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COVERING FUNCTIONALS OF MINKOWSKI

SUMS AND DIRECT SUMS OF CONVEX BODIES

SENLIN WU, BAOFANG FAN AND CHAN HE ∗

(Communicated by H. Martini)

Abstract. We prove a series of inequalities concerning covering functionals of convex bodies
having the form K +L , where K is a convex body and L is a segment. Several estimations of
covering functionals of direct sums of convex bodies are also presented.

1. Introduction

A compact convex set K ⊆ R
n having interior points is called a convex body. The

interior and boundary of K is denoted by intK and bdK , respectively. We denote by
K n the set of convex bodies in R

n and by o the origin of R
n . Concerning the least

number c(K) of translates of intK needed to cover a convex body K , there is a long
standing conjecture:

CONJECTURE 1. (Hadwiger’s covering conjecture) For each K ∈ K n , c(K) is
bounded from above by 2n , and this upper bound is attained only by parallelotopes.

See e.g., [6], [10], [7], [1], and [3] for more information and references about this
conjecture. There are good estimations of c(K) for special classes of convex bodies.
A convex body is called a zonotope if it is the Minkowski sum of a finite number of
segments, and is called a zonoid if it is the limit (with respect to the Hausdorff metric)
of a converging sequence of zonotopes. Martini proved that

c(K) � 3
4
·2n (1)

holds for each n -dimensional zonotope distinct from a parallelotope (cf. [9]). The
same estimation holds also for n -dimensional zonoids, belt polytopes, and belt bodies
(cf. [4] for the definition) that are not parallelotopes, see, e.g., p. 339 and p. 341 in [6]
and [4].
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Note that, for each K ∈ K n , c(K) equals the least number of smaller homothetic
copies of K needed to cover K (see, e.g., [6, p. 262, Theorem 34.3]). Therefore,
c(K) � m for some m ∈ Z

+ if and only if Γm(K) < 1, where Γm(K) is defined by

Γm(K) = min

{
γ > 0 | ∃ {xi | i = 1, · · · ,m} ⊆ R

n s.t. K ⊆
m⋃

i=1

(xi + γK)

}
,

and is called the covering functional of K with respect to m . Clearly, for each m ∈ Z
+ ,

Γm(·) is an affine invariant. More precisely,

Γm(K) = Γm(T (K)), ∀T ∈ A n,

where A n is the set of non-degenerate affine transformations from R
n to R

n . Thus
we identify convex bodies that are affinely equivalent, and when writing K n we are
actually referring to the quotient space of K n with respect to affine equivalence.

For each pair of convex bodies K1 and K2 in K n , the Banach-Mazur distance
dBM(K1,K2) (also called the Asplund metric, cf. [16]) between them is defined by

dBM(K1,K2) := lnmin {γ � 1 | K1 ⊆ T (K2) ⊆ γK1 + x, x ∈ R
n, T ∈ A n} .

Then (K n,dBM) is a compact metric space (cf. [8] and [16]). Zong (cf. [15]) proved
that Γm(·) is uniformly continuous on K n . Bezdek and Khan improved this result by
showing that Γm(·) is Lipschitz continuous on K n with (n2−1)/(2lnn) as a Lipschitz
constant (cf. [2]). These results show that each K ∈ K n can be covered by at most 2n

smaller homothetic copies of K if and only if

c(n) := sup {Γ2n(K) | K ∈ K n} < 1.

Based on these results, Zong proposed a quantitative program for attacking Hadwiger’s
covering conjecture (cf. [15] for more details), in which estimating the supremum of
Γ2n(K) over special classes of n -dimensional convex bodies plays an important role.

As we have mentioned, we already have good knowledge about c(K) for the
classes of zonotopes and zonoids. Thus it is natural to try to obtain good estimations of
the following number:

cz(n) := sup {Γ2n(K) | K ⊂ R
n is a zonoid} .

Let δ ∈ (0, ln2) . By Corollary 20 and Remark 21 in [13], we have

sup {Γ2n(K) | K ⊂ R
n is a zonoid satisfying dBM(K, [0,1]n) < δ} < 1.

Also, we claim that

sup {Γ2n(K) | K ⊂ R
n is a zonoid satisfying dBM(K, [0,1]n) � δ} < 1.

