PERTURBATION BOUNDS FOR MATRIX FUNCTIONS

Mohsen Masoudi* and Abbas Salemi

(Communicated by M. S. Moslehian)

Abstract. In this article, we present some bounds for |||f(A) - f(B)|||, where f is a real function and is continuously differentiable on an open interval J, $||| \cdot |||$ is a unitarily invariant norm, and A, B are Hermitian matrices such that the eigenvalues of A and B are in $[\alpha, \beta] \subset J$. Also, we illustrate upper bounds for ||f(A) - f(B)|| for special functions f and norms $|| \cdot ||$.

1. Introduction

Suppose that $\mathcal{M}_{m,n}$ denote the set of all $m \times n$ complex matrices. We indicate $\mathcal{M}_{n,n}$ by \mathcal{M}_n . We use notations \mathcal{H}_n and \mathcal{U}_n for the set of all Hermitian matrices and unitary matrices in \mathcal{M}_n , respectively. For $A \in \mathcal{M}_n$, matrix A^* denote the conjugate transpose of the matrix A. The symbol I denotes the identity matrix in \mathcal{M}_n . For $A, B \in \mathcal{M}_n$, we use notation $A \circ B$ for Schur product of matrices A and B. Let $A \in \mathcal{H}_n$ and $\sigma(A) \subseteq [\alpha, \beta]$. If $A = U^*DU$ is the spectral decomposition of the Hermitian matrix A and f is a complex function on $[\alpha, \beta]$, then we define $f(A) := U^* f(D)U$ (for more details see [8]). For a matrix $A \in \mathcal{H}_n$, we write $A \ge 0$ (A > 0), if A is a positive semi-definite (definite) matrix. For two Hermitian matrices A and B, the notation $A \ge B$ (A > B) means that $A - B \ge 0$ (A - B > 0). We define a matrix interval by $[A,B] = \{X \in \mathscr{H}_n | A \leq X \leq B\}$ and $(A,B) = \{X \in \mathscr{H}_n | A < X < B\}$. Suppose that f is a real function. We say that f is an operator monotone, if $f(A) \ge f(B)$, whenever $A \ge B$. Let J be an open interval in \mathbb{R} . We write $f \in \mathscr{C}^1(J)$, if real function f is continuously differentiable on J. Let $A \in \mathcal{M}_{m,n}$ and $m \leq n$. We denote i^{th} singular value of the matrix A by $s_i(A)$, $1 \le i \le m$. We say that a norm $\|\cdot\|$ is matrix norm on \mathcal{M}_n , if $||AB|| \leq ||A|| ||B||$. A norm $||| \cdot |||$ on $\mathcal{M}_{m,n}$ is called unitarily invariant norm if $|||A||| = |||UAV^*|||$, for all $A \in \mathcal{M}_{m,n}$ and unitary matrices $U \in \mathcal{U}_m$ and $V \in \mathcal{U}_n$. Also a norm $\|\cdot\|$ on \mathcal{M}_n is said to be unitary similarity invariant if $\|A\| = \|UAU^*\|$, for all $A \in \mathcal{M}_n$ and all unitary matrices $U \in \mathcal{U}_n$. Let $A = (a_{ij}) \in \mathcal{M}_{m,n}$. Define $||A||_2 := s_1(A)$, $||A||_F^2 := \sum_{i,j} |a_{ij}|^2$ and indicate

$$||A||_1 := \max_j \sum_i |a_{ij}|, \quad ||A||_{\infty} := \max_i \sum_j |a_{ij}|.$$

^{*} Corresponding author.

Mathematics subject classification (2010): 47H14, 47A56, 15A60, 15B57.

Keywords and phrases: Perturbation bound, matrix function, norms of matrix, Hermitian matrix.

The Schur product or the Hadamard product of two matrices A and B is defined to be the matrix $A \circ B$ whose (i, j)-entry is $a_{ij}b_{ij}$ [9].

One of the problems in perturbation theory is to find a bound for ||f(A) - f(B)||in terms of ||A - B||. For example, consider the differential equation

$$\frac{d^2y}{dt^2} + Ay = 0 \ (t > 0), \ y(0) = y_0, \ y'(0) = y'_0,$$
(1.1)

where A is a Hermitian positive definite matrix and $y_0, y'_0 \in \mathbb{C}^n$ [8, p. 36]. We know that for all t > 0, the matrix function

$$y(t) = \cos(\sqrt{A}t)y_0 + (\sqrt{A})^{-1}\sin(\sqrt{A}t)y'_0,$$
(1.2)

is the solution of equation (1.1). Suppose that nonsingular matrix \tilde{A} is an approximation to the matrix A and let $\tilde{y}(t)$ be the solution of equation (1.1) with the matrix \tilde{A} . If $A, \tilde{A} \in [\alpha I, \beta I]$ ($\alpha > 0$), we want to obtain a bound for $||y(t) - \tilde{y}(t)||$ in terms of $||A - \tilde{A}||$.

