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SOME HARDY AND CARLESON MEASURE SPACES

ESTIMATES FOR BOCHNER–RIESZ MEANS

JIAN TAN

(Communicated by I. Perić)

Abstract. In this paper, we show that the Bochner-Riesz means are bounded on weighted and
variable Hardy spaces by using the finite atomic decomposition theories. The boundedness of
Bochner-Riesz means on weighted and variable Carleson measure spaces is also obtained. More-
over, we also prove that the maximal Bochner-Riesz means are bounded from weighted or vaiable
Hardy spaces to weighted or variable Lebesgue spaces.

1. Introduction

In this paper, we will study the Bochner-Riesz means defined in terms of Fourier
transforms by

B̂δ
R f (ξ ) =

(
1− |ξ |2

R2

)δ

+
f̂ (ξ ),

where f̂ denotes the Fourier transforms of f and
(
1− |ξ |2

R2

)δ

+
is the positive part of(

1− |ξ 2|
R2

)δ
. They can be written as convolution operators

Bδ
R f (x) =

∫
Rn

Bδ
R(x− y) f (y)dy,

where Bδ
R(x) = RnBδ (Rx) . It is well known that Bδ satisfies the inequality

|DαBδ (x)| � C(1+ |x|)−(δ+ n+1
2 ), (1)

for any x ∈ R
n and any multi-index α ∈ Z

n
+ . The maximal operator Bδ∗ is defined by

Bδ
∗ ( f )(x) = sup

R>0
|Bδ

R(x)|.
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The Bochner-Riesz means play an important role in the Fourier analysis. They
were first studied by Bochner [2] in connection with summation of multiple Fourier
series. Questions concerning the convergence of multiple Fourier series have led to
the study of their Lp boundedness. The Hardy space Hp(Rn) with 0 < p � 1, which
is a suitable substitute of the Lebesgue space Lp(Rn) , plays an important role in the
study of operators and their applications to partial differential equations. Sjölin [21]
and Stein, Taibleson and Weiss [22] obtained the following result:

THEOREM 1. Suppose that 0 < p � 1 and δ > n
p − n+1

2 . Then the operator f �→
Bδ

R f is bounded on Hp(Rn) , and satisfies

‖Bδ
R f‖Hp(Rn) � C‖ f‖Hp(Rn).

Let w be a Muckenhoupt weight and Hp
w(Rn) be the weighted Hardy spaces. Lee

[16] obtained the following Hp
w(Rn) boundedness for the Bochner-Riesz means Bδ

R f
by using the atomic decomposition of Hp

w(Rn) and their molecular characterizations.

THEOREM 2. Let w ∈ A1 with critical index rw for the reverse Hölder condition.
Suppose that 0 < p � 1 and δ > max{ n

p − n+1
2 , [ n

p ] rw
rw−1 − n+1

2 } . Then the operator

f �→ Bδ
R f is bounded on Hp

w(Rn) , and satisfies

‖Bδ
R f‖Hp

w(Rn) � C‖ f‖Hp
w(Rn).

Lee [16] also proved that the maximal operator Bδ∗ has the following strong type
boundedness.

THEOREM 3. Let w ∈ A1 . Suppose that 0 < p � 1 and δ > n
p − n+1

2 . Then the

operator f �→ Bδ∗ f is bounded from Hp
w(Rn) to Lp

w(Rn) , and satisfies

‖Bδ
∗ f‖Lp

w(Rn) � C‖ f‖Hp
w(Rn).

In the paper, we aim to extend the above results to the generalized weighted Hardy
spaces and variable Hardy spaces as well as their corresponding dual spaces. For a
weight w let rw = inf{r ∈ N : w ∈ Ar} , sw = min{s0 ∈ N

⋃{0} : p(n+ s0) > nrw} and
tw = min{t0 ∈N

⋃{0} : q(n+ t0−α) > nrwq}. We define q′ by 1
q + 1

q′ = 1 and q(·)′ by
1

q(x) + 1
q(x)′ = 1 for any x∈R

n . We also write d = min{d0 ∈N
⋃{0} : p−(n+d0) > n}.

We defer other technique definitions to Section 2.
Now we state the main results in our paper.

