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SOME HARDY AND CARLESON MEASURE SPACES
ESTIMATES FOR BOCHNER-RIESZ MEANS

JIAN TAN

(Communicated by I. Peri¢)

Abstract. In this paper, we show that the Bochner-Riesz means are bounded on weighted and
variable Hardy spaces by using the finite atomic decomposition theories. The boundedness of
Bochner-Riesz means on weighted and variable Carleson measure spaces is also obtained. More-
over, we also prove that the maximal Bochner-Riesz means are bounded from weighted or vaiable
Hardy spaces to weighted or variable Lebesgue spaces.

1. Introduction

In this paper, we will study the Bochner-Riesz means defined in terms of Fourier
transforms by

— 2\ ¢
s - (1-5) 7.

N 2\ 6
where f denotes the Fourier transforms of f and (1 — %) is the positive part of
+

21\ 0
(l — %) . They can be written as convolution operators

BRI = [ BRx—3)70)dy

where B3 (x) = R"B®(Rx). It is well known that B® satisfies the inequality

ntl

DB (x)| < C(1+ )"0+, (D
for any x € R" and any multi-index ¢ € Z'_ . The maximal operator BY is defined by

B2(f)(x) = sup | BR(x)).
R>0
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The Bochner-Riesz means play an important role in the Fourier analysis. They
were first studied by Bochner [2] in connection with summation of multiple Fourier
series. Questions concerning the convergence of multiple Fourier series have led to
the study of their L” boundedness. The Hardy space H?(R") with 0 < p < 1, which
is a suitable substitute of the Lebesgue space L”(R"), plays an important role in the
study of operators and their applications to partial differential equations. Sjolin [21]
and Stein, Taibleson and Weiss [22] obtained the following result:

THEOREM 1. Supposethat 0 < p <1 and 6 > % — % Then the operator f —
BSf is bounded on HP(R"), and satisfies

1Bl 110 @y < ClLF N o ey -

Let w be a Muckenhoupt weight and H} (R") be the weighted Hardy spaces. Lee
[16] obtained the following HJ (R™) boundedness for the Bochner-Riesz means Bg f
by using the atomic decomposition of H}(R") and their molecular characterizations.

THEOREM 2. Let w € Ay with critical index r,, for the reverse Holder condition.
Suppose that 0 < p <1 and § > max{’ — ol (Bl — 21}, Then the operator

rp—1
f Bg f is bounded on HL(R"), and satisfies
183 g ey < I

Lee [16] also proved that the maximal operator B? has the following strong type
boundedness.

THEOREM 3. Let w € Ay. Suppose that 0 < p <1 and 6 > ;’—7— ”2i1 Then the
operator f — B2 f is bounded from HL(R") to L},(R"), and satisfies

5
B3 £l ey < CILF g ey

In the paper, we aim to extend the above results to the generalized weighted Hardy
spaces and variable Hardy spaces as well as their corresponding dual spaces. For a
weight w let r, =inf{re N:w e A,}, s,, = min{sp € NU{0} : p(n+s¢) > nry,} and
ty = min{tg € NU{0} : g(n+1o— o) > nryq }. We define ¢’ by é + % =1 and g(-) by
ﬁ + ﬁ =1 forany x € R". We also write d = min{dy € NUU{0} : p~ (n+dp) > n}.
We defer other technique definitions to Section 2.

Now we state the main results in our paper.

THEOREM 4. Let 0 <po <1, w€A,/, and 6 = %—’lzil. If po < p < oo, then

the operator f — B2 f is bounded from HE(R™) to L, (R™), and satisfies

1B2 £ 1l 2,y < ClLF g -
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THEOREM 5. Let 0 < pg <1 and 6 = %—% If p(-) e LH(R"), po < p~ <

pt < oo, the operator f — BOf is bounded from HP")(R") to LP")(R"), and satisfies
||BffHLp(-)(Rn) < CHf”Hp(-)(Rn)'

THEOREM 6. Let 0 <po <1, w€A,/, and 6 = %—’lzil. If po < p < oo, then

the operator f Bg f is bounded on HY(R"), and satisfies
183 g ey < I

Moreover, if po < p < 1, then the operator f — Bl‘zf is also bounded on CM O, (R"),
and satisfies

1)
||BRchM0’M’,(R") < C||fHCM0’M’,(R")'

THEOREM 7. Let 0 < po <1 and § = - — L If p(-) € LH(R"), pp < p~ <
pt < oo, the operator f v+ BSf is bounded on HP")(R"), and satisfies