The perturbation bounds for several matrices, special matrix norms, and operator functions have been obtained by many authors. For example Bhatia et al. [3] considered the exponential function and the power functions $f(x) = x^p$, $-\infty , on the Hilbert space$ **H** $. Loan in [12] studied <math>f(x) = e^{xt}$ on \mathcal{M}_n . Hemmen and Ando [7] proved that if A, B are positive definite and $A + B \ge cI$ for some c > 0 and f is a matrix monotone increasing function on $[0,\infty)$, then $|||f(A) - f(B)||| \le \left(\frac{f(c/2) - f(0)}{c/2}\right) |||A - B|||$. Gil in [5, Theorem 1.1] for diagonalizable matrices $A, B \in \mathcal{M}_n$ obtained a bound for $||f(A) - f(B)||_F$. A bound for $||f(A) - f(B)||_F$ with arbitrary matrices and functions regular on the closed convex hull of the spectra has been derived in [6, Lemma 2.1] and has been generalized to infinite dimensional operators in [4, Chapter 13].

In this paper, we will find some bounds for $|||A \circ B|||$, where $A, B \in \mathcal{M}_{m,n}$ and $||| \cdot |||$ is a unitarily invariant norm and then we will present some bounds for |||f(A) - f(B)|||, where $A, B \in \mathcal{H}_n$ and f is a real function. Also, some special cases are considered.

2. Bounds for $|||\mathbf{A} \circ \mathbf{B}|||$

Let $A, B \in \mathcal{M}_n$ and $\||\cdot\||$ be a unitarily invariant norm on \mathcal{M}_n . At the first, we obtain some bounds for $||A \circ B||$. Then, for some special norms, we present a better bound for $||A \circ B||$.

DEFINITION 1. Let $A = (a_{ij}) \in \mathscr{H}_n$ be a Hermitian matrix. We indicate $d_i(A)$ for i^{th} entry of decreasingly ordered diagonal entries of the matrix A. So $d_1(A) \ge d_2(A) \ge \cdots \ge d_n(A)$. Let $A \in \mathscr{M}_{m,n}$ and $|A| := (A^*A)^{\frac{1}{2}}$ be absolute value of the matrix A. Then

$$r_i(A) := \left(d_i(|A^*|^2) \right)^{\frac{1}{2}}, \ p_i(A) := d_i(|A^*|); \ 1 \le i \le m,$$
$$c_j(A) := \left(d_j(|A|^2) \right)^{\frac{1}{2}}, \ q_j(A) := d_j(|A|); \ 1 \le j \le n.$$

Suppose that $A = USV^* \in \mathcal{M}_{m,n}$, where $m \leq n$, is the singular value decomposition of A and let $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_m]^T \in \mathbb{R}^m$. Define

$$P(A)^{\alpha} := US^{\alpha}U^{*} := Udiag\left(s_{1}(A)^{\alpha_{1}}, s_{2}(A)^{\alpha_{2}}, \cdots, s_{m}(A)^{\alpha_{m}}\right)U^{*},$$

$$Q(A)^{\alpha} := VS^{\alpha}V^{*} := Vdiag\left(s_{1}(A)^{\alpha_{1}}, s_{2}(A)^{\alpha_{2}}, \cdots, s_{m}(A)^{\alpha_{m}}, 0, \cdots, 0\right)V^{*}.$$

To remove the ambiguities, we define $0^{\beta} := 0$, for all $\beta \in \mathbb{R}^n$. Suppose that

$$p_i(A,\alpha) := d_i\left(P(A)^{2\alpha}\right), \quad i = 1, 2, \cdots, m,$$
$$q_j(A,\alpha) := d_j\left(Q(A)^{2\alpha}\right), \quad j = 1, 2, \cdots, n.$$

Also, $t_i(A, \alpha) := (p_i(A, \alpha) q_i(A, e - \alpha))^{\frac{1}{2}}, i = 1, 2, \dots, m$, where $e = [1, 1, \dots, 1]^T \in \mathbb{R}^m$.

The class of Ky Fan k-norms defined as

$$\|A\|_{(K)} = \sum_{j=1}^{k} s_j(A), \quad 1 \le k \le n.$$
(2.1)

LEMMA 2.1. [2, Theorem IV.2.2] (Fan Dominance Theorem) Let A, B be two $n \times n$ matrices. If

$$\|A\|_{(K)} \leqslant \|B\|_{(K)} \text{ for } 1 \leqslant k \leqslant n,$$

then

 $|||A||| \leq |||B|||$ for all unitarily invariant norms.

In the next, we obtain some bounds for $|||A \circ B|||$, where $||| \cdot |||$ is a unitarily invariant norm on $\mathcal{M}_{m,n}$.