THEOREM 4. Let 0 < p0 < 1 , w ∈ Ap/p0
and δ = n

p0
− n+1

2 . If p0 < p < ∞ , then

the operator f �→ Bδ∗ f is bounded from Hp
w(Rn) to Lp

w(Rn) , and satisfies

‖Bδ
∗ f‖Lp

w(Rn) � C‖ f‖Hp
w(Rn).
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THEOREM 5. Let 0 < p0 < 1 and δ = n
p0
− n+1

2 . If p(·) ∈ LH(Rn) , p0 < p− �
p+ < ∞ , the operator f �→ Bδ∗ f is bounded from Hp(·)(Rn) to Lp(·)(Rn) , and satisfies

‖Bδ
∗ f‖Lp(·)(Rn) � C‖ f‖Hp(·)(Rn).

THEOREM 6. Let 0 < p0 < 1 , w ∈ Ap/p0
and δ = n

p0
− n+1

2 . If p0 < p < ∞ , then

the operator f �→ Bδ
R f is bounded on Hp

w(Rn) , and satisfies

‖Bδ
R f‖Hp

w(Rn) � C‖ f‖Hp
w(Rn).

Moreover, if p0 < p � 1 , then the operator f �→ Bδ
R f is also bounded on CMOp

w(Rn) ,
and satisfies

‖Bδ
R f‖CMOp

w(Rn) � C‖ f‖CMOp
w(Rn).

THEOREM 7. Let 0 < p0 < 1 and δ = n
p0
− n+1

2 . If p(·) ∈ LH(Rn) , p0 < p− �
p+ < ∞ , the operator f �→ Bδ

R f is bounded on Hp(·)(Rn) , and satisfies

‖Bδ
R f‖Hp(·)(Rn) � C‖ f‖Hp(·)(Rn).

Moreover, if p0 < p− � p+ � 1 , then the operator f �→ Bδ
R f is also bounded on

CMOp(·)(Rn) , and satisfies

‖Bδ
R f‖CMOp(·)(Rn) � C‖ f‖CMOp(·)(Rn).

Throughout this paper, C or c denotes a positive constant that may vary at each
occurrence but is independent to the main parameter, and A ∼ B means that there are
constants C1 > 0 and C2 > 0 independent of the the main parameter such that C1B �
A � C2B . Given a measurable set S ⊂ R

n , |S| denotes the Lebesgue measure and χS

means the characteristic function. By a cube Q we will always mean a cube whose
sides are parallel to the coordinate axes. �(Q) will denote the length of Q and CQ will
denote the cube with same center cQ such that �(CQ) =C�(Q) .

2. Preliminaries

In this section, we state some definitions and known results about weighted and
variable exponent function spaces. We first recall some known results about weighted
function spaces. For more information, see [5, 10, 17]. Given a measurable function
w > 0, for 1 < p < ∞ , it is said that w ∈ Ap if

[w]Ap = sup
Q

(
1
|Q|

∫
Q

w(x)dx

)(
1
|Q|

∫
Q

w(x)1−p′dx

)p−1

< ∞,

where the supremum is taken over all cubes Q ⊂ R
n . If 1 < p < ∞ and w ∈ Ap , then

the Hardy-Littlewood maximal operator M is bounded on weighted Lebesgue space
Lp(w) .
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Define the set
A∞ = ∪p�1Ap

and define
rw = inf{r � 1 : w ∈ Ar}.

A weight w ∈ RHs for some s > 1 if for every cube Q ,(
1
|Q|

∫
Q

wsdx

) 1
s

� C
1
|Q|

∫
Q

wdx.

Then w ∈ RHs if and only if ws ∈ A∞ .
We now recall the definition of the weighted Hardy spaces Hp

w(Rn) . For more de-
tails, see [23]. Let S denote the Schwartz class of smooth functions and S ′ its topo-
logical dual space.. Also, denote by S∞ the functions f ∈S satisfying

∫
Rn f (x)xαdx =

0 for all muti-indices α ∈Z
n
+ := ({0,1,2, · · ·})n and S ′

∞ its topological dual space. Let
ψ ∈ S , 0 < p < ∞ and ψt(x) = t−nψ(t−1x) , x ∈ R

n . Denote by M the grand max-
imal operator given by M f (x) = sup{|ψt ∗ f (x)| : t > 0,ψ ∈ FN} for any fixed large
integer N , where

FN =

{
ψ ∈ S :

∫
ψ(x)dx = 1, ∑

|α |�N

sup(1+ |x|)N |∂ α ψ(x)| � 1

}
.

