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PERTURBATION BOUNDS FOR MATRIX FUNCTIONS

MOHSEN MASOUDI ∗ AND ABBAS SALEMI

(Communicated by M. S. Moslehian)

Abstract. In this article, we present some bounds for ||| f (A)− f (B)||| , where f is a real function
and is continuously differentiable on an open interval J , |||·||| is a unitarily invariant norm, and
A,B are Hermitian matrices such that the eigenvalues of A and B are in [α ,β ] ⊂ J . Also, we
illustrate upper bounds for ‖ f (A)− f (B)‖ for special functions f and norms ‖·‖ .

1. Introduction

Suppose that Mm,n denote the set of all m× n complex matrices. We indicate
Mn,n by Mn . We use notations Hn and Un for the set of all Hermitian matrices and
unitary matrices in Mn , respectively. For A ∈ Mn , matrix A∗ denote the conjugate
transpose of the matrix A . The symbol I denotes the identity matrix in Mn . For
A,B ∈ Mn , we use notation A◦B for Schur product of matrices A and B . Let A ∈ Hn

and σ(A)⊆ [α,β ] . If A =U∗DU is the spectral decomposition of the Hermitian matrix
A and f is a complex function on [α,β ] , then we define f (A) := U∗ f (D)U (for more
details see [8]). For a matrix A ∈ Hn , we write A � 0 (A > 0), if A is a positive
semi-definite (definite) matrix. For two Hermitian matrices A and B , the notation
A � B (A > B) means that A−B � 0 (A−B > 0). We define a matrix interval by
[A,B] = {X ∈ Hn|A � X � B} and (A,B) = {X ∈ Hn|A < X < B} . Suppose that f is
a real function. We say that f is an operator monotone, if f (A) � f (B) , whenever
A � B . Let J be an open interval in R . We write f ∈ C 1(J) , if real function f is
continuously differentiable on J . Let A ∈ Mm,n and m � n . We denote ith singular
value of the matrix A by si(A) , 1 � i � m . We say that a norm ‖·‖ is matrix norm on
Mn , if ‖AB‖ � ‖A‖‖B‖ . A norm |||·||| on Mm,n is called unitarily invariant norm if
|||A||| = |||UAV ∗||| , for all A ∈ Mm,n and unitary matrices U ∈ Um and V ∈ Un . Also
a norm ‖·‖ on Mn is said to be unitary similarity invariant if ‖A‖ = ‖UAU∗‖ , for all
A∈Mn and all unitary matrices U ∈Un . Let A = (ai j)∈Mm,n . Define ‖A‖2 := s1(A) ,
‖A‖2

F := ∑
i, j

∣∣ai j
∣∣2 and indicate

‖A‖1 := max
j

∑
i

∣∣ai j
∣∣, ‖A‖∞ := max

i
∑
j

∣∣ai j
∣∣.
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The Schur product or the Hadamard product of two matrices A and B is defined to be
the matrix A◦B whose (i, j)-entry is ai jbi j [9].

One of the problems in perturbation theory is to find a bound for ‖ f (A)− f (B)‖
in terms of ‖A−B‖ . For example, consider the differential equation

d2y
dt2

+Ay =0 (t > 0), y(0) = y0, y′(0) = y′0, (1.1)

where A is a Hermitian positive definite matrix and y0,y′0 ∈ Cn [8, p. 36]. We know
that for all t > 0, the matrix function

y(t) = cos(
√

At)y0 +(
√

A)−1 sin(
√

At)y′0, (1.2)

is the solution of equation (1.1). Suppose that nonsingular matrix Ã is an approxima-
tion to the matrix A and let ỹ(t) be the solution of equation (1.1) with the matrix Ã .
If A, Ã ∈ [αI,β I] (α > 0) , we want to obtain a bound for ‖y(t)− ỹ(t)‖ in terms of∥∥A− Ã