THEOREM 2.2. For every unitarily invariant norm $||| \cdot |||$ and $A, B \in \mathcal{M}_{m,n}$, with $m \leq n$, we have

$$|||A \circ B||| \leq \inf_{X,Y, X^*Y=A} (c_1(X)c_1(Y)) |||B||| \leq \inf_{\alpha \in \mathbb{R}^m} t_1(A, \alpha) |||B|||.$$

Proof. Let $m \le n$ and $A = X^*Y$. By [9, Theorem 5.6.2], for $k = 1, 2, \dots, m$, we have

$$\sum_{i=1}^{k} s_i (A \circ B) \leqslant \sum_{i=1}^{k} c_i (X) c_i (Y) s_i (B) \leqslant (c_1(X) c_1(Y)) \sum_{i=1}^{k} s_i (B).$$

Therefore, by the Fan dominance theorem, for all unitarily invariant norm $||| \cdot |||$, we have $|||A \circ B||| \le c_1(X)c_1(Y) |||B|||$ and hence

$$|||A \circ B||| \leq \inf_{X,Y, X^*Y=A} (c_1(X)c_1(Y)) |||B|||.$$

For the second inequality, let $\alpha \in \mathbb{R}^m$ and $A = USV^*$ be the singular value decomposition of the matrix A. Choose $X = S^{\alpha}U^*$ and $Y = S^{e-\alpha}V^*$. Hence,

$$c_1(X)c_1(Y) = (p_1(A,\alpha)q_1(A,e-\alpha))^{\frac{1}{2}} = t_1(A,\alpha)$$

and so

$$\inf_{X,Y, X^*Y=A} c_1(X)c_1(Y) \leqslant \inf_{\alpha \in \mathbb{R}^m} t_1(A, \alpha).$$
(2.2)

Therefore proof is completed. \Box

COROLLARY 2.3. For all $A, B \in \mathcal{M}_{m,n}$ and unitarily invariant norm $||| \cdot |||$, we have

$$|||A \circ B||| \leq (p_1(A)q_1(A))^{\frac{1}{2}} |||B||| \leq (r_1(A)c_1(A))^{\frac{1}{2}} |||B||| \leq s_1(A) |||B|||, \qquad (2.3)$$

$$|||A \circ B||| \leq \min\{p_1(A), q_1(A)\} |||B||| \leq \min\{c_1(A), r_1(A)\} |||B|||.$$
(2.4)

Proof. Since $t_1(A, \frac{1}{2}e) = (p_1(A)q_1(A))^{\frac{1}{2}}$, by Theorem 2.2, we have

$$|||A \circ B||| \leq (p_1(A)q_1(A))^{\frac{1}{2}} |||B|||.$$

We know that $p_1(A) \leq r_1(A)$ and $q_1(A) \leq c_1(A)$ (See [9, p. 342]. Also, we have $\max\{c_1(A), r_1(A)\} \leq s_1(A)$. Therefore (2.3) is proved.

By choosing $\alpha = e$ and $\alpha = 0$ in Theorem 2.2, we obtain the inequality (2.4). If *A* is a Hermitian matrix, then $p_1(A) = q_1(A)$ and $r_1(A) = c_1(A)$. Moreover, if $A \ge 0$, then $p_1(A) = q_1(A) = d_1(A)$ and so we have the following corollary:

COROLLARY 2.4. [1, page 59] If $A, B \in \mathcal{M}_n$ and $A \ge 0$, then

$$|||A \circ B||| \le d_1(A) |||B||| = \max_i \{a_{ii}\} |||B||| .$$
(2.5)

REMARK 1. Let $\|\cdot\|$ be one of the norms $\|\cdot\|_1$, $\|\cdot\|_{\infty}$, or $\|\cdot\|_F$. Then, for all $A, B \in \mathcal{M}_{m,n}$, we have

$$||A \circ B|| = ||(a_{ij}b_{ij})|| \le \max_{i,j} |a_{ij}|||B||.$$
(2.6)

The inequality (2.6) is not true for every unitarily invariant norm $\| \cdot \| \cdot \|$. For example, let $A = \begin{bmatrix} 28 & 100 \\ 100 & 102 \end{bmatrix}$ and $B = \begin{bmatrix} 17 & 33 \\ -30 & 116 \end{bmatrix}$. Therefore, $\max_{i,j} |a_{ij}| \| B \|_2 = 12557 < \| A \circ B \|_2 = 12593.$

3. Bounds for $\|\mathbf{f}(\mathbf{A}) - \mathbf{f}(\mathbf{B})\|$

Let $f \in \mathscr{C}^1(J)$ and $D = diag(d_1, d_2, \dots, d_n), d_i \in J$. We denote the first divided differences of f at D by $f^{[1]}(D)$ as $\left(f^{[1]}(D)\right)_{i,j} := f^{[1]}(d_i, d_j)$, where:

$$f^{[1]}(d_i, d_j) := \begin{cases} f'(d_i), & d_i = d_j \\ \frac{f(d_i) - f(d_j)}{d_i - d_j}, & d_i \neq d_j. \end{cases}$$