The weighted Hardy space Hp
w(Rn) is the set of all f ∈ S ′ , for which the quantity

‖ f‖Hp
w

= ‖M f‖Lp
w

< ∞.

Denote that
Mφ ( f )(x) = sup

k
|φk ∗ f (x)|.

If 0 < p < ∞ and φ ∈ FN ,

‖ f‖Hp
w(Rn) ∼ ‖Mφ ( f )‖Lp

w(Rn).

For brevity, hereafter we write ‖ f‖X(Rn) = ‖ f‖X , where X is the function space. A
function a on R

n is called a (N,∞)-atom, if there exists a cube Q such that suppa⊂Q ,
‖a‖L∞ � 1 and ∫

Rn
a(x)xαdx = 0 for |α| � N−1.

Given N > sw , define

ON =
{

f ∈C∞
0 :

∫
Rn

xβ f (x)dx = 0, 0 � |β | � N

}
.

Moverover, ON is dense in Hp
w(Rn) . We here recall the following finite atomic decom-

position, which was proved in [6].
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PROPOSITION 1. Given 0 < p < ∞ and w ∈ A∞ , fix N > sw . Then if f ∈ ON ,
there exists a finite sequence {ai}M

i=1 of (N,∞) atoms with supports Qi , and a non-
negative sequence {λi}M

i=1 such that f = ∑i λiai and∥∥∥∥ M

∑
i=1

λiχQi

∥∥∥∥
Lp

w

� C‖ f‖Hp
w
.

We now recall the weighted Carleson measure space CMOp
w(Rn) . Note that Car-

leson measure spaces CMOp have been studied by many authors. See [12, 14, 15, 17,
18].

Let ψ ∈ S satisfy

supp(ψ̂) ⊂ {ξ ∈ R
n : 1/2 � |ξ | � 2},

|ψ̂(ξ )| � C > 0 if
3
5

� ξ � 5
3

and

∑
j∈Z

|ψ̂(2 jξ )|2 = 1 if ξ �= 0.

(2)

We say that a cube Q ⊂ R
n is dyadic if Q = Qjk = {x = (x1,x2, . . . ,xn) ∈ R

n :
2− j−Nki � xi < 2− j−N(ki + 1), i = 1,2, . . . ,n} for some j ∈ Z , some fixed positive
large integer N and k = (k1,k2, . . . ,kn) ∈ Z

n . Denote by �(Q) = 2− j the side length of
Q = Qjk . Denote by D the set of all dyadic cubes Q . Denote by zQ = 2− jk the left
lower corner of Q and by xQ is any point in Q when Q = Qjk . For any function ψ
defined on R

n, j ∈ Z , and Q = Qjk , set

ψ j(x) = 2 jnψ(2 jx), ψQ(x) = |Q|1/2ψ j(x− zQ).

DEFINITION 1. Let ψ ∈S satisfy the above conditions, w ∈ A∞ and 0 < p � 1.
The weighted Carleson measure space CMOp

w(Rn) is the collection of all f ∈ S ′
∞

fulfilling

‖ f‖CMOp
w

:= sup
P∈D

{
1

w(P)
2
p−1 ∑

Q⊂P

|Q|
w(Q)

| 〈 f ,ψQ〉 |2
}1/2

< ∞.

Define a linear map Sϕ by

Sϕ( f ) = {〈 f ,ϕQ〉}Q,

and another linear map Tψ by

Tψ ({sQ}Q) = ∑
Q

sQψQ.

For g ∈CMOp
w(Rn) , define a linear functional Lg by

Lg( f ) =
〈
Sψ(g),Sϕ( f )

〉
= ∑

Q

〈g,ψQ〉 〈 f ,ϕQ〉

for f ∈ S∞ . Then the weighted Carleson measure space CMOp
w(Rn) is the dual space

of the weighted Hardy space Hp
w(Rn) .



1032 J. TAN

PROPOSITION 2. Suppose that w ∈ A∞ , 0 < p � 1 . The dual of Hp
w(Rn) is

CMOp
w(Rn) in the following sense.

(1) For g ∈CMOp
w(Rn) , the linear functional Lg , defined initially on S∞ , extends to a

continuous linear functional on Hp
w(Rn) with ‖Lg‖ � C‖g‖CMOp

w
.