∥∥ .
The perturbation bounds for several matrices, special matrix norms, and operator

functions have been obtained by many authors. For example Bhatia et al. [3] con-
sidered the exponential function and the power functions f (x) = xp , −∞ < p < ∞ ,
on the Hilbert space H . Loan in [12] studied f (x) = ext on Mn . Hemmen and
Ando [7] proved that if A,B are positive definite and A + B � cI for some c > 0
and f is a matrix monotone increasing function on [0,∞) , then ||| f (A)− f (B)||| �(

f (c/2)− f (0)
c/2

)
|||A−B||| . Gil in [5, Theorem 1.1] for diagonalizable matrices A,B ∈Mn

obtained a bound for ‖ f (A)− f (B)‖F . A bound for ‖ f (A)− f (B)‖F with arbitrary
matrices and functions regular on the closed convex hull of the spectra has been de-
rived in [6, Lemma 2.1] and has been generalized to infinite dimensional operators in
[4, Chapter 13].

In this paper, we will find some bounds for |||A◦B||| , where A,B ∈Mm,n and |||·|||
is a unitarily invariant norm and then we will present some bounds for ||| f (A)− f (B)||| ,
where A,B ∈ Hn and f is a real function. Also, some special cases are considered.

2. Bounds for |||A◦B|||

Let A,B ∈ Mn and |||·||| be a unitarily invariant norm on Mn . At the first, we
obtain some bounds for |||A◦B||| . Then, for some special norms, we present a better
bound for ‖A◦B‖ .

DEFINITION 1. Let A = (ai j)∈Hn be a Hermitian matrix. We indicate di (A) for
ith entry of decreasingly ordered diagonal entries of the matrix A . So d1 (A) � d2 (A) �
· · ·� dn (A) . Let A∈Mm,n and |A| := (A∗A)

1
2 be absolute value of the matrix A . Then

ri (A) : =
(
di(|A∗|2)

) 1
2
, pi (A) := di(|A∗|); 1 � i � m,

c j (A) : =
(
d j(|A|2)

) 1
2
, q j (A) := d j (|A|); 1 � j � n.
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Suppose that A = USV ∗ ∈ Mm,n , where m � n , is the singular value decomposi-
tion of A and let α = [α1,α2, · · · ,αm]T ∈ R

m . Define

P(A)α := USαU∗ := Udiag
(
s1(A)α1 ,s2(A)α2 , · · · ,sm(A)αm

)
U∗,

Q(A)α := VSαV ∗ := Vdiag
(
s1(A)α1 ,s2(A)α2 , · · · ,sm(A)αm ,0, · · · ,0)

V ∗.

To remove the ambiguities, we define 0β := 0, for all β ∈ Rn . Suppose that

pi (A,α) := di

(
P(A)2α

)
, i = 1,2, · · · ,m,

q j(A,α) := d j

(
Q(A)2α

)
, j = 1,2, · · · ,n.

Also, ti (A,α) := (pi (A,α)qi (A,e−α))
1
2 , i = 1,2, · · · ,m , where e = [1,1, · · · ,1]T ∈

Rm.

The class of Ky Fan k -norms defined as

‖A‖(K) =
k

∑
j=1

s j(A), 1 � k � n. (2.1)

LEMMA 2.1. [2, Theorem IV.2.2] (Fan Dominance Theorem) Let A,B be two
n×n matrices. If

‖A‖(K) � ‖B‖(K) for 1 � k � n,

then

|||A||| � |||B||| for all unitarily invariant norms.

In the next, we obtain some bounds for |||A◦B||| , where |||·||| is a unitarily invariant
norm on Mm,n .

THEOREM 2.2. For every unitarily invariant norm |||·||| and A,B ∈ Mm,n , with
m � n, we have

|||A◦B||| � inf
X ,Y, X∗Y=A

(c1(X)c1(Y )) |||B||| � inf
α∈Rm

t1(A,α) |||B||| .

Proof. Let m � n and A = X∗Y . By [9, Theorem 5.6.2], for k = 1,2, · · · ,m , we
have

k

∑
i=1

si (A◦B) �
k

∑
i=1

ci (X)ci (Y )si (B) � (c1(X)c1(Y ))
k

∑
i=1

si (B).

