, is defined by (14) with w = 1. This implies that
F, ¢ Cy(G) and so T, is not compact, thanks to Theorem 3.
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REMARK 2. If p > 1, putting ®(x) := |x|” in the above resluts, one can conclude

some similar facts for the weighted Lebesgue space L) (G).
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