Let $A \in \mathcal{H}_n$ and $A = U^*DU$, where $U \in \mathcal{U}_n$ and D is a diagonal matrix. We define $f^{[1]}(A) = U^*f^{[1]}(D)U$. The map f is called (Frechet) differentiable at A if there exists a linear transformation $\mathcal{D}f(A)$ on \mathcal{H}_n such that for all $H \in \mathcal{H}_n$

$$\left\|f\left(A+H\right) - f\left(A\right) - \mathscr{D}f\left(A\right)\left(H\right)\right\| = o\left(\left\|H\right\|\right).$$

The linear operator $\mathscr{D}f(A)$ is called the derivative of f at A. Now, in the following, we state the relationship between the derivative $\mathscr{D}f(A)$ and the matrix $f^{[1]}(A)$.

LEMMA 3.1. [2, Theorem V.3.3] Let $f \in C^1(J)$ and let A be a Hermitian matrix with all its eigenvalues in J. Then

$$\mathscr{D}f(A)(H) = U\left(f^{[1]}(D) \circ U^* H U\right) U^*,$$

where $A = UDU^*$ is the spectral decomposition of A and \circ denotes the Schur-product.

LEMMA 3.2. [2, Theorem X.4.5] Let f be a differentiable map from a convex subset U of a Banach space X into a Banach space Y. Let $a, b \in U$ and let L be the line segment joining them. Then

$$\|f(b) - f(a)\| \leq \sup_{u \in L} \|\mathscr{D}f(u)\| \|a - b\|.$$

Suppose that $A, B \in [\alpha I, \beta I]$ and $L_t := tA + (1-t)B$, for all $0 \le t \le 1$. Then $L_t \in [\alpha I, \beta I]$. Let

$$L_t = U_t D_t U_t^*, \text{ for all } 0 \le t \le 1,$$
(3.1)

where D_t and U_t are diagonal and unitary matrices, respectively. For a given $A \in M_n$, assume that S_A be the linear map on \mathcal{M}_n , where is defined by $S_A(Z) := A \circ Z$.

THEOREM 3.3. Let $f \in \mathscr{C}^1(J)$ and $A, B \in [\alpha I, \beta I]$, where $[\alpha, \beta] \subset J$. Suppose that $\|\cdot\|$ is a unitary similarity invariant norm and $M := \sup_{0 \leq t \leq 1} \left\|S_{f^{[1]}(D_t)}\right\|$, where D_t is defined in (3.1). Then

$$||f(A) - f(B)|| \le M ||A - B||.$$
 (3.2)

Moreover, if $\|\cdot\|$ *is a unitarily invariant norm, then*

$$|||f(A) - f(B)||| \leq \sup_{0 \leq t \leq 1} \inf_{\substack{X_t, Y_t, \ X_t^* Y_t = f^{[1]}(D_t)}} (c_1(X_t)c_1(Y_t)) |||A - B|||$$

$$\leq \sup_{0 \leq t \leq 1} \inf_{\alpha \in \mathbb{R}^m} t_1 \left(f^{[1]}(D_t), \alpha \right) |||A - B|||.$$
(3.3)

Proof. By Lemma 3.2,

$$\|f(A) - f(B)\| \leq \sup_{0 \leq t \leq 1} \|\mathscr{D}f(L_t)\| \|A - B\|.$$

Using Lemma 3.1, for all $0 \le t \le 1$, we have

$$\begin{split} \|\mathscr{D}f(L_{t})\| &= \sup_{\|Z\|=1} \|\mathscr{D}f(L_{t})(Z)\| = \sup_{\|Z\|=1} \|\mathscr{D}f(U_{t}D_{t}U_{t}^{*})(Z)\| \\ &= \sup_{\|Z\|=1} \left\| U_{t}\left(f^{[1]}(D_{t}) \circ U_{t}^{*}ZU_{t}\right) U_{t}^{*}\right\| \\ &= \sup_{\|Z\|=1} \left\| f^{[1]}(D_{t}) \circ U_{t}^{*}ZU_{t}\right\| = \left\| S_{f^{[1]}(D_{t})} \right\|. \end{split}$$

Therefore,

$$||f(A) - f(B)|| \leq \sup_{0 \leq t \leq 1} ||S_{f^{[1]}(D_t)}|| ||A - B|| = M ||A - B||.$$

Now, let $||| \cdot |||$ be a unitarily invariant norm and $0 \le t \le 1$. By using Theorem 2.2, for all $Z \in M_n$, we have

$$\left\| \left\| f^{[1]}(D_t) \circ Z \right\| \right\| \leq \inf_{X_t, Y_t, \ X_t^* Y_t = f^{[1]}(D_t)} \left(c_1(X_t) c_1(Y_t) \right) \left\| Z \right\| .$$

Hence,

$$M = \sup_{0 \le t \le 1} \left\| S_{f^{[1]}(D_t)} \right\| = \sup_{0 \le t \le 1} \left\| \left\| f^{[1]}(D_t) \circ Z \right\| \right\| \le \sup_{0 \le t \le 1} \inf_{X_t, Y_t, X_t^* Y_t = f^{[1]}(D_t)} \left(c_1(X_t) c_1(Y_t) \right) \cdot C_1(Y_t) \right\|$$

Therefore, the first inequality of (3.3) obtain by (3.2) and the second inequality of (3.3), obtain by relation (2.2) in Theorem 2.2.

