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PERTURBATION BOUNDS FOR MATRIX FUNCTIONS

MOHSEN MASOUDI* AND ABBAS SALEMI

(Communicated by M. S. Moslehian)

Abstract. In this article, we present some bounds for ||| f(A) — f(B)|||, where f is a real function
and is continuously differentiable on an open interval J, ||-|| is a unitarily invariant norm, and
A,B are Hermitian matrices such that the eigenvalues of A and B are in [a, 8] C J. Also, we
illustrate upper bounds for || f(A) — f(B)|| for special functions f and norms ||||.

1. Introduction

Suppose that .7, , denote the set of all m x n complex matrices. We indicate
Mun by My, . We use notations 7, and %, for the set of all Hermitian matrices and
unitary matrices in .#,, respectively. For A € .#),, matrix A* denote the conjugate
transpose of the matrix A. The symbol I denotes the identity matrix in .#,. For
A,B € 4, , we use notation A o B for Schur product of matrices A and B. Let A € 7,
and 6(A) C[a,B]. If A=U*DU is the spectral decomposition of the Hermitian matrix
A and f is a complex function on [c, ], then we define f(A) := U*f(D)U (for more
details see [8]). For a matrix A € J%,, we write A > 0 (A >0), if A is a positive
semi-definite (definite) matrix. For two Hermitian matrices A and B, the notation
A>B (A>B) means that A—B >0 (A—B>0). We define a matrix interval by
[A,B] = {X € #,|A <X <B} and (A,B) = {X € #]A <X < B}. Suppose that f is
a real function. We say that f is an operator monotone, if f(A) > f(B), whenever
A > B. Let J be an open interval in R. We write f € %1(1 ), if real function f is
continuously differentiable on J. Let A € .#,,, and m < n. We denote ih singular
value of the matrix A by s;(A), 1 <i<m. We say that a norm ||-|| is matrix norm on

My, if ||AB|| < ||A]|[|B]|. A norm |||-||| on .4, is called unitarily invariant norm if
Al = lUAV*|||, for all A € Ay, and unitary matrices U € %, and V € %,. Also
anorm ||-|| on .#, is said to be unitary similarity invariant if ||A|| = [[UAU*||, for all

A € M, and all unitary matrices U € %, . Let A= (a;j) € M. Define ||A]|, :=s1(A),
HAH% =2 |aij|2 and indicate
i.j

Al := m;glx2|aij Al = m?XE}aij}~
i 5 7
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The Schur product or the Hadamard product of two matrices A and B is defined to be
the matrix A o B whose (i, j)-entry is a;;b;; [9].
One of the problems in perturbation theory is to find a bound for || f(A) — f(B)||

in terms of ||A — BJ|. For example, consider the differential equation

d2y / /

—2 TAY=0(>0), y(0) =0, ¥'(0) =0, (1.1)
where A is a Hermitian positive definite matrix and yo,y, € C" [8, p. 36]. We know
that for all # > 0, the matrix function

y(t) = cos(VAt)yo + (VA) ' sin(VA1)yh, (1.2)

is the solution of equation (1.1). Suppose that nonsingular matrix A is an approxima-
tion to the matrix A and let 7(¢) be the solution of equation (1.1) with the matrix A.
If A, A € [al,BI] (o > 0), we want to obtain a bound for |[y(t) —§(¢)|| in terms of
A—Al.
H T}Ne perturbation bounds for several matrices, special matrix norms, and operator
functions have been obtained by many authors. For example Bhatia et al. [3] con-
sidered the exponential function and the power functions f(x) = x”, —oo < p < oo,
on the Hilbert space H. Loan in [12] studied f(x) = ¢“ on .#,. Hemmen and
Ando [7] proved that if A,B are positive definite and A+ B > cI for some ¢ > 0
and f is a matrix monotone increasing function on [0,e), then ||| f(A4) — f(B)|| <

(%) [|A —BJ||. Gil in [5, Theorem 1.1] for diagonalizable matrices A, B € .4,
obtained a bound for ||f(A)— f(B)||z. A bound for ||f(A)— f(B)||z with arbitrary
matrices and functions regular on the closed convex hull of the spectra has been de-
rived in [6, Lemma 2.1] and has been generalized to infinite dimensional operators in
[4, Chapter 13].