Therefore, by the Fan dominance theorem, for all unitarily invariant norm |||·||| , we
have |||A◦B||| � c1(X)c1(Y ) |||B||| and hence

|||A◦B||| � inf
X ,Y, X∗Y=A

(c1(X)c1(Y )) |||B||| .
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For the second inequality, let α ∈ Rm and A = USV ∗ be the singular value de-
composition of the matrix A . Choose X = SαU∗ and Y = Se−αV ∗ . Hence,

c1(X)c1(Y ) = (p1 (A,α)q1 (A,e−α))
1
2 = t1 (A,α)

and so

inf
X ,Y, X∗Y=A

c1(X)c1(Y ) � inf
α∈Rm

t1(A,α). (2.2)

Therefore proof is completed. �

COROLLARY 2.3. For all A,B ∈ Mm,n and unitarily invariant norm |||·||| , we
have

|||A◦B||| � (p1 (A)q1 (A))
1
2 |||B||| � (r1 (A)c1 (A))

1
2 |||B||| � s1(A) |||B||| , (2.3)

|||A◦B||| � min{p1(A),q1(A)}|||B||| � min{c1 (A) ,r1 (A)}|||B||| . (2.4)

Proof. Since t1(A, 1
2e) = (p1 (A)q1 (A))

1
2 , by Theorem 2.2, we have

|||A◦B||| � (p1 (A)q1 (A))
1
2 |||B||| .

We know that p1 (A) � r1 (A) and q1 (A) � c1 (A) (See [9, p. 342]. Also, we have
max{c1(A),r1(A)} � s1(A) . Therefore (2.3) is proved.

By choosing α = e and α = 0 in Theorem 2.2, we obtain the inequality (2.4). �
If A is a Hermitian matrix, then p1(A) = q1(A) and r1(A) = c1(A) . Moreover, if

A � 0, then p1 (A) = q1 (A) = d1 (A) and so we have the following corollary:

COROLLARY 2.4. [1, page 59] If A,B ∈ Mn and A � 0 , then

|||A◦B||| � d1 (A) |||B||| = max
i
{aii}|||B||| . (2.5)

REMARK 1. Let ‖·‖ be one of the norms ‖·‖1 , ‖·‖∞ , or ‖·‖F . Then, for all
A,B ∈ Mm,n , we have

‖A◦B‖ =
∥∥(ai jbi j)

∥∥ � max
i, j

|ai j|‖B‖. (2.6)

The inequality (2.6) is not true for every unitarily invariant norm |||·||| . For example, let

A =
[

28 100
100 102

]
and B =

[
17 33
−30 116

]
. Therefore,

max
i, j

|ai j|‖B‖2 = 12557 < ‖A◦B‖2 = 12593.
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3. Bounds for ‖f(A)− f(B)‖

Let f ∈ C 1(J) and D = diag(d1,d2, · · · ,dn) , di ∈ J . We denote the first divided

differences of f at D by f [1] (D) as
(

f [1] (D)
)

i, j
:= f [1](di,d j) , where:

f [1](di,d j) :=

{
f ′ (di) , di = d j

f (di)− f(d j)
di−d j

, di 
= d j.

Let A ∈ Hn and A = U∗DU , where U ∈ Un and D is a diagonal matrix. We
define f [1] (A) = U∗ f [1] (D)U . The map f is called (Frechet) differentiable at A if
there exists a linear transformation D f (A) on Hn such that for all H ∈ Hn

‖ f (A+H)− f (A)−D f (A)(H)‖ = o(‖H‖) .
The linear operator D f (A) is called the derivative of f at A . Now, in the follow-

ing, we state the relationship between the derivative D f (A) and the matrix f [1] (A) .

LEMMA 3.1. [2, Theorem V.3.3] Let f ∈ C 1(J) and let A be a Hermitian matrix
with all its eigenvalues in J . Then

D f (A)(H) = U
(

f [1] (D)◦U∗HU
)
U∗,

where A =UDU∗ is the spectral decomposition of A and ◦ denotes the Schur-product.