(2) Conversely, every continuous linear functional L on Hp
w satisfies L = Lg for some

g ∈CMOp
w(Rn) with ‖g‖CMOp

w
� C‖L‖ .

Now we state some basic results about variable exponent function spaces. For
more information, see [3, 7, 9, 20, 25]. For any Lebesgue measurable function p(·) :
R

n → (0,∞] and for any measurable subset E ⊂ R
n , we denote

p−(E) = inf
x∈E

p(x), p+(E) = sup
x∈E

p(x).

Especially, we denote p− = p−(Rn) and p+ = p+(Rn) . Let p(·) : R
n → (0,∞) be

a measurable function with 0 < p− � p+ < ∞ and P0 be the set of all these p(·) .
Let p(·) : R

n → (0,∞] be a Lebesgue measurable function. The variable Lebesgue
space Lp(·) consisits of all Lebesgue measurable functions f , for which the quantity∫
Rn |ε f (x)|p(x)dx is finite for some ε > 0 and

‖ f‖Lp(·) = inf

{
λ > 0 :

∫
Rn

( | f (x)|
λ

)p(x)

dx � 1

}
.

We also recall the following class of exponent function, which can be found in [8].
Let B be the set of p(·) ∈ P such that the Hardy-littlewood maximal operator M is
bounded on Lp(·) . An important subset of B is the LH condition.

In the study of variable exponent function spaces it is common to assume that the
exponent function p(·) satisfies the LH condition. We say that p(·) ∈ LH , if p(·)
satisfies

|p(x)− p(y)|� C
− log(|x− y|) , |x− y|� 1/2

and

|p(x)− p(y)|� C
log |x|+ e

, |y| � |x|.

It is well known that p(·)∈B if p(·)∈P∩LH. Let f ∈S ′ , ψ ∈S , p(·)∈P0 .
The variable Hardy space Hp(·) is the set of all f ∈ S ′ , for which the quantity

‖ f‖Hp(·) = ‖M f‖Lp(·) < ∞.

If p(·) ∈ LH(Rn)∩P0(Rn) and φ ∈ FN ,

‖ f‖Hp(·)(Rn) ∼ ‖Mφ ( f )‖Lp(·)(Rn).

Given N > d , ON is dense in Hp(·)(Rn) . We have the following finite atomic
decomposition for variable Hardy space. For more results about variable Hardy spaces,
we refer to [7, 20, 24, 26, 30, 31, 32].



ESTIMATES FOR BOCHNER-RIESZ MEANS 1033

PROPOSITION 3. Given p(·)∈ LH∩P0 , fix N > d . Then if f ∈Hp(·)(Rn) , there
exists a finite sequence {ai}M

i=1 of (N,∞) atoms with supports Qi , and a non-negative
sequence {λi}M

i=1 such that f = ∑i λiai and∥∥∥∥ M

∑
i=1

λiχQi

∥∥∥∥
Lp(·)

� C‖ f‖Hp(·) .

We now introduce a new space CMOp(·)(Rn) as follows.

DEFINITION 2. Let ψ ∈ S define above, and 0 < p− � p+ � 1. The Carleson
measure space CMOp(·)(Rn) is the collection of all f ∈ S ′

∞ fulfilling

‖ f‖CMOp(·) := sup
P∈D

{
|P|

‖χP‖2
p(·)

∫
Rn

∑
Q⊂P

|Q|−1| 〈 f ,ψQ〉 |2χQ(x)dx

}1/2

< ∞.

PROPOSITION 4. Suppose that p(·)∈LH , 0<p−�p+�1 . The dual of Hp(·)(Rn)
is CMOp(·)(Rn) in the following sense.
(1) For g ∈CMOp(·)(Rn) , the linear functional Lg , defined initially on S∞ , extends to
a continuous linear functional on Hp(·)(Rn) with ‖Lg‖ � C‖g‖CMOp(·) .

(2) Conversely, every continuous linear functional L on Hp(·)(Rn) satisfies L = Lg for
some g ∈CMOp(·)(Rn) with ‖g‖CMOp(·) � C‖L‖ .