In this paper, we will find some bounds for |||A o B|||, where A,B € .#,,, and |||-||
is a unitarily invariant norm and then we will present some bounds for ||| f(A) — f(B)|]|,
where A,B € 77, and f is a real function. Also, some special cases are considered.

2. Bounds for [|AoB|||

Let A,B € ., and |||-||| be a unitarily invariant norm on .#,. At the first, we
obtain some bounds for |||AoB|||. Then, for some special norms, we present a better
bound for ||A o BJ|.

DEFINITION 1. Let A = (a;;) € 7, be a Hermitian matrix. We indicate d; (A) for
i" entry of decreasingly ordered diagonal entries of the matrix A. So d; (A) > da (A) >

~+>d,(A). Let A € Moy, and |A| := (A*A)% be absolute value of the matrix A. Then

D=

()= (A )", pild) == di(a" ) 1<i<m,

1

¢j(4): = (d;(AP)) ", ;(4) = d; (JA]: 1 < j <.
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Suppose that A = USV* € A4, ,, where m < n, is the singular value decomposi-
tion of A and let o = [a17a27---,am}T € R™. Define

P(A)* :=USU" :=Udiag (51 (A)™,52(A) %, ,s,m(A) ™) U*,
O(A)* :=VS*V* :=Vdiag (s1(A)*,52(A) %, -+ 5 (A)*,0,---,0) V*.

To remove the ambiguities, we define 0f := 0, for all B € R”. Suppose that
pi(A, ) :==d; (P(A)M) L i=1,2,---.m,

gi(A,a) ==d; (Q(A)z"‘) L j=1,2,-n.

D=

Also, t; (A, a) := (pi(A,a)qi(Ae — )
R™,

,i=1,2,---,m, where e = [1,1,---,1]" €

The class of Ky Fan k-norms defined as

k
1Al ) = 2 5i(A), 1<k<n (2.1)
j=1

LEMMA 2.1. [2, Theorem IV.2.2] (Fan Dominance Theorem) Let A,B be two
n x n matrices. If

1Al < IBll) for 1 <E<n,
then
Al < IBIll for all unitarily invariant norms.

In the next, we obtain some bounds for ||AoB||, where |||-||| is a unitarily invariant
norm on Ay, .

THEOREM 2.2. For every unitarily invariant norm |||-|| and A,B € Mo, with
m < n, we have

< i < i .
4ol <, inf (@)@ IBI< inf n(a,)B]

Proof. Let m<n and A =X*Y. By [9, Theorem 5.6.2], for k=1,2,--- ,m, we

have
k

k
Zsi (AOB) < ;Ci (X)Ci (Y)Si (B) < (Cl(X)Cl(Y)) ZS,- (B)

i=1
Therefore, by the Fan dominance theorem, for all unitarily invariant norm |||-]||, we
have [[|AoB||| < ¢1(X)c1(Y)|||B]|| and hence

AoB|| < inf X Y)) B -
l4oBll < inf (a(X)er¥)IB]
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For the second inequality, let o € R™ and A = USV* be the singular value de-
composition of the matrix A. Choose X = S*U* and Y = §*~*V*. Hence,

Nl—

ca(X)ei(Y) = (p1(A,0)q1(A,e—a))? =11 (A, @)
and so
. <
X,Y,I}I(l*fY:AC1 (X)Cl(Y) < alenﬂgmll (A7 (X). 2.2)

Therefore proof is completed. [

COROLLARY 2.3. For all A,B € My, we
have

1 1
lAe Bl < (p1(A)q1 (A))2 Bl < (ri (A)er (A)2 [IBII < si(A)[IBII,  (2.3)
A0 Bl < min{pi(A),q1(A)} Bl < min{cy (A),ri (A)}B]]. (2.4)

Proof. Since 11(A, 3e) = (p1 (A)q1 (A))% , by Theorem 2.2, we have

IAoBI| < (p1 (A) g1 (A))? B

We know that py (A) < ry(A) and g1 (A) < ¢1(A) (See [9, p. 342]. Also, we have
max{c;(A),r1(A)} <s1(A). Therefore (2.3) is proved.
By choosing &t = e and o =0 in Theorem 2.2, we obtain the inequality (2.4). [J
If A is a Hermitian matrix, then p;(A) = q1(A) and r;(A) = ¢;(A). Moreover, if
A >0, then p; (A) =¢q; (A) =d; (A) and so we have the following corollary:

COROLLARY 2.4. [1,page59]If A,B € .#, and A > 0, then

lla Bl < di (A)[IBIl| = max{ai} [l (2.5)
REMARK 1. Let |-|| be one of the norms |-||;, |||l or ||||z. Then, for all
A,B € My, we have
40 Bl = || (aijbij)| < max a1 B]. 2.6)
The inequality (2.6) is not true for every unitarily invariant norm ||-|||. For example, let
A= [12080 18(2)} and B = [_1;0 13136] . Therefore,

max |a;; || B||, = 12557 < [|A o B||, = 12593.
2y
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3. Bounds for |[f(A)—f(B)]|

Let f € €'(J) and D = diag (dy,d>,---,d,), d; € J. We denote the first divided

differences of f at D by fI!/(D) as ( (D ) fW(d;,d;), where:
(d,) di=d;
P dindj) = 1§ gan-s
dE %) » di # dj.

Let A € 7%, and A =U*DU, where U € %, and D is a diagonal matrix. We
define fl1(A) = U*fI(D)U. The map f is called (Frechet) differentiable at A if
there exists a linear transformation Zf (A) on .7, such that for all H € /7,

If(A+H) = f(A) = 2f(A) (H)]| = o([[H]]).

The linear operator 7 f (A) is called the derivative of f at A. Now, in the follow-

ing, we state the relationship between the derivative 2 (A) and the matrix fI! (A).

LEMMA 3.1. [2, Theorem V.3.3] Let f € €' (J) and let A be a Hermitian matrix
with all its eigenvalues in J. Then

2f(A)(H)=U ( (D)o U*HU) U*,
where A=UDU¥ is the spectral decomposition of A and o denotes the Schur-product.

LEMMA 3.2. [2, Theorem X.4.5] Let f be a differentiable map from a convex
subset U of a Banach space X into a Banach space Y. Let a,b € U and let L be the
line segment joining them. Then

1 (8) = f @)l < sup||2f (@)} — bl

Suppose that A,B € [ol,BI] and L, :=tA+ (1 —1¢)B, forall 0 <t < 1. Then
L; € [al,BI]. Let
L[ :U[D[U[*, fOI' aHOSt g 1, (3.1)
where D, and U, are diagonal and unitary matrices, respectively. For a given A € M,,,
assume that Sy be the linear map on .7, , where is defined by Sy(Z) :=AoZ.

THEOREM 3.3. Let f € €'(J) and A,B € [al,BI], where [, B] C J. Suppose

that ||| is a unitary similarity invariant norm and M := sup HSf[l](Dt) ,

0<r<1
defined in (3.1). Then

is

If(A)—f (B)|| < M||A—B|. 3.2)

Moreover, if |||l is a unitarily invariant norm, then

£~ 7Bl < sup inf (1(X)er (1)) [la—Bl|
0<r<1 XY, X Y,=fU(D,)

< sup inf 1 (flll (D,),a) ll4—B]|. (3.3)

o<1 aEeR™
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Proof. By Lemma 3.2,
£ (A)—f(B)| < sup |Z2f(L)[||A—B].
0<r<1

Using Lemma 3.1, forall 0 <7 < 1, we have

12f (L)l = sup |2f (L) (Z)|| = sup |2f(U:D:U)(Z)
IZ]|=1 IZ]|=1

— sup |1 (f“] (Dt)oUt*ZUt> Uy
IZ]l=1
e Hfm (Dr) o U ZUr|| = HSf“](D»H'
Z|=1
Therefore,
IF ()= BN sup Sy, || 14~ BI = Mla— B,
0<r<1
Now, let |||-||| be a unitarily invariant norm and 0 < ¢ < 1. By using Theorem 2.2,
for all Z € M,,, we have
|Fmyez||< it (@@ ) I1Z-

XY, X Yi=f1(Dy)

Hence,

I oyer< sp it (@),

M = sup HS 1 ’ = sup
Ao, 0<i<l X Yo, X Yi=f1(Dy)

0<r<1 0<r<1

Therefore, the first inequality of (3.3) obtain by (3.2) and the second inequality of
(3.3), obtain by relation (2.2) in Theorem 2.2. [

Let 0 < < 1. Since the matrix f m(D,) is a symmetric matrix, we obtain that
pi(fU(D)) = g1 (fMN(Dy)) and i (F1(D;)) = 1 (FV(D;)). Since for all A € M,,
we have 11 (A, 3¢) = (p1 (A) qi (A))% . Therefore by using (3.3) and (2.3), we have the
following:

COROLLARY 3.4. Let f € €'(J) and A,B € [, BI], where [o, ] C J. Suppose
that Dy is the same as in (3.1). Then, for all unitarily invariant norm |||-|||,

lLra) = £ < sup pr (F1UD)) 1A =Bl < sup 1 (D) 18]]
0<r<1 0<r<1

< sup st (D)) [la— B .