LEMMA 3.2. [2, Theorem X.4.5] Let f be a differentiable map from a convex
subset U of a Banach space X into a Banach space Y . Let a,b ∈U and let L be the
line segment joining them. Then

‖ f (b)− f (a)‖ � sup
u∈L

‖D f (u)‖‖a−b‖.

Suppose that A,B ∈ [αI,β I] and Lt := tA + (1− t)B , for all 0 � t � 1. Then
Lt ∈ [αI,β I] . Let

Lt = UtDtU
∗
t , for all 0 � t � 1, (3.1)

where Dt and Ut are diagonal and unitary matrices, respectively. For a given A ∈ Mn ,
assume that SA be the linear map on Mn , where is defined by SA(Z) := A◦Z .

THEOREM 3.3. Let f ∈ C 1(J) and A,B ∈ [αI,β I] , where [α,β ] ⊂ J . Suppose

that ‖·‖ is a unitary similarity invariant norm and M := sup
0�t�1

∥∥∥S f [1](Dt)

∥∥∥ , where Dt is

defined in (3.1). Then
‖ f (A)− f (B)‖ � M‖A−B‖. (3.2)

Moreover, if |||·||| is a unitarily invariant norm, then

||| f (A)− f (B)||| � sup
0�t�1

inf
Xt ,Yt , X∗

t Yt= f [1](Dt)
(c1(Xt)c1(Yt)) |||A−B|||

� sup
0�t�1

inf
α∈Rm

t1
(

f [1](Dt),α
)
|||A−B||| . (3.3)
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Proof. By Lemma 3.2,

‖ f (A)− f (B)‖ � sup
0�t�1

‖D f (Lt)‖‖A−B‖.

Using Lemma 3.1, for all 0 � t � 1, we have

‖D f (Lt)‖ = sup
‖Z‖=1

‖D f (Lt )(Z)‖ = sup
‖Z‖=1

‖D f (UtDtU
∗
t ) (Z)‖

= sup
‖Z‖=1

∥∥∥Ut

(
f [1] (Dt)◦U∗

t ZUt

)
U∗

t

∥∥∥
= sup

‖Z‖=1

∥∥∥ f [1] (Dt)◦U∗
t ZUt

∥∥∥ =
∥∥∥S f [1](Dt)

∥∥∥.

Therefore,

‖ f (A)− f (B)‖ � sup
0�t�1

∥∥∥S f [1](Dt )

∥∥∥‖A−B‖ = M‖A−B‖.

Now, let |||·||| be a unitarily invariant norm and 0 � t � 1. By using Theorem 2.2,
for all Z ∈ Mn , we have∣∣∣∣∣∣∣∣∣ f [1] (Dt)◦Z

∣∣∣∣∣∣∣∣∣ � inf
Xt ,Yt , X∗

t Yt= f [1](Dt)
(c1(Xt)c1(Yt)) |||Z||| .

Hence,

M = sup
0�t�1

∥∥∥S f [1](Dt)

∥∥∥ = sup
0�t�1

∣∣∣∣∣∣∣∣∣ f [1] (Dt)◦Z
∣∣∣∣∣∣∣∣∣ � sup

0�t�1
inf

Xt ,Yt , X∗
t Yt= f [1](Dt)

(c1(Xt)c1(Yt)) .

Therefore, the first inequality of (3.3) obtain by (3.2) and the second inequality of
(3.3), obtain by relation (2.2) in Theorem 2.2. �

Let 0 � t � 1. Since the matrix f [1](Dt) is a symmetric matrix, we obtain that
p1( f [1](Dt)) = q1( f [1](Dt)) and r1( f [1](Dt)) = c1( f [1](Dt)) . Since for all A ∈ Mn ,

we have t1(A, 1
2e) = (p1 (A)q1 (A))

1
2 . Therefore by using (3.3) and (2.3), we have the

following:

COROLLARY 3.4. Let f ∈C 1(J) and A,B∈ [αI,β I] , where [α,β ]⊂ J . Suppose
that Dt is the same as in (3.1). Then, for all unitarily invariant norm |||·||| ,

||| f (A)− f (B)||| � sup
0�t�1

p1

(
f [1](Dt)

)
|||A−B||| � sup

0�t�1
r1

(
f [1](Dt)

)
|||B|||

� sup
0�t�1

s1

(
f [1](Dt)

)
|||A−B||| .