3. Proofs of main results

In this section we prove the main results by applying the finite atomic decomposi-
tions in terms of L∞ atoms and using an argument of weak density property. Note that
the weak density property is very useful when we deal with the bounedness of operators
on Carleson measure type spaces or Lipschitz type spaces (see [11, 13, 27, 28]). In the
following, we first prove that when δ is greater than the critical index, the maximal
Bochner-Riesz means are bounded on generalized weighted Hardy spaces and variable
Hardy spaces. Now we state the following Fefferman-Stein vector-valued inequalities
for maximal operators on weighted Lebesgue spaces.

PROPOSITION 5. [1] Let 0 < p < ∞ and w ∈ Ap . Then for any q > 1 , f =
{ fi}i∈Z , fi ∈ Lloc(Rn) ,

‖‖M( f )‖lq‖Lp
w(Rn) � C‖‖ f ||lq‖Lp

w(Rn),

where M( f ) = {M( fi)}i∈Z .

We also need the following boundedness of the vector-valued maximal operator M on
variable Lebesgue spaces, whose proof can be found in [4] via extrapolation.



1034 J. TAN

PROPOSITION 6. Let p(·) ∈ LH ∩P . Then for any q > 1 , f = { fi}i∈Z , fi ∈
Lloc(Rn) ,

‖‖M( f )‖lq‖Lp(·)(Rn) � C‖‖ f ||lq‖Lp(·)(Rn),

where M( f ) = {M( fi)}i∈Z .

Proof of Theorem 4. By Proposition 1, for p0 < p < ∞ and w ∈ Ap/p0
, fix N0 >

sw , then if f ∈ ON0 , there exists a finite sequence {ai}M
i=1 of (N0,∞) atoms with sup-

ports Qi , and a non-negative sequence {λi}M
i=1 such that

f =
M

∑
i=1

λiai

and ∥∥∥∥ M

∑
i=1

λiχQi

∥∥∥∥
Lp

w(Rn)
� C‖ f‖Hp

w(Rn).

By the sublinearity of Bδ∗ , we have

‖Bδ
∗ f‖Lp

w(Rn) �
∥∥∥∥ M

∑
i=1

λiB
δ
∗ai

∥∥∥∥
Lp

w(Rn)
.

To prove our theorem, we first need the following estimate for the action of the
operator on atoms, whose proof can be found in [19, page125-page127] or [29, Lemma
3.2]. Given any (N0,∞)-atom a , we claim that for x ∈ R

n ,

|Bδ
∗a(x)| � C

�(Q)n/p0

(�(Q)+ |x− cQ|)n/p0
.

Hence, for all x ∈ R
n we have

Bδ
∗a(x) � CM(χQ)(x)1/p0 .

Therefore, by w ∈ Ap/p0
, Proposition 5 and Proposition 1 we get

∥∥∥∥ M

∑
i=1

λiB
δ
∗ai

∥∥∥∥
Lp

w(Rn)
� C

∥∥∥∥( M

∑
i=1

λiM(χQ)1/p0

)p0
∥∥∥∥1/p0

L
p/p0
w (Rn)

�C

∥∥∥∥( M

∑
i=1

λiχQ

)p0
∥∥∥∥1/p0

L
p/p0
w (Rn)

=C

∥∥∥∥ M

∑
i=1

λiχQ

∥∥∥∥
Lp

w

� C‖ f‖Hp
w(Rn).

Since that ON0 is dense in Hp
w(Rn) , then by the density argument Bδ∗ can be ex-

tended to a bounded operator from Hp
w(Rn) to Lp

w(Rn) . Therefore, we have completed
the proof. �
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Proof of Theorem 5. The proof of Theorem 5 is very similar to the above proof and
so we only need to show the differences. To prove the variable Hardy spaces estimates,
we only need to show that∥∥∥∥ M

∑
i=1

λiB
δ
∗ai

∥∥∥∥
Lp(·)(Rn)

� ‖ f‖Hp(·)(Rn).

Choose N0 > d and observe that p0 < p− � p+ < ∞ and p(·) ∈ LH. Therefore,
by Proposition 6 and Proposition 3 we get∥∥∥∥ M

∑
i=1

λiB
δ
∗ai

∥∥∥∥
Lp(·)(Rn)

� C

∥∥∥∥( M

∑
i=1

λiM(χQ)1/p0

)p0
∥∥∥∥1/p0

Lp(·)/p0 (Rn)

�C

∥∥∥∥( M

∑
i=1

λiχQ

)p0
∥∥∥∥1/p0

Lp(·)/p0 (Rn)
= C

∥∥∥∥ M

∑
i=1

λiχQ

∥∥∥∥
Lp(·)

� C‖ f‖Hp(·)(Rn).