Let $0 \le t \le 1$. Since the matrix $f^{[1]}(D_t)$ is a symmetric matrix, we obtain that $p_1(f^{[1]}(D_t)) = q_1(f^{[1]}(D_t))$ and $r_1(f^{[1]}(D_t)) = c_1(f^{[1]}(D_t))$. Since for all $A \in M_n$, we have $t_1(A, \frac{1}{2}e) = (p_1(A)q_1(A))^{\frac{1}{2}}$. Therefore by using (3.3) and (2.3), we have the following:

COROLLARY 3.4. Let $f \in \mathcal{C}^1(J)$ and $A, B \in [\alpha I, \beta I]$, where $[\alpha, \beta] \subset J$. Suppose that D_t is the same as in (3.1). Then, for all unitarily invariant norm $||| \cdot |||$,

$$\begin{split} \|\|f(A) - f(B)\|\| &\leq \sup_{0 \leq t \leq 1} p_1\left(f^{[1]}(D_t)\right) \|\|A - B\|\| \leq \sup_{0 \leq t \leq 1} r_1\left(f^{[1]}(D_t)\right) \|\|B\|\| \\ &\leq \sup_{0 \leq t \leq 1} s_1\left(f^{[1]}(D_t)\right) \|\|A - B\|\|. \end{split}$$

Let Ω be the set of all unitary similarity invariant norms $\|\cdot\|$, such that $\|A \circ Z\| \leq d_1(A) \|Z\|$, whenever $A \ge 0$ and $Z \in \mathcal{M}_n$. By Corollary 2.4, all of the unitarily invariant norms are in Ω . In the next theorem, we present a bound for $\|f(A) - f(B)\|$, when $\|\cdot\| \in \Omega$ and f is an operator monotone.

COROLLARY 3.5. Let f be an operator monotone on $[\alpha,\beta]$ and $A,B \in [\alpha I,\beta I]$ and $\|\cdot\| \in \Omega$. Then

$$\|f(A) - f(B)\| \leq \max\{f'(\alpha), f'(\beta)\} \|A - B\|.$$

Proof. By using [2, Theorem V.3.6], we have $f \in \mathscr{C}^1(\alpha, \beta)$. Let $L_t = tA + (1-t)B$, $0 \leq t \leq 1$. Then $L_t \in [\alpha I, \beta I]$. Since f on $[\alpha, \beta]$ is operator monotone, by using [2, Theorem V.3.4], $f^{[1]}(L_t) \geq 0$. Hence $f^{[1]}(D_t) \geq 0$, where D_t is defined in (3.1). Since $\|\cdot\| \in \Omega$, by using (2.4), for all $Z \in M_n$ and $0 \leq t \leq 1$ we obtain that

$$\begin{split} \left\| f^{[1]}(D_t) \circ Z \right\| &\leq d_1 \left(f^{[1]}(D_t) \right) \| Z \| \leq \max_{d_t \in \sigma(L_t)} f'(d_t) \| Z \| \\ &\leq \max_{\alpha \leq c \leq \beta} f'(c) \| Z \| = \max \left\{ f'(\alpha), f'(\beta) \right\} \| Z \|. \end{split}$$

Therefore, for all $0 \leq t \leq 1$,

$$\left\|S_{f^{[1]}(D_t)}\right\| \leq \max\left\{f'(\alpha), f'(\beta)\right\}.$$

Hence

$$M = \sup_{0 \leqslant t \leqslant 1} \left\| S_{f^{[1]}(D_t)} \right\| \leqslant \max \left\{ f'(\alpha), f'(\beta) \right\}.$$

Using (3.2), proof is completed. \Box

REMARK 2. If f is an operator monotone on $[0,\infty)$ into itself, then by using [2, Theorem V.3.6], f on $[0,\infty)$ is continuously differentiable and by using [2, Theorem V.2.5], the operator f is concave and so max $\{f'(\alpha), f'(\beta)\} = f'(\alpha)$. Therefore, by using Corollary 3.5, for all norm $\|\cdot\| \in \Omega$, we have

$$\|f(A) - f(B)\| \leq f'(\alpha) \|A - B\|,$$

where $A, B \ge \alpha I$, $\alpha > 0$ (see [2, Theorem X.3.8]).