1BR 2ot ey < CIF N 0t ey

Moreover, if po < p~ < p™ < 1, then the operator f +— Bgf is also bounded on
CMOPY)(R"), and satisfies

S
||BRf||CMOI’(')(R”) < C”fHCMOI’(')(]R")'

Throughout this paper, C or ¢ denotes a positive constant that may vary at each
occurrence but is independent to the main parameter, and A ~ B means that there are
constants C; > 0 and C, > 0 independent of the the main parameter such that C;B <
A < (,B. Given a measurable set S C R”, |S| denotes the Lebesgue measure and s
means the characteristic function. By a cube Q we will always mean a cube whose
sides are parallel to the coordinate axes. £(Q) will denote the length of Q and CQ will
denote the cube with same center ¢p such that £(CQ) = C{(Q).

2. Preliminaries

In this section, we state some definitions and known results about weighted and
variable exponent function spaces. We first recall some known results about weighted
function spaces. For more information, see [5, 10, 17]. Given a measurable function
w> 0, for 1 < p <eo,itissaid that w € A}, if

oy o) (g 7o) <=

where the supremum is taken over all cubes Q CR". If 1 < p < e and w € A, then
the Hardy-Littlewood maximal operator M is bounded on weighted Lebesgue space
LP(w).
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Define the set
Anx) == UpglAp

and define
ry=inf{r>1:weA,}.

A weight w € RH, for some s > 1 if for every cube Q,

1
1 s B 1
<a/QW dx) SC@/dex.

Then w € RH; if and only if w* € A.,.

We now recall the definition of the weighted Hardy spaces Hy,(R"). For more de-
tails, see [23]. Let . denote the Schwartz class of smooth functions and . its topo-
logical dual space.. Also, denote by .7, the functions f € .7 satisfying [pn f(x)x%dx =
0 for all muti-indices o € Z". := ({0,1,2,---})" and .., its topological dual space. Let
yveS, 0<p<oand y(x) =t "y(t 'x), x € R". Denote by .# the grand max-
imal operator given by . f(x) = sup{|y; * f(x)| : 1 > 0,y € Fy} for any fixed large
integer N, where

IN = {u/e S /l//(x)dx: 1, Y sup(1+ )V 0%y (x)| < 1}.
lor| <N
The weighted Hardy space Hj,(R") is the set of all f € .%’, for which the quantity
1Al gp = 1A £y < oo

Denote that

My (f)(x) = Siplm*f(X)\-
If0< p<eocoand ¢ € Zy,
11l sz ey ~ 1M () 2, (e -
For brevity, hereafter we write || f||x ) = || f||x , where X is the function space. A

function a on R” is called a (N, o) -atom, if there exists a cube Q such that suppa C Q,
lla|lz= < 1 and

/ a(x)x%*dx=0  for |a|<N-—1.
Given N > s,,, define

ﬁN={f€C8°i/Rnxﬁf(X)dx=0,0<BléN}.

Moverover, Oy is dense in HJ(R™). We here recall the following finite atomic decom-
position, which was proved in [6].
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PROPOSITION 1. Given 0 < p < o0 and w € Aw, fix N > s,,. Then if f € Oy,
there exists a finite sequence {ai}ﬁl of (N,eo) atoms with supports Q;, and a non-
negative sequence {\ M| such that f =3, Mia; and

M
’ > hixo;
i=1

We now recall the weighted Carleson measure space CMOY,(R"). Note that Car-
leson measure spaces CMO?P have been studied by many authors. See [12, 14, 15, 17,
18].

Let y € .77 satisty

supp(y) C {§ € R":1/2 <6 <2},

g C Hf”H:V
LI’
w

N 3 5
[W(E)I>C>0 ifz<E<3 and @
D RIEP =1 if&#0.

JEL

We say that a cube Q C R” is dyadic if Q = Qi = {x = (x1,x2,...,x,) € R":
277 N < xi <2777 N(kj+1),i = 1,2,...,n} for some j € Z, some fixed positive
large integer N and k = (ky,k,...,k,) € Z". Denote by ¢(Q) =27/ the side length of
O = Qjk. Denote by Z the set of all dyadic cubes Q. Denote by zgp =277k the left
lower corner of Q and by xp is any point in Q when Q = Q. For any function y
definedon R", j€Z, and Q = Q i, set

wix) =2"w(2x),  wo(x) = |0 y;(x—zp).