Otherwise there exists a sequence of zonoids {Ki}∞
i=1 converging to a convex body K0

and a sequence of zonotopes {Li}∞
i=1 such that

lim
i→∞

dBM(Ki,Li) = 0 and lim
i→∞

Γ2n(Ki) = 1.
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Then lim
i→∞

Li = K0 is a zonoid distinct from a parallelotope and Γ2n(K0) = 1. This is in

contradiction to the estimation (1) which is also valid for zonoids. Hence, we have the
following

PROPOSITION 1. For each n � 2 , cz(n) < 1 .

Getting the value of cz(n) is not an easy task. One possible starting point for this
is to study covering functionals of convex bodies having the form K +L , where K is
a convex body and L is a segment. We prove a series of results in this direction in
Section 2. We note that, in general, the relation between Γm(K) and Γm(K +L) could
be complicated. For example, when K = [−1,1]2 , u1 = (1,1) , and u2 = (1,0) , we
have

Γ4(K +[−u1,u1]) > Γ4(K) =
1
2
,

Γ4(K +[−u2,u2]) = Γ4(K),
Γ3(K +[−u1,u1]) < Γ3(K) = 1.

In Section 3 we present an estimation of Γm(K ⊕L) , which can be viewed as a
quantitative version of Theorem 1 in [5].

In the sequel, for each m ∈ Z
+ , we denote by [m] the set of positive integers not

greater than m .

2. The sum of K and a segment

Let K be a convex body in R
n , u∈ S

n−1 be a direction, [b,t] be an affine diameter
of K in the direction of u (cf. e.g., [11] for the definition and properties of affine
diameters), and H be an (n−1)-dimensional linear subspace of R

n such that the two
supporting hyperplanes Hb and Ht of K parallel to H contains b and t , respectively.
By taking a suitable affine transformation if necessary, we may assume that u = en ,
H = R

n−1 × {0} , b = −en and t = en . Let Πu be the orthogonal projection of R
n

onto H . For each λ � 0, put Kλ = K + λ [−u,u] . For each compact convex set L ,
we denote by relintL the relative interior of L . We note that, when intL 
= /0 , we have
intL = relintL . When L is not a convex body in R

n , it can be viewed as a convex body
having smaller dimension. In this case c(L) is the least number of translates of relintL
needed to cover L .

PROPOSITION 2. For each λ � 0 , c(Kλ ) � c(Πu(K)) .

Proof. Suppose that c(Kλ ) = m . Then there exists a set C = {ci | i ∈ [m]} such
that Kλ ⊆C+ intKλ .

It is clear that Πu(K) ⊆ Πu(Kλ ) holds for each λ � 0. For each point w ∈
Πu(Kλ ) , there exist a point z ∈ K and a number α ∈ [−λ ,λ ] such that w = Πu(z +
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αu) = Πu(z) ∈ Πu(K) . Thus Πu(Kλ ) ⊆ Πu(K) . It follows that Πu(K) = Πu(Kλ ) . By
Theorem 2.34 in [12], we have

Πu(K) = Πu(Kλ ) ⊆ Πu(C+ intKλ )
= Πu(C)+ Πu(intKλ )
= Πu(C)+ relintΠu(Kλ )
= Πu(C)+ relintΠu(K).

Hence c(Πu(K)) � m .

REMARK 1. It is not difficult to find a convex body K and a direction u such that
c(K) = c(Πu(K))+1. We are not sure whether the following is true:

c(Kλ ) > c(Πu(K)), ∀K ∈ K n, ∀u ∈ S
n−1.

PROPOSITION 3. We have

|Γm(Kλ )−Γm(K)| � λ , ∀λ � 0. (2)

Proof. For each λ � 0, we have

K ⊆ Kλ = K + λ [−u,u]⊆ K + λK = (1+ λ )K,

which, together with the proof of Theorem A in [15], shows the desired inequality.
The inequality (2) shows that

Γm(K)−λ � Γm(Kλ ) � λ + Γm(K). (3)

This estimation can be improved.