Let Γ be the set of all unitary similarity invariant norms such that $||S \circ Z|| \leq \max_{i,j} ||s_ij|||Z||$, for all symmetric matrices $S \in M_n$ and $Z \in M_n$. By Remark 1, we see that $||\cdot||_F$, $||\cdot||_1$, and $||\cdot||_{\infty}$ are in Γ and $||\cdot||_2$ is not in Γ .

In the following, we present a bound for ||f(A) - f(B)||, when $|| \cdot || \in \Gamma$.

THEOREM 3.6. Let $f \in \mathscr{C}^1(J)$ and $A, B \in [\alpha I, \beta I]$, where $[\alpha, \beta] \subset J$. Then, for all $\|\cdot\| \in \Gamma$,

$$\|f(A) - f(B)\| \leq \max_{\alpha \leq c \leq \beta} |f'(c)| \|A - B\|.$$

Proof. Let L_t and D_t , be the same as in (3.1), for all $0 \le t \le 1$. By assumptions,

$$\left\|f^{[1]}(D_t) \circ Z\right\| \leq \max_{i,j} \left|(f^{[1]}(D_t))_{ij}\right| \|Z\|$$

for all $Z \in M_n$. Using the mean value theorem, we have $(f^{[1]}(D_t))_{ij} = f'(c_{ij})$, where $\lambda_n(D_t) \leq c_{ij} \leq \lambda_1(D_t)$, for $1 \leq i, j \leq n$. Therefore

$$\left\|f^{[1]}(D_t) \circ Z\right\| \leq \max_{\lambda_n(D_t) \leq c \leq \lambda_1(D_t)} |f'(c)| \|Z\| \leq \max_{\alpha \leq c \leq \beta} |f'(c)| \|Z\|.$$

Hence,

$$M = \sup_{0 \leqslant t \leqslant 1} \left\| S_{f^{[1]}(D_t)} \right\| \leqslant \max_{\alpha \leqslant c \leqslant \beta} |f'(c)|.$$

Using (3.2), the proof is completed. \Box

We couldn't prove Theorem 3.6, for all unitary similarity invariant norms. But own conjecture is as following:

CONJECTURE 1. Let $f \in \mathscr{C}^1(J)$ and $A, B \in [\alpha I, \beta I]$, where $[\alpha, \beta] \subset J$. Then, for all unitary similarity invariant norms $\|\cdot\|$,

$$\|f(A) - f(B)\| \leq \max_{\alpha \leq c \leq \beta} |f'(c)| \|A - B\|.$$

PROPOSITION 3.7. Let $\|\cdot\| \in \Gamma$ and $f \in \mathscr{C}^1(J)$ and let $A, B \in [\alpha I, \beta I]$, where $[\alpha, \beta] \subset J$. If f is an increasing and concave map on $[\alpha, \beta]$, then

$$f'(\beta) ||A - B|| \le ||f(A) - f(B)|| \le f'(\alpha) ||A - B||.$$
 (3.4)

Proof. Let g be the inverse of f on $[\theta, \gamma] := [f(\alpha), f(\beta)]$ into $[\alpha, \beta]$. So $g \in \mathscr{C}^1(\theta, \gamma)$ and is a increasing and convex. Let E = f(A) and F = f(B). Therefore $E, F \in [\theta I, \gamma I]$.

Since f is increasing and concave on $[\alpha, \beta]$, using Theorem 3.6,

$$\|f(A) - f(B)\| \le \max_{\alpha \le c \le \beta} |f'(c)| \|A - B\| = f'(\alpha) \|A - B\|.$$
(3.5)

Since g is increasing and convex on $[\theta, \gamma]$, by (3.5),

$$\begin{split} \|A - B\| &= \|g(E) - g(F)\| \leq g'(\gamma) \|E - F\| \\ &= \frac{1}{f'(\beta)} \|f(A) - f(B)\|. \end{split}$$

Therefore (3.4) holds.

If f is a decreasing and convex map, then -f is an increasing and concave map and if f is an increasing and convex map, then f^{-1} , where f^{-1} denoted inverse of map f, is an increasing and concave map. Therefore we have the following :

COROLLARY 3.8. If f is a decreasing and convex map on $[\alpha, \beta]$, then

$$-f'(\beta) \|A - B\| \le \|f(A) - f(B)\| \le -f'(\alpha) \|A - B\|,$$
(3.6)

and if f is an increasing and convex map on $[\alpha, \beta]$, then

$$f'(\alpha) \|A - B\| \le \|f(A) - f(B)\| \le f'(\beta) \|A - B\|.$$
(3.7)

EXAMPLE 1. Let $A, B \in [\alpha I, \beta I]$, for $\alpha > 0$. If $\|.\| \in \Gamma$, then

$$\begin{split} &-r\beta^{r-1} \|A - B\| \leqslant \|A^r - B^r\| \leqslant -r\alpha^{r-1} \|A - B\|; \ r \in (-\infty, 0), \\ &r\beta^{r-1} \|A - B\| \leqslant \|A^r - B^r\| \leqslant r\alpha^{r-1} \|A - B\|; \ 0 < r < 1, \\ &r\alpha^{r-1} \|A - B\| \leqslant \|A^r - B^r\| \leqslant r\beta^{r-1} \|A - B\|; \ r > 1. \end{split}$$

See [10, inequality (2.9)], [11, p. 86 and p. 87], [14, p. 29], and [15, inequalities (2.14) and (2.15)].