DEFINITION 1. Let y € . satisfy the above conditions, w € A and 0 < p < 1.
The weighted Carleson measure space CMOY,(R") is the collection of all f € .7/
fulfilling

I 0| .
— 2 oo,
1 lemor, - 325{w(p>§1Q§PW(Q)<f’WQ>} <

Define a linear map S, by

Se(f) ={{f.90)}0;

and another linear map Ty, by

Ty({so}o) = %sQWQ

For g € CMOY,(R"), define a linear functional L, by
Le(f) = (Sy(8):Se(f)) = X (g, Wo) (f 90)
(0]

for f € ... Then the weighted Carleson measure space CMO% (R") is the dual space
of the weighted Hardy space H},(R").
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PROPOSITION 2. Suppose that w € Aw, 0 < p < 1. The dual of H}(R") is
CMOY,(R") in the following sense.
(1) For g € CMO{L(R"), the linear functional Ly, defined initially on 7., extends to a
continuous linear functional on HY(R") with ||L,|| < Cllgllearon -
(2) Conversely, every continuous linear functional L on HY satisfies L = Ly for some
§ € CMOG(R") with ||g]| cyon, < CIIL|-

Now we state some basic results about variable exponent function spaces. For
more information, see [3, 7, 9, 20, 25]. For any Lebesgue measurable function p(-) :
R" — (0,e<] and for any measurable subset E C R", we denote

p (E)=infp(x),  p"(E)=supp(x).
xe€E x€E
Especially, we denote p~ = p~ (R") and p* = p™(R"). Let p(:): R" — (0,o0) be
a measurable function with 0 < p~ < p* < oo and Z?° be the set of all these p(-).
Let p(-) : R" — (0,e0] be a Lebesgue measurable function. The variable Lebesgue
space LP() consisits of all Lebesgue measurable functions f, for which the quantity
Jn |€£(x)[PWdx is finite for some € > 0 and

(*)
|vmmﬁﬂ%>o:wﬁ%ﬂf wg*.

We also recall the following class of exponent function, which can be found in [8].
Let # be the set of p(-) € & such that the Hardy-littlewood maximal operator M is
bounded on L) . An important subset of % is the LH condition.

In the study of variable exponent function spaces it is common to assume that the
exponent function p(-) satisfies the LH condition. We say that p(-) € LH, if p(-)
satisfies

p(x) —p)| < —————, |Jx—y|<1/2
“Tog(x o))
and
P~ PO) < — >l
p py ~ 10g‘x‘—|—e’ y = .

Itis well known that p(-) € B if p(-) € ZNLH. Let f€ ., ye .7, p(-) € 2°.
The variable Hardy space HP) is the set of all f €., for which the quantity

||fHHI’(') = H‘%fHLI’(') < oo,
If p(-) € LHR") N Z°(R") and ¢ € Fy,
11 zzp) ey ~ 1Mo () o) ey -

Given N > d, Oy is dense in HP()(R"). We have the following finite atomic
decomposition for variable Hardy space. For more results about variable Hardy spaces,
we refer to [7, 20, 24, 26, 30, 31, 32].
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PROPOSITION 3. Given p(-) € LHNZ, fix N >d. Thenif f € H’')(R"), there
exists a finite sequence {ai}ﬁl of (N,eo) atoms with supports Q;, and a non-negative
sequence {li}f-‘i | such that f =Y;Aja; and

<Ol fll ot -
r()

We now introduce a new space CMOP") (R") as follows.

DEFINITION 2. Let y € .% define above, and 0 < p~ < p™ < 1. The Carleson
measure space CMOPC)(R") is the collection of all f € ./, fulfilling

1/2
_ 1 o,
1 learort : PEQ{ ||XPH2 /n Y 1017 (f, vo) [*x0(x)d } <

ocre

PROPOSITION 4. Suppose that p(-)eLH, 0<p~<pT<1. The dual of H"")(R")
is CMOPU)(R") in the following sense.
(1) For g € CMOP(')(R”), the linear functional Ly, defined initially on .%.., extends to
a continuous linear functional on HPU)(R") with ||Lg|| < Cllgll cprort -
(2) Conversely, every continuous linear functional L on H P(')(R") satisfies L = Lg for
some g € CMOPU) (R™) with &l carorty < CIILJI.