0<i<1
Let Q be the set of all unitary similarity invariant norms ||-||, such that ||A o Z|| <
dy (A)]|Z]], whenever A >0 and Z € .4, . By Corollary 2.4, all of the unitarily invariant

norms are in Q. In the next theorem, we present a bound for || f(A) — f(B)||, when
|I|| € Q and f is an operator monotone.
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COROLLARY 3.5. Let f be an operator monotone on |a, 3] and A,B € [ol, BI]
and ||-|| € Q. Then

1f (4) = £ (B)|| < max{f' (), f (B)}|A—B|.

Proof. By using [2, Theorem V.3.6], we have f € ¢'(«,B). Let L, =tA+
(1—t)B, 0<r< 1. Then L, € [af,B1]. Since f on [a,f] is operator monotone,
by using [2, Theorem V.3.4], fI1l(L;) > 0. Hence fI!1(D;) >0, where D, is defined
in (3.1). Since ||-|| € Q, by using (2.4), for all Z € M,, and 0 < ¢ < | we obtain that

(1] o 1] /
[ woez] <a (on) 1z < max 1ia)iz]
< max f'(¢)[Z]| = max {'(e).f'(B)} | ZI|.
a<ce<f

Therefore, forall 0 <r <1,

HSf[l](D,)H < max {f’(a),f’(ﬁ)}.

Hence

M = sup ‘Sf[l](Dt)H <max {f'(a),f (B)}.

0<r<1

Using (3.2), proof is completed. [

REMARK 2. If f is an operator monotone on [0,e°) into itself, then by using [2,
Theorem V.3.6], f on [0,) is continuously differentiable and by using [2, Theorem
V.2.5], the operator f is concave and so max{f’(c),f (B)} = f' (o). Therefore, by
using Corollary 3.5, for all norm ||-|| € Q, we have

IF(A) = FB)| < f'(e)]|A—B],
where A,B > ol, o« > 0 (see [2, Theorem X.3.8]).

Let T be the set of all unitary similarity invariant norms such that ||SoZ|| <
max |s;;|||Z]|, for all symmetric matrices S € M,, and Z € M,,. By Remark 1, we see
ij

that || ||, || - |l1, and || - || arein T" and ||.||2 is notin T".
In the following, we present a bound for || f(A) — f(B)||, when ||-|| € T.

THEOREM 3.6. Let f € €'(J) and A,B € [, BI], where [, ] C J. Then, for
all |-] €T,
I (A) = f(B)[| < max [f'(c)|[[A—BI|.

a<c<p
Proof. Let L; and D, be the same as in (3.1), for all 0 <z < 1. By assumptions,

|1 o 2| < max| (A (D) 121
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for all Z € M,. Using the mean value theorem, we have (f!!/(D,));; = f'(cij), where
A (Dr) < cij < M (Dy), for 1 <i,j < n. Therefore

(1 / /
[t wyez|<, | max sl < max | )] 120

Hence,

< max |f'(c)].

M = su
P a<ce<p

0<r<1

‘Sf[l](Dr)

Using (3.2), the proof is completed. [J
We couldn’t prove Theorem 3.6, for all unitary similarity invariant norms. But own
conjecture is as following:

CONJECTURE 1. Let f € €'(J) and A, B € [, BI], where [, 8] C J. Then, for
all unitary similarity invariant norms ||-||,

17 (4) =B < max, | ()] |4 —B].

C

PROPOSITION 3.7. Let ||-|| €T and f € €1(J) and let A,B € [al,BI], where
[o, B] CJ. If f is an increasing and concave map on |o, 3], then

fBIIA=BI < [If (A) = f (Bl < f' () [|A = B|. (3.4)

Proof. Let g be the inverse of f on [0,7] := [f(a),f(B)] into [e,B]. So g €
%'(0,y) and is a increasing and convex. Let E = f(A) and F = f(B). Therefore
E,F c[01,v1].