THEOREM 1. We have

1
1+ λ

Γm(K) � Γm(Kλ ) � 1− 1
1+ λ

+
1

1+ λ
Γm(K), ∀λ � 0. (4)

Proof. Let λ � 0. Put γ = Γm(K) . There exists a set C = {ci | i ∈ [m]} of m
points such that K ⊆C+ γK . We have

Kλ = K + λ [−u,u]⊆C+ γK + λ [−u,u]
= C+ γ(K + λ [−u,u])+ (λ − γλ ) [−u,u]

⊆C+ γKλ +
λ − γλ
1+ λ

Kλ

= C+
λ + γ
1+ λ

Kλ .
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It follows that

Γm(Kλ ) � λ + γ
1+ λ

= 1− 1
1+ λ

+
1

1+ λ
Γm(K).

Now we prove the inequality on the left. Put γλ = Γm(Kλ ) . Then there exists a set
Cλ of m points such that Kλ ⊆Cλ + γλ Kλ . We have

K ⊆ Kλ ⊆Cλ + γλ Kλ = Cλ + γλ K + γλ λ [−u,u]⊆Cλ + γλ (1+ λ )K.

It follows that
Γm(K) � (1+ λ )Γm(Kλ ),

which completes the proof.

COROLLARY 1. For each integer m > 0 , we have

lim
λ→0

Γm(Kλ ) = Γm(K).

When λ tends to infinity, (4) provides less information on the upper bound of
Γm(Kλ ) . The next result gives a better estimation in this situation.

THEOREM 2. For each m ∈ Z
+ and each λ > 1 , we have

|Γm(Kλ )−Γm(Πu(K)+ [−u,u])| � 2
λ −1

, (5)

and
lim

λ→∞
Γm(Kλ ) = Γm(Πu(K)+ [−u,u]). (6)

Proof. We only need to show (5). It is clear that

K ⊆ Πu(K)+ [−u,u] .

Therefore, for each λ � 0, we have

Kλ = K + λ [−u,u]⊆ Πu(K)+ [−u,u]+ λ [−u,u] = Πu(K)+ (λ +1) [−u,u] .

For each x ∈ Πu(K) , there exist a point y ∈ K and a number μ ∈ [−1,1] such that

x = y+ μu∈ K +[−u,u] = K1.

Hence Πu(K) ⊆ K1 . Since λ > 1 and o ∈ Πu(K) , we have

λ −1
λ +1

(Πu(K)+ (λ +1) [−u,u]) =
λ −1
λ +1

Πu(K)+ (λ −1) [−u,u]

⊆ Πu(K)+ (λ −1) [−u,u]
⊆ K1 +(λ −1) [−u,u]
= K +[−u,u]+ (λ −1) [−u,u] = Kλ .
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It follows that, when λ > 1,

Kλ ⊆ Πu(K)+ (λ +1) [−u,u]⊆ λ +1
λ −1

Kλ =
(

1+
2

λ −1

)
Kλ . (7)

From the proof of Theorem A in [15] and (7), we have

|Γm(Kλ )−Γm(Πu(K)+ (λ +1) [−u,u])| � 2
λ −1

,

which, together with the fact that Πu(K) + (λ + 1) [−u,u] is affinely equivalent to
Πu(K)+ [−u,u] , implies (5).

COROLLARY 2. If m ∈ Z
+ and m < 2 · c(Πu(K)) , then

lim
λ→∞

Γm(Kλ ) = 1.

Proof. By Corollary 3.10 in [14] or Theorem 2 in [5],

c(Πu(K)+ [−u,u]) = 2 · c(Πu(K)).

Thus, if m < 2 · c(Πu(K)) then

lim
λ→∞

Γm(Kλ ) = Γm(Πu(K)+ [−u,u]) = 1.

LEMMA 1. Let K be a convex body. Suppose that a and b are two points in R
n

such that (a+K)∩ (b+K) 
= /0 . Then (a+K)∪ (b+K) is contained in a translate of
2K .

Proof. We only need to consider the case when a 
= b . Let [u,v] be an affine
diameter of K parallel to 〈a,b〉 . Without loss of generality we may assume that

u− v
‖u− v‖ =

a−b
‖a−b‖ .