Let Ω be the set of all unitary similarity invariant norms ‖·‖ , such that ‖A◦Z‖ �
d1 (A)‖Z‖ , whenever A � 0 and Z ∈Mn . By Corollary 2.4, all of the unitarily invariant
norms are in Ω . In the next theorem, we present a bound for ‖ f (A)− f (B)‖ , when
‖·‖ ∈ Ω and f is an operator monotone.
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COROLLARY 3.5. Let f be an operator monotone on [α,β ] and A,B ∈ [αI,β I]
and ‖·‖ ∈ Ω . Then

‖ f (A)− f (B)‖ � max{ f ′(α), f ′(β )}‖A−B‖.

Proof. By using [2, Theorem V.3.6], we have f ∈ C 1(α,β ) . Let Lt = tA +
(1− t)B , 0 � t � 1. Then Lt ∈ [αI,β I] . Since f on [α,β ] is operator monotone,
by using [2, Theorem V.3.4], f [1] (Lt) � 0. Hence f [1] (Dt) � 0, where Dt is defined
in (3.1). Since ‖·‖ ∈ Ω , by using (2.4), for all Z ∈ Mn and 0 � t � 1 we obtain that∥∥∥ f [1] (Dt)◦Z

∥∥∥ � d1

(
f [1](Dt)

)
‖Z‖ � max

dt∈σ(Lt)
f ′ (dt)‖Z‖

� max
α�c�β

f ′ (c)‖Z‖ = max
{

f ′(α), f ′(β )
}‖Z‖.

Therefore, for all 0 � t � 1,∥∥∥S f [1](Dt )

∥∥∥ � max
{

f ′(α), f ′(β )
}

.

Hence
M = sup

0�t�1

∥∥∥S f [1](Dt )

∥∥∥ � max
{

f ′(α), f ′(β )
}

.

Using (3.2), proof is completed. �

REMARK 2. If f is an operator monotone on [0,∞) into itself, then by using [2,
Theorem V.3.6], f on [0,∞) is continuously differentiable and by using [2, Theorem
V.2.5], the operator f is concave and so max{ f ′(α), f ′(β )} = f ′ (α) . Therefore, by
using Corollary 3.5, for all norm ‖·‖ ∈ Ω , we have

‖ f (A)− f (B)‖ � f ′(α)‖A−B‖,
where A,B � αI , α > 0 (see [2, Theorem X.3.8]).

Let Γ be the set of all unitary similarity invariant norms such that ‖S ◦Z‖ �
max
i, j

|si j|‖Z‖ , for all symmetric matrices S ∈ Mn and Z ∈ Mn . By Remark 1, we see

that ‖ · ‖F , ‖ · ‖1 , and ‖ · ‖∞ are in Γ and ‖.‖2 is not in Γ .
In the following, we present a bound for ‖ f (A)− f (B)‖ , when ‖·‖ ∈ Γ .

THEOREM 3.6. Let f ∈ C 1(J) and A,B ∈ [αI,β I] , where [α,β ] ⊂ J . Then, for
all ‖·‖ ∈ Γ ,

‖ f (A)− f (B)‖ � max
α�c�β

∣∣ f ′ (c)∣∣‖A−B‖.

Proof. Let Lt and Dt , be the same as in (3.1), for all 0 � t � 1. By assumptions,∥∥∥ f [1] (Dt)◦Z
∥∥∥ � max

i, j

∣∣∣( f [1] (Dt))i j

∣∣∣‖Z‖
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for all Z ∈ Mn . Using the mean value theorem, we have ( f [1] (Dt))i j = f ′(ci j) , where
λn (Dt) � ci j � λ1 (Dt) , for 1 � i, j � n . Therefore∥∥∥ f [1] (Dt)◦Z

∥∥∥ � max
λn(Dt)�c�λ1(Dt)

∣∣ f ′ (c)∣∣‖Z‖ � max
α�c�β

∣∣ f ′ (c)∣∣‖Z‖.
Hence,

M = sup
0�t�1

∥∥∥S f [1](Dt )

∥∥∥ � max
α�c�β

| f ′ (c) |.