Since f is increasing and concave on [a, 3], using Theorem 3.6,

1f(4) = f(B)Il < max [f'(c)|[|A— Bl =f"(e)]|A—B]|. (3.5)
a<c<p
Since g is increasing and convex on [6,7], by (3.5),
lA=B| = g(E)-gF) <gMIE-F|

1
=m||f(A)—f(B)ll-

Therefore (3.4) holds. [

If f is a decreasing and convex map, then —f is an increasing and concave map
and if f is an increasing and convex map, then f~!, where f~! denoted inverse of
map f, is an increasing and concave map. Therefore we have the following :

COROLLARY 3.8. If f is a decreasing and convex map on [o, 3], then
—f (B)IA—=B| <[If(A)—fB)I < —f (a)[|A~ B, (3.6)
and if f is an increasing and convex map on [o, B], then

@) A=Bl<[If(A)—fB)I<f (B)lIA-B|. 3.7)
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EXAMPLE 1. Let A,B € [od, 1], for oo > 0. If ||.|| € T, then
—rB" A= B| < A"~ B'|| < —ro” A= B]; r € (=,0),
B HA—B| <||A"=B|| <ra"HA-B|l; 0<r<1,
ra” YA-B| < ||AT—B|| <rBHA-B|; r>1.

See [10, inequality (2.9)], [11, p. 86 and p. 87], [14, p. 29], and [15, inequalities
(2.14) and (2.15)].

THEOREM 3.9. Let f(x) =Y __ax' with a; >0, forall —e . If (n,R)
is the convergence interval of Laurent series of f and A,B € [ml, MI] (r ,RI), then
Sor all matrix norm ||-|| on My, we have

IF (A) = £ B)]| < (¢' (M) =1 (m)) [|A—B|
where g(x) = Y2 gaix' and h(x) =Y _aix!

Proof. Suppose that f,,  (x) = g,(x) +hg(x), where g, (x) = 37, aix’ and hy(x) =
Ei’zlfqaixi, with @; >0 for all —¢ <i < p. Hence f,,(x) = Efzfqaixi. Let A,B ¢
[ml, MI] and O ¢ [m, M]. We show that for all matrix norm |[|-|| on .#,,

[1fp.a (A) = fp.a (B)|| < (g, (M) = Hi (m)) [|A = B|.
By using Lemma 3.2,

||fp7q(A)—fp7q(B)|| < sup ||9fp,q(Lt)||HA_B”'
0<r<1

Since Z is a linear map, we have

P .
|2 fpq(L)|| = sup ||Zfpq (L) (X)|| = sup ||2( D] aili)(X)
[ X]|=1 [[Xl=1 i=—q
)
= sup || Y @ 2L; (X 2 a; sup ||2L; (X)|.
[X[I=1||i=—¢ i=—q |IX]=1

Let 0<7 < 1and Ly =tA+ (1 —t)B. Therefore m < || ;]| <
Ifléz\p,then

) i i i1 i
|20 (X)|| = || X L'xL Z (124 d >4 ] P21
j=1 j=1
= illL )X < i

andif —g <i< —1, we have

2L (x)|| = Z —rxr!
J=i

= —il|Le]l X < —im I .

—1
< ST XL
Jj=i
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Therefore
[9hat1]| < 3 s s |72 0]
< Y iaMT - i iam'™" = g\, (M) — h, (m)
Since f=  lim _ fyq. we have

1 (A)=f(B)lI< hm ||qu fp,q(B)Hé(% lim (g}, (M)—hy (m)) [|A—B||

(p.a)— q)—(0,00)
= (¢' (M )— "(m))|A-B|. O

EXAMPLE 2. Let A,B € [od, 1] where o > 0. Then for all matrix norm |||,

1

1 I 1
eX —eB —ea||[A—B|.
o

||sinh(A) — sinh(B)|| < cosh(B)||A — B||.

<

1
|[In(I —A) —1In(I — B)|| < WHA—B\Lwheneverﬁ <1.

EXAMPLE 3. Consider the diferential equation (1.1) with nonsingular matrices A
and A and let y and ¥ be solutions of these equations, respectively. By using Theorem
3.6, for all ||-|| € T, we obtain that

[y(6) = 5@)|l
<Hcos (V/At) — cos( \/_t ‘yo+H\/_ sin(V/Ar) — \/T_ sin( \/_t

)bl
. tccos(y/ct) — sin(y/ct) -
< (m, |5 zsin(van) ool + max, | 1561 4~ .
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