THEOREM 3.9. Let $f(x) = \sum_{i=-\infty}^{\infty} a_i x^i$ with $a_i \ge 0$, for all $-\infty \le i \le \infty$. If (r, R) is the convergence interval of Laurent series of f and $A, B \in [mI, MI] \subset (rI, RI)$, then for all matrix norm $\|\cdot\|$ on \mathcal{M}_n , we have

$$\left\|f\left(A\right) - f\left(B\right)\right\| \leqslant \left(g'\left(M\right) - h'\left(m\right)\right) \left\|A - B\right\|$$

where $g(x) = \sum_{i=0}^{\infty} a_i x^i$ and $h(x) = \sum_{i=-\infty}^{-1} a_i x^i$.

Proof. Suppose that $f_{p,q}(x) = g_p(x) + h_q(x)$, where $g_p(x) = \sum_{i=0}^p a_i x^i$ and $h_q(x) = \sum_{i=-q}^{-1} a_i x^i$, with $a_i \ge 0$ for all $-q \le i \le p$. Hence $f_{p,q}(x) = \sum_{i=-q}^p a_i x^i$. Let $A, B \in [mI, MI]$ and $0 \notin [m, M]$. We show that for all matrix norm $\|\cdot\|$ on \mathcal{M}_n ,

$$\|f_{p,q}(A) - f_{p,q}(B)\| \leq (g'_p(M) - h'_q(m)) \|A - B\|.$$

By using Lemma 3.2,

$$\left\|f_{p,q}(A)-f_{p,q}(B)\right\| \leq \sup_{0\leq t\leq 1} \left\|\mathscr{D}f_{p,q}(L_t)\right\| \|A-B\|.$$

Since \mathscr{D} is a linear map, we have

$$\begin{aligned} \left\|\mathscr{D}f_{p,q}\left(L_{t}\right)\right\| &= \sup_{\|X\|=1} \left\|\mathscr{D}f_{p,q}\left(L_{t}\right)\left(X\right)\right\| = \sup_{\|X\|=1} \left\|\mathscr{D}\left(\sum_{i=-q}^{p} a_{i}L_{t}^{i}\right)\left(X\right)\right\| \\ &= \sup_{\|X\|=1} \left\|\sum_{i=-q}^{p} a_{i}\mathscr{D}L_{t}^{i}\left(X\right)\right\| \leqslant \sum_{i=-q}^{p} a_{i}\sup_{\|X\|=1} \left\|\mathscr{D}L_{t}^{i}\left(X\right)\right\|. \end{aligned}$$

Let $0 \le t \le 1$ and $L_t = tA + (1-t)B$. Therefore $m \le ||L_t|| \le M$.

If $1 \leq i \leq p$, then

$$\begin{split} \left\| \mathscr{D}L_{t}^{i}(X) \right\| &= \left\| \sum_{j=1}^{i} L_{t}^{i-j} X L_{t}^{j-1} \right\| \leqslant \sum_{j=1}^{i} \|L_{t}\|^{i-j} \|X\| \|L_{t}\|^{j-1} \\ &= i \|L_{t}\|^{i-1} \|X\| \leqslant i M^{i-1} \|X\|, \end{split}$$

and if $-q \leq i \leq -1$, we have

$$\left\|\mathscr{D}L_{t}^{i}(X)\right\| = \left\|\sum_{j=i}^{-1} - L_{t}^{j}XL_{t}^{i-j-1}\right\| \leq \sum_{j=i}^{-1} \|L_{t}\|^{j}\|X\|\|L_{t}\|^{i-j-1}$$
$$= -i\|L_{t}\|^{i-1}\|X\| \leq -im^{i-1}\|X\|.$$

Therefore

$$\|\mathscr{D}f_{p,q}(L_t)\| \leq \sum_{i=-q}^{p} a_i \sup_{\|X\|=1} \|\mathscr{D}L_t^i(X)\|$$

$$\leq \sum_{i=1}^{p} ia_i M^{i-1} - \sum_{i=-q}^{-1} ia_i m^{i-1} = g'_p(M) - h'_q(m).$$