Using (3.2), the proof is completed. �
We couldn’t prove Theorem 3.6, for all unitary similarity invariant norms. But own
conjecture is as following:

CONJECTURE 1. Let f ∈ C 1(J) and A,B∈ [αI,β I] , where [α,β ]⊂ J . Then, for
all unitary similarity invariant norms ‖·‖ ,

‖ f (A)− f (B)‖ � max
α�c�β

∣∣ f ′ (c)∣∣‖A−B‖.

PROPOSITION 3.7. Let ‖·‖ ∈ Γ and f ∈ C 1(J) and let A,B ∈ [αI,β I], where
[α,β ] ⊂ J . If f is an increasing and concave map on [α,β ] , then

f ′ (β )‖A−B‖ � ‖ f (A)− f (B)‖ � f ′ (α)‖A−B‖. (3.4)

Proof. Let g be the inverse of f on [θ ,γ] := [ f (α), f (β )] into [α,β ] . So g ∈
C 1(θ ,γ) and is a increasing and convex. Let E = f (A) and F = f (B) . Therefore
E,F ∈ [θ I,γI] .

Since f is increasing and concave on [α,β ] , using Theorem 3.6,

‖ f (A)− f (B)‖ � max
α�c�β

∣∣ f ′ (c)∣∣‖A−B‖ = f ′ (α)‖A−B‖. (3.5)

Since g is increasing and convex on [θ ,γ] , by (3.5),

‖A−B‖ = ‖g(E)−g(F)‖ � g′ (γ)‖E −F‖
=

1
f ′ (β )

‖ f (A)− f (B)‖.

Therefore (3.4) holds. �
If f is a decreasing and convex map, then − f is an increasing and concave map

and if f is an increasing and convex map, then f−1 , where f−1 denoted inverse of
map f , is an increasing and concave map. Therefore we have the following :

COROLLARY 3.8. If f is a decreasing and convex map on [α,β ] , then

− f ′ (β )‖A−B‖ � ‖ f (A)− f (B)‖ � − f ′ (α)‖A−B‖, (3.6)

and if f is an increasing and convex map on [α,β ] , then

f ′ (α)‖A−B‖ � ‖ f (A)− f (B)‖ � f ′ (β )‖A−B‖. (3.7)
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EXAMPLE 1. Let A,B ∈ [αI,β I] , for α > 0. If ‖.‖ ∈ Γ , then

−rβ r−1‖A−B‖ � ‖Ar −Br‖ � −rαr−1‖A−B‖; r ∈ (−∞,0) ,

rβ r−1‖A−B‖ � ‖Ar −Br‖ � rαr−1‖A−B‖; 0 < r < 1,

rαr−1‖A−B‖ � ‖Ar −Br‖ � rβ r−1‖A−B‖; r > 1.

See [10, inequality (2.9)], [11, p. 86 and p. 87], [14, p. 29], and [15, inequalities
(2.14) and (2.15)].

THEOREM 3.9. Let f (x) = ∑∞
i=−∞ aixi with ai � 0 , for all −∞ � i � ∞ . If (r,R)

is the convergence interval of Laurent series of f and A,B ∈ [mI,MI] ⊂ (rI,RI) , then
for all matrix norm ‖·‖ on Mn , we have

‖ f (A)− f (B)‖ �
(
g′ (M)−h′ (m)

)‖A−B‖
where g(x) = ∑∞

i=0 aixi and h(x) = ∑−1
i=−∞ aixi .