3. Proofs of main results

In this section we prove the main results by applying the finite atomic decomposi-
tions in terms of L™ atoms and using an argument of weak density property. Note that
the weak density property is very useful when we deal with the bounedness of operators
on Carleson measure type spaces or Lipschitz type spaces (see [1 1, 13, 27, 28]). In the
following, we first prove that when & is greater than the critical index, the maximal
Bochner-Riesz means are bounded on generalized weighted Hardy spaces and variable
Hardy spaces. Now we state the following Fefferman-Stein vector-valued inequalities
for maximal operators on weighted Lebesgue spaces.

PROPOSITION 5. [I] Let 0 < p < e and w € A,. Then for any g > 1, f =
{ﬁ}iGZr fl S Ll()c(Rn)y

NIV sl ey < Il ey

where M(f) = {M(fi)}iez-

We also need the following boundedness of the vector-valued maximal operator M on
variable Lebesgue spaces, whose proof can be found in [4] via extrapolation.
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PROPOSITION 6. Let p(-) € LHNZ. Then forany q > 1, f ={fi}icz, fi €
Lloc(Rn);
M) il gy < Ul gy

where M(f) = {M(fi)}icz.

Proof of Theorem 4. By Proposition 1, for po < p <eand we€ A,/ , fix No >
Sw, then if f € Oy, , there exists a finite sequence {a} ", of (Np,e°) atoms with sup-
ports Q;, and a non-negative sequence {A;}*2, such that

M
= Z ?Liai
i=1

and

M
Z Aixo:
i=1

) < CHf”H({,(R")'
L (R")

By the sublinearity of Bf, we have

HB f||L” (R™)

L@(R”)

To prove our theorem, we first need the following estimate for the action of the
operator on atoms, whose proof can be found in [19, page125-pagel127] or [29, Lemma
3.2]. Given any (Np,eo)-atom a, we claim that for x € R”,

0(Q)/ro

5
|Bya(x)| < C(E(Q) =TS

Hence, for all x € R" we have
Bla(x) < CM(x0)(x)"/7.

Therefore, by w € A Proposition 5 and Proposition 1 we get

r/po>

po(|l/po

<e|(Zro)
=C ZAIXQ
=1 L

o 9
Z A,iB* a;
i=1 L (R

<<|(3)”

L4/ @)

1/po
< Cll fll e

/70 ()

Since that Oy, is dense in H}(R"), then by the density argument B? can be ex-
tended to a bounded operator from HJ(R") to L (R"). Therefore, we have completed
the proof. [



ESTIMATES FOR BOCHNER-RIESZ MEANS 1035

Proof of Theorem 5. The proof of Theorem 5 is very similar to the above proof and
so we only need to show the differences. To prove the variable Hardy spaces estimates,
we only need to show that

l

Choose Ny > d and observe that py < p~ < pt < e and p(-) € LH. Therefore,
by Proposition 6 and Proposition 3 we get

<A o) ey -
OE) X PO (R

M
liBfai
i=1

=

M M Poj|1/po
> AiBla; < CH (2/LM(XQ>””°)
i=1 Lp(-)(Rn) i=1 LP(‘)/P() (R”)
M po||1/po M
<CH<27WCQ) =C|| X Aixo < ClA ot gy -
i—1 1P/ o (R") i—1 ()

Since that O, is dense in Hp(')(R”), then by the density argument B® can be

extended to a bounded operator from H”()(R") to LP()(R"). Thus, we completed the
proof. [

Under the same hypothesis of Theorem 4 and Theorem 3, if we replace B f by
Bg f, then the results can be strengthened again. Before we give the proof of Theorem
6 and Theorem 7, we recall the following propositions on the weak density property for
CMOL(R") and CMOPU)(R").

PROPOSITION 7. [27] Let w € Aee and 0 < p < 1. If f € CMOY,(R"), then there
exist a sequence {fn}y € CMOYL(R") N L*(R") such that f,, converges to f in the
distribution sense. Furthermore,

||fm||CM0’W’, < C”fHCMo{;’ for f€CMOL(R").

PROPOSITION 8. [25] Let p(-) € LH and 0 < p~ < pt < 1. If f € CMOP)(R™),
then there exist a sequence {f,,} € CMOPY)(R") N L*(R") such that f,, converges to
[ in the distribution sense. Furthermore,

HmeCMOP(-) <CHf”c[t/[op(% for fGCMOP(')(R").