Since $f = \lim_{(p,q)\to(\infty,\infty)} f_{p,q}$, we have

$$\begin{split} \|f(A) - f(B)\| &\leqslant \lim_{(p,q) \to (\infty,\infty)} \left\| f_{p,q}(A) - f_{p,q}(B) \right\| &\leqslant \lim_{(p,q) \to (\infty,\infty)} \left(g'_p(M) - h'_q(m) \right) \|A - B\| \\ &= \left(g'(M) - h'(m) \right) \|A - B\|. \quad \Box \end{split}$$

EXAMPLE 2. Let $A, B \in [\alpha I, \beta I]$ where $\alpha > 0$. Then for all matrix norm $\|\cdot\|$,

$$\begin{split} \left\| e^{\frac{1}{A}} - e^{\frac{1}{B}} \right\| &\leq \frac{1}{\alpha^2} e^{\frac{1}{\alpha}} \|A - B\|.\\ \|\sinh(A) - \sinh(B)\| &\leq \cosh(\beta) \|A - B\|.\\ \|\ln(I - A) - \ln(I - B)\| &\leq \frac{1}{1 - \beta} \|A - B\|, \text{whenever } \beta < 1. \end{split}$$

EXAMPLE 3. Consider the differential equation (1.1) with nonsingular matrices A and \tilde{A} and let y and \tilde{y} be solutions of these equations, respectively. By using Theorem 3.6, for all $\|\cdot\| \in \Gamma$, we obtain that

$$\begin{aligned} \|y(t) - \tilde{y}(t)\| \\ \leqslant \left\| \cos(\sqrt{A}t) - \cos(\sqrt{\tilde{A}}t) \right\| \|y_0\| + \left\| \sqrt{A}^{-1} \sin(\sqrt{A}t) - \sqrt{\tilde{A}}^{-1} \sin(\sqrt{\tilde{A}}t) \right\| \|y_0\| \\ \leqslant \left(\max_{\alpha \leqslant c \leqslant \beta} \left| \frac{t}{2\sqrt{c}} \sin(\sqrt{c}t) \right| \|y_0\| + \max_{\alpha \leqslant c \leqslant \beta} \left| \frac{tc \cos(\sqrt{c}t) - \sin(\sqrt{c}t)}{2c\sqrt{c}} \right| \|y_0\| \right) \|A - \tilde{A}\|. \end{aligned}$$

REFERENCES

- [1] R. BHATIA, Positive Definite Matrices, Princeton University Press, 2006.
- [2] R. BHATIA, Matrix analysis, Graduate Text in Mathematics, Springer-Verlag New York, 1997.
- [3] R. BHATIA, D. SINGH, K. B. SINHA, Differentiation of Operator Functions and Perturbation Bounds, Comm. Math. Phys. 191 (1998), 603–611.
- [4] M. I. GIL, Operator Functions and Operator Equations, World Scientific, New Jersey, 2018.
- [5] M. I. GIL, Perturbation of functions of diagonalizable matrices, Electron. J. Linear Algebra 20 (2010), 303–313.
- [6] M. I. GIL, Perturbations of operator functions in a Hilbert space, Commun. Math. Anal. 13 (2012), 108–115.
- [7] J. L. V. HEMMEN, T. ANDO, An inequality for trace ideals, Commun. Math. Phys. 76 (1980), 143– 148.
- [8] N. J. HIGHAM, Functions of matrices: theory and computation, SIAM, Philadelphia, 2008.
- [9] R.A. HORN AND C. R. JOHNSON, Topics in Matrix Analysis, Cambridge University Press, 1991.

- [10] Z. JIA AND M. WEI, Solvability and sensitivity analysis of polynomial matrix equation $X^s + A^T X^t A = Q$, Appl. Math. Comput. **209** (2009), 230–237.
- [11] X. G. LIU AND H. GAO, On the positive definite solutions of the equation $X^s \pm A^T X^{-t} A = I$, Linear Algebra Appl. **368** (2003), 83–97.
- [12] C. V. LOAN, The Sensitivity of the matrix exponential, Siam J. Numer. Anal. 14 (1977), 971–981.
- [13] M. C. B. REURINGS, Symmetric Matrix Equations, Universal Press, The Netherland, 2003.
- [14] X. Y. YIN, AND S. Y. LIU, On positive definite solutions of nonlinear matrix equation $X^s A^*X^{-t}A = Q$, Appl. Math. Comput. **216** (2010), 27–34.
- [15] X. Y. YIN, S. Y. LIU, AND L. FANG, Solutions and perturbation estimates for the matrix equation $X^s + A^*X^{-t}A = Q$, Linear Algebra Appl. **431** (2009), 1409–1421.

(Received March 14, 2020)

Mohsen Masoudi Faculty of Mathematical Sciences University of Guilan Rasht, Iran e-mail: masoudi_mohsen@phd.guilan.ac.ir

Abbas Salemi Department of Applied Mathematics and Mahani Mathematical Research Center Shahid Bahonar University of Kerman Kerman, Iran e-mail: salemi@uk.ac.ir