Put c = u+v
2 , K′ = K− c , a′ = a+ c , and b′ = b+ c . Then

(a′ +K′)∩ (b′+K′) 
= /0,

from which it follows that a′ −b′ = a−b ∈ K′ −K′ = K−K . Therefore we have two
points s, t ∈ K such that a′ −b′ = s− t . It follows that [s, t] is a segment contained in
K and parallel to 〈a,b〉 . Therefore ‖a−b‖ = ‖s− t‖ � ‖u− v‖. It suffices to show
that (a′ +K′)∪ (b′ +K′) is contained in a translate of 2K′ .

Let x be an arbitrary point in a′ +K′ . Then x−a′ ∈ K′ . This yields

x− a′ +b′

2
= x−a′+

a′ −b′

2
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= x−a′+
a−b

2

= x−a′+
1
2
· ‖a−b‖
‖u− v‖ (u− v)

= x−a′+
‖a−b‖
‖u− v‖(u− c)

∈ K′ +
‖a−b‖
‖u− v‖K′

⊆ K′ +K′ = 2K′.

It follows that a′ + K′ ⊆ a′+b′
2 + 2K′ . In a similar way we can show that b′ + K′ ⊆

a′+b′
2 +2K′ .

LEMMA 2. Let K be a convex body and m = c(K) . Then Γm(K) � 1
2 .

Proof. Otherwise, γ := Γm(K) < 1
2 . Let C = {ci | i ∈ [m]} be a set of points such

that K ⊆C+γK . Since m = c(K) , for each i∈ [m] , (ci +γK)∩K is a nonempty closed
convex subset of K . Since K is connected, there are two members of {ci + γK | i ∈ [m]}
having nonempty intersection. Assume without loss of generality that (c1 +γK)∩(c2 +
γK) 
= /0 . By Lemma 1, there exists a translate of 2γK containing (c1 + γK)∪ (c2 +
γK) , which yields a contradiction to the fact that m = c(K) .

PROPOSITION 4. Let m = c(Πu(K)) . Then

Γ2m(Πu(K)+ [−u,u]) = Γm(Πu(K)).

Proof. Put γ = Γm(Πu(K)) . By Lemma 2, γ � 1
2 . There exists a set

C = {ci | i ∈ [m]} of points such that

Πu(K) ⊆C+ γΠu(K).

Then

Πu(K)+ [−u,u] ⊆C+ γΠu(K)+ [−u,u]

⊆C+ γΠu(K)+
{

1
2
u,−1

2
u

}
+ γ [−u,u]

=
(

C+
1
2
u

)
∪

(
C− 1

2
u

)
+ γ(Πu(K)+ [−u,u]),

which implies that Γ2m(Πu(K)+ [−u,u]) � γ .
Suppose that γ ′ ∈ (0,γ) and that c+ γ ′(Πu(K)+ [−u,u]) is a smaller homothetic

copy of Πu(K)+ [−u,u] that intersects Πu(K)+u . Then there exists α < 0 such that
Πu(c)− c = αu , and

(c+ γ ′(Πu(K)+ [−u,u]))∩ (Πu(K)−u) = /0.
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It is not difficult to show that

(c+ γ ′(Πu(K)+ [−u,u]))∩ (Πu(K)+u) =(Πu(c)+u+ γ ′Πu(K))∩ (Πu(K)+u)
=((Πu(c)+ γ ′Πu(K))∩Πu(K))+u.

Thus, to cover Πu(K)+u , one needs at least m+1 translates of γ ′(Πu(K)+ [−u,u]) .
Similarly, to cover Πu(K)−u , one needs at least further m+1 translates of γ ′(Πu(K)+
[−u,u]) . Therefore Γ2m(Πu(K)+ [−u,u]) � γ . This completes the proof.

PROPOSITION 5. If m ∈ Z
+ and m � 2 · c(Πu(K)) , then

lim
λ→∞

Γm(Kλ ) � Γc(Πu(K))(Πu(K)).

Proof. By Theorem 2 and Proposition 4 we have

lim
λ→∞

Γm(Kλ )=Γm(Πu(K)+[−u,u])�Γ2·c(Πu(K))(Πu(K)+[−u,u]) = Γc(Πu(K))(Πu(K)).

PROPOSITION 6. If K = Πu(K)+ γ [−u,u] , where γ > 0 , then

Γm(K) = Γm(Kλ ), ∀m ∈ Z
+,λ � 0.