Since that ON0 is dense in Hp(·)(Rn) , then by the density argument Bδ∗ can be
extended to a bounded operator from Hp(·)(Rn) to Lp(·)(Rn) . Thus, we completed the
proof. �

Under the same hypothesis of Theorem 4 and Theorem 5, if we replace Bδ∗ f by
Bδ

R f , then the results can be strengthened again. Before we give the proof of Theorem
6 and Theorem 7, we recall the following propositions on the weak density property for
CMOp

w(Rn) and CMOp(·)(Rn) .

PROPOSITION 7. [27] Let w ∈ A∞ and 0 < p � 1 . If f ∈CMOp
w(Rn) , then there

exist a sequence { fm} ∈ CMOp
w(Rn)∩ L2(Rn) such that fm converges to f in the

distribution sense. Furthermore,

‖ fm‖CMOp
w

� C‖ f‖CMOp
w
, for f ∈CMOp

w(Rn).

PROPOSITION 8. [25] Let p(·)∈ LH and 0 < p− � p+ � 1 . If f ∈CMOp(·)(Rn) ,
then there exist a sequence { fm} ∈CMOp(·)(Rn)∩L2(Rn) such that fm converges to
f in the distribution sense. Furthermore,

‖ fm‖CMOp(·) � C‖ f‖CMOp(·) , for f ∈CMOp(·)(Rn).

Proof of Theorem 6. By Proposition 1, for p0 < p < ∞ and w ∈ Ap/p0
, fix N0 >

sw , then if f ∈ ON0 , there exists a finite sequence {ai}M
i=1 of (N0,∞) atoms with sup-

ports Qi , and a non-negative sequence {λi}M
i=1 such that

f =
M

∑
i=1

λiai

and ∥∥∥∥ M

∑
i=1

λiχQi

∥∥∥∥
Lp

w(Rn)
� C‖ f‖Hp

w(Rn).



1036 J. TAN

By the linearity of Bδ
R , we have

‖Bδ
R f‖Lp

w(Rn) �
∥∥∥∥ M

∑
i=1

λiB
δ
Rai

∥∥∥∥
Lp

w(Rn)
.

To prove it, we need a maximal opertor estimate for the action of the operator Bδ
R

on atoms, whose proof can be found in [29, Lemma 3.3]. Suppose that ϕ ∈CN0
c (Rn) ,

supp ϕ ⊂ {|x| < 1
4} , ϕ � 0 and

∫
ϕdx = 1. Given any (N0,∞)-atom a , then for

0 < t < ∞ and x ∈ R
n ,

|ϕt ∗Bδ
Ra(x)| � C

�(Q)n/p0

(�(Q)+ |x− cQ|)n/p0
. (3)

Hence, for all x ∈ R
n ,

Bδ
Ra(x) � CM(χQ)(x)1/p0 .

Therefore, repeating the same argument in Theorem 4 we can show that Bδ
R can

be extended to a bounded operator from Hp
w(Rn) to Hp

w(Rn) . Next we show that Bδ
R is

a bounded operator on CMOp
w(Rn)∩L2(Rn) to CMOp

w(Rn)∩L2(Rn) , when 0 < p− �
p+ � 1. The adjoint operator Bδ ,∗

R is defined by〈
Bδ ,∗

R f ,g
〉

=
〈

f ,Bδ
Rg

〉
, f ,g ∈ S .

The kernel of Bδ ,∗
R also satisfies the conditions (1) and (3) . Hence, Bδ ,∗

R is also a
bounded operator from Hp

w(Rn) to Hp
w(Rn) . Then applying Proposition 2 yields that∣∣∣〈Bδ

R f ,g
〉∣∣∣ =

∣∣∣〈 f ,Bδ ,∗
R g

〉∣∣∣ � ‖ f‖CMOp
w(Rn)‖Bδ ,∗

R g‖Hp
w(Rn) � C‖ f‖CMOp

w(Rn)‖g‖Hp
w(Rn).