Proof. Suppose that fp,q (x)= gp(x)+hq(x) , where gp(x)= ∑p
i=0 aixi and hq(x)=

∑−1
i=−q aixi , with ai � 0 for all −q � i � p . Hence fp,q (x) = ∑p

i=−q aixi . Let A,B ∈
[mI, MI] and 0 /∈ [m, M] . We show that for all matrix norm ‖·‖ on Mn ,∥∥ fp,q (A)− fp,q (B)

∥∥ �
(
g′p (M)−h′q (m)

)‖A−B‖.
By using Lemma 3.2,∥∥ fp,q (A)− fp,q (B)

∥∥ � sup
0�t�1

∥∥D fp,q (Lt)
∥∥‖A−B‖.

Since D is a linear map, we have

∥∥D fp,q (Lt)
∥∥ = sup

‖X‖=1

∥∥D fp,q (Lt) (X)
∥∥ = sup

‖X‖=1

∥∥∥∥∥D(
p

∑
i=−q

aiL
i
t)(X)

∥∥∥∥∥
= sup

‖X‖=1

∥∥∥∥∥
p

∑
i=−q

aiDLi
t (X)

∥∥∥∥∥ �
p

∑
i=−q

ai sup
‖X‖=1

∥∥DLi
t (X)

∥∥.

Let 0 � t � 1 and Lt = tA+(1− t)B . Therefore m � ‖Lt‖ � M .
If 1 � i � p , then

∥∥DLi
t (X)

∥∥ =

∥∥∥∥∥
i

∑
j=1

Li− j
t XL j−1

t

∥∥∥∥∥ �
i

∑
j=1

‖Lt‖i− j‖X‖‖Lt‖ j−1

= i‖Lt‖i−1‖X‖ � iMi−1‖X‖,
and if −q � i � −1, we have

∥∥DLi
t (X)

∥∥ =

∥∥∥∥∥
−1

∑
j=i

−Lj
t XLi− j−1

t

∥∥∥∥∥ �
−1

∑
j=i

‖Lt‖ j‖X‖‖Lt‖i− j−1

= −i‖Lt‖i−1‖X‖ � −imi−1‖X‖.
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Therefore

∥∥D fp,q (Lt)
∥∥ �

p

∑
i=−q

ai sup
‖X‖=1

∥∥DLi
t (X)

∥∥
�

p

∑
i=1

iaiM
i−1 −

−1

∑
i=−q

iaim
i−1 = g′p (M)−h′q (m) .

Since f = lim
(p,q)→(∞,∞)

fp,q , we have

‖ f (A)− f (B)‖� lim
(p,q)→(∞,∞)

∥∥ fp,q(A)− fp,q(B)
∥∥� lim

(p,q)→(∞,∞)

(
g′p (M)−h′q (m)

)‖A−B‖

=
(
g′ (M)−h′ (m)

)‖A−B‖. �

EXAMPLE 2. Let A,B ∈ [αI,β I] where α > 0. Then for all matrix norm ‖·‖ ,

∥∥∥e
1
A − e

1
B

∥∥∥ � 1
α2 e

1
α ‖A−B‖.

‖sinh(A)− sinh(B)‖ � cosh(β )‖A−B‖.
‖ln(I−A)− ln(I−B)‖ � 1

1−β
‖A−B‖,whenever β < 1.

EXAMPLE 3. Consider the diferential equation (1.1) with nonsingular matrices A
and Ã and let y and ỹ be solutions of these equations, respectively. By using Theorem
3.6, for all ‖·‖ ∈ Γ , we obtain that

‖y(t)− ỹ(t)‖

�
∥∥∥cos(

√
At)− cos(

√
Ãt)

∥∥∥‖y0‖+
∥∥∥∥√A

−1
sin(

√
At)−

√
Ã
−1

sin(
√

Ãt)
∥∥∥∥∥∥y′0

∥∥
�

(
max

α�c�β

∣∣∣∣ t
2
√

c
sin(

√
ct)

∣∣∣∣‖y0‖+ max
α�c�β

∣∣∣∣ tccos(
√

ct)− sin(
√

ct)
2c
√

c

∣∣∣∣∥∥y′0
∥∥)∥∥A− Ã

∥∥.
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