3. Covering functionals of direct sum of convex bodies

PROPOSITION 7. Suppose that R
n is the direct vector sum of two of its subspaces

L1 and L2 , and K1 and K2 are convex bodies in L1 and L2 , respectively. Moreover,
we assume that K1 and K2 contains the origin of L1 and L2 , respectively. For each
pair of positive integers m1 and m2 , we have

Γm1×m2(K1 ⊕K2) � max {Γm1(K1),Γm2 (K2)} .

Moreover, if m1 = c(K1) and m2 = c(K2) , we have

Γm1×m2(K1 ⊕K2) = max {Γm1(K1),Γm2(K2)} . (8)

Proof. Put γ1 = Γm1(K1) and γ2 = Γm2(K2) . There exist a set C1 ⊂ L1 of m1

points and a set C2 ⊂ L2 of m2 points such that

K1 ⊆C1 + γ1K1 and K2 ⊆C2 + γ2K2.

For each point x ∈ K1 ⊕K2 , there exists a unique pair of points x1 ∈ K1 and x2 ∈ K2

such that x = x1 + x2 . Then there exist two points c1 ∈C1 and c2 ∈C2 such that

x = x1 + x2 ∈ (c1 + γ1K1)⊕ (c2 + γ2K2)
⊆ (c1 +max {γ1,γ2}K1)⊕ (c2 +max {γ1,γ2}K2)
= c1 + c2 +max {γ1,γ2}(K1 ⊕K2)
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⊆C1⊕C2 +max {γ1,γ2}(K1 ⊕K2).

Since C1 ⊕C2 consists of m1×m2 points, we have

Γm1×m2(K1 ⊕K2) � max {Γm1(K1),Γm2 (K2)} .

Suppose that m1 = c(K1) and m2 = c(K2) . By the definition of Γm1×m2(K1⊕K2) ,
there exists a set C = {ci | i ∈ [m1 ×m2]} of m1 ×m2 points in R

n such that

K1 ⊕K2 ⊆C+ Γm1×m2(K1 ⊕K2)K1 ⊕K2.

Since R
n = L1⊕L2 , for each i ∈ [m1×m2] , there exists a unique pair of points pi ∈ L1

and qi ∈ L2 such that ci = pi +qi . Note that, for distinct i, j ∈ [m1×m2] , pi (qi , resp.)
might coincide with p j (q j , resp.).

Let x1 be an arbitrary point in K1 and x2 be an arbitrary in K2 . Then there exists
i ∈ [m1×m2] such that

x1 + x2 ∈ ci + Γm1×m2(K1 ⊕K2)K1 ⊕K2 = pi +qi + Γm1×m2(K1 ⊕K2)K1 ⊕K2,

which implies that there exist points y1 ∈ K1 and y2 ∈ K2 such that

x1 + x2 = pi +qi + Γm1×m2(K1⊕K2)(y1 + y2).

Thus

x1 = pi + Γm1×m2(K1 ⊕K2)y1 and x2 = qi + Γm1×m2(K1 ⊕K2)y2.

It follows that
K1 ⊆ {pi | i ∈ [m1 ×m2]}+ Γm1×m2(K1 ⊕K2)K1

and
K2 ⊆ {qi | i ∈ [m1×m2]}+ Γm1×m2(K1 ⊕K2)K2.

Therefore

card {pi | i ∈ [m1×m2]} � m1 and card {qi | i ∈ [m1×m2]} � m2,

which, together with the fact that

m1×m2 = cardC = card {pi | i ∈ [m1×m2]}× card {qi | i ∈ [m1×m2]} ,

shows that

card {pi | i ∈ [m1×m2]} = m1 and card {qi | i ∈ [m1×m2]} = m2.

Finally we have

max {Γm1(K1),Γm2 (K2)} � Γm1×m2(K1 ⊕K2).

This completes the proof.

REMARK 2. We remark that (8) can be viewed as an extension of Proposition 4.
In general, (8) is not true. When c(K1 ⊕K2) � m1×m2 and c(K1) > m1 , we have

Γm1×m2(K1 ⊕K2) < 1 = max {Γm1(K1),Γm2(K2)} .
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