That is, for each f ∈ CMOp
w(Rn)∩L2(Rn) , Lf (g) =

〈
Bδ

R f ,g
〉

is a continuous linear
functional on Hp

w(Rn)∩L2(Rn) . Since that w ∈ A∞, then by the fact Hp
w(Rn)∩L2(Rn)

is dense in Hp
w(Rn) , Lf can be extended to a continuous linear functional on Hp

w(Rn)
with

‖Lf ‖ � C‖ f‖CMOp
w
.

Conversely, by Propostion 2 again, there exists h∈CMOp
w(Rn) such that

〈
Bδ

R f ,g
〉

= 〈h,g〉 for g ∈ Hp
w(Rn)∩L2(Rn) with

‖h‖CMOp
w

� C‖Lf ‖.

Thus,

‖Bδ
R f‖CMOp

w
= sup

P∈D

{
1

w(P)
2
p−1 ∑

Q⊂P

|Q|
w(Q)

|
〈
Bδ

R f ,ψQ

〉
|2

}1/2
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= sup
P∈D

{
1

w(P)
2
p−1 ∑

Q⊂P

|Q|
w(Q)

| 〈h,ψQ〉 |2
}1/2

= ‖h‖CMOp
w

� C‖Lf ‖ � C‖ f‖CMOp
w
.

Next we extend this result to CMOp
w(Rn) via an argument of weak density prop-

erty. Suppose that f ∈ CMOp
w(Rn) . By Proposition 7, we can choose a sequence

{ fm} ⊂CMOp
w(Rn)∩L2(Rn) with

‖ fm‖CMOp
w

� C‖ f‖CMOp
w

such that fm converges to f in the distribution sense. Therefore, for f ∈CMOp
w(Rn) ,

define 〈
Bδ

R f ,g
〉

= lim
m→∞

〈
Bδ

R fm,g
〉

, for g ∈ Hp
w(Rn)∩L2(Rn).

In fact, we have
〈
Bδ

R( fi − f j),g
〉

=
〈

fi − f j,B
δ ,∗
R (g)

〉
, where fi − f j and g belong to

L2(Rn) . So we have Bδ ,∗
R g ∈ Hp

w(Rn)∩L2(Rn) . Then we get that〈
Bδ

R( fi − f j),g
〉

=
〈

fi − f j,B
δ ,∗
R (g)

〉
→ 0

as j, k → ∞ . Therefore, Bδ
R f is well defined and〈

Bδ
R f ,g

〉
= lim

m→∞

〈
Bδ

R fm,g
〉

for any g∈Hp
w(Rn)∩L2(Rn) and fm ∈CMOp

w(Rn)∩L2(Rn) . Then by Fatou’s Lemma,
for each dyadic cube P in R

n ,{
1

w(P)
2
p−1 ∑

Q⊂P

|Q|
w(Q)

∣∣∣〈Bδ
R f ,ψQ

〉∣∣∣2}1/2

� liminf
m→∞

{
1

w(P)
2
p−1 ∑

Q⊂P

|Q|
w(Q)

∣∣∣〈Bδ
R fm,ψQ

〉∣∣∣2}1/2

.

Hence,

‖Bδ
R f‖CMOp

w
� liminf

m→∞
‖Bδ

R fm‖CMOp
w

� C‖ fm‖CMOp
w

� C‖ f‖CMOp
w
.

Therefore, we have completed the proof. �

Proof of Theorem 7. The proof of Theorem 7 is nearly identical to the above proof
and so we only need to show the differences. To prove the variable Hardy spaces
estimates, we only need to show that∥∥∥∥ M

∑
i=1

λiB
δ
Rai

∥∥∥∥
Lp(·)(Rn)

� ‖ f‖Hp(·)(Rn).
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Choose N0 > d and observe that p0 < p− � p+ < ∞ and p(·) ∈ LH. Therefore,
by Proposition 6 and Proposition 3 we similarly get the desired results. The proof of
variable Carleson measure spaces estimates for Bδ

R is also essentially the same as the
proof of Theorem 6. By applying Proposition 4 and Proposition 8, we can obtain that

‖Bδ
R f‖CMOp(·) � liminf

m→∞
‖Bδ

R fm‖CMOp(·) � C‖ fm‖CMOp(·) � C‖ f‖CMOp(·) .

Thus, we complete the proof. �
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