Proof of Theorem 6. By Proposition 1, for pg <p <eand w €A, ., fix No >
Sw, then if f € Oy, , there exists a finite sequence {a,-}?i 1 of (No,e°) atoms with sup-
ports Q;, and a non-negative sequence {li}f‘i | such that

M
=2 A
i=1

and

M
2 )LiXQi
i=1

< ClI Sl pzp ey -
Li(R")
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By the linearity of Bg, we have

BRI 5 )

LY (R")

To prove it, we need a maximal opertor estimate for the action of the operator Bg

on atoms, whose proof can be found in [29, Lemma 3.3]. Suppose that ¢ € co (R™),
supp @ C {|x| < %}, ¢ >0 and [@dx =1. Given any (Np,)-atom a, then for
0 <t <o and x € R",

¢(Q)"'ro
(€(Q) + lv—coly"m

|+ Bja(x)| < C 3)

Hence, for all x € R",

BRa(x) < CM(x0)(x)"/7.

Therefore, repeating the same argument in Theorem 4 we can show that Bg can
be extended to a bounded operator from Hj(R") to H[(R"). Next we show that B is
a bounded operator on CMO%, (R") NL?(R") to CMO%(R") NL*(R"), when 0 < p~ <

* < 1. The adjoint operator Bl‘z’* is defined by

<Bg7*f,g> = <f,B§3g>, f.ge 7.

The kernel of Bg’* also satisfies the conditions (1) and (3). Hence, Bg’* is also a
bounded operator from H}, (R") to Hf(R"). Then applying Proposition 2 yields that

|(Bar.8)| = |(£:B%"8)| < I lcaonan 1BE "8l gize) < OIS Icaon o 8y

That is, for each f € CMOL(R") NLA(R"), Ly(g) = (B3f.g) is a continuous linear
functional on HY(R™)NL*(R"). Since that w € A.., then by the fact HJ(R") N L*(R")
is dense in Hj(R"), Ly can be extended to a continuous linear functional on HE(R™)
with

ILs [l < Cllifllepon -

Conversely, by Propostion 2 again, there exists h € CMO},(R") such that (B3 f,g)
— (h,g) for g € HL(R") NLA(R") with

HhHCMoﬁ, gCHLf||~

Thus,

Gep W

1/2
1 10| 5 2
B p = B,
1Brf |l cmor, sgg{w(P)f’l Z W Q)‘< ®S ‘/’Q>\ }
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1/2
1 Q| 2
= h’

= tllemop < ClILAl < ClIS lenon -

Next we extend this result to CMOY,(R") via an argument of weak density prop-
erty. Suppose that f € CMO!,(R"). By Proposition 7, we can choose a sequence
{fn} C CMO%(R") N L*(R") with

||fm||CMO(i, < C||chM0’M’,

such that f;, convergesto f in the distribution sense. Therefore, for f € CM O{’V(R"),
define

(B3f.g) = lim (Bifu.g), for geHLR")NIARY),

In fact, we have (B3(fi — f}).g) = <f,- —fj,Bg’*(g)>, where f; — f; and g belong to
I2(R"). So we have B3¢ € HE(R") N L2(R"). Then we get that

(BR(i—£)s8) = (fi— £ BY"(8)) =0
as j, k — oo, Therefore, Bg f is well defined and
(555} = i (i)

forany g € HY(R")NL*(R") and f,, € CMO%,(R")NL*(R"). Then by Fatou’s Lemma,
for each dyadic cube P in R",

1/2
o Z (o |

ocP

1/2
] L 3 b))

QcP

Hence,
1) P 1)
||BRf||CM05, < lgnggf\\BRfmIICMoa, < CHfm”CMoﬁ, < CHchMOﬁ,-
Therefore, we have completed the proof. [

Proof of Theorem 7. The proof of Theorem 7 is nearly identical to the above proof
and so we only need to show the differences. To prove the variable Hardy spaces
estimates, we only need to show that

l

M
2 JL,-Bga,-
i=1

< ) (R -
O E) Hf”Hp()(R )



1038 J. TAN

Choose Ny > d and observe that py < p~ < pt < e and p(-) € LH. Therefore,
by Proposition 6 and Proposition 3 we similarly get the desired results. The proof of
variable Carleson measure spaces estimates for Bg is also essentially the same as the
proof of Theorem 6. By applying Proposition 4 and Proposition 8, we can obtain that

) PR 1)
HBRfHCMop(-) < 1%£f||BRfm||CM0P(-) < CHfInHCMop(-) < CHf||CM0p(-)~

Thus, we complete the proof. [
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