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Abstract. We investigate a generalized triangle inequality of the second type in the framework
of quasi normed spaces. More precisely, by using the well-known Aoki-Rolewicz theorem and
some quasi normed inequalities, we obtain some regions of R

n which contain the set of all n -
tuples satisfying the mentioned inequality. Moreover, some reverse inclusions are also discussed.
As applications, we deduce some new results associated with generalizations of the triangle
inequality in p -normed spaces and we get some already known results in a new approach.

1. Introduction and preliminaries

The triangle inequality is considered to be one of the most fundamental inequalities
in mathematics. There are many interesting generalizations, refinements and reverses
of the triangle inequality in normed spaces, quasi normed spaces, inner product spaces,
pre-Hilbert C∗ - modules; see [14, 9, 8, 15, 16, 6, 4, 7] and references therein.
Some generalizations of the triangle inequality are profitable to study of the geometrical
structure of Banach spaces [5]. Especially, some results based on the triangle inequality
of the second type

‖x+ y‖2 � 2
(‖x‖2 +‖y‖2) (1)

and its generalizations in normed spaces can be found in [2, 15]. The Euler-Lagrange
type identity [13]

‖x‖2

μ
+

‖y‖2

ν
− ‖ax+by‖2

λ
=

‖νbx− μay‖2

λ μν
(λ = μa2 + νb2, λ μν > 0)

yields the following more general triangle inequality of the second type

‖ax+by‖2

λ
� ‖x‖2

μ
+

‖y‖2

ν
(λ = μa2 + νb2, λ μν > 0)
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in Hilbert spaces [15] that comprises inequality (1) as a special case. In addition, Taka-
hasi et al. [15] obtained some conditions for which the inequality

‖ax+by‖q

λ
� ‖x‖q

μ
+

‖y‖q

ν

holds for q � 1. In [3], the authors discussed the generalized triangle inequality of the
second type and its reverse in normed spaces. Also Izumida et al. [9] presented another
approach to characterizations of the generalized triangle inequality of the second type
by using ψ -direct sums of Banach spaces.
The notion of quasi norm is a generalization of a norm that Hyers [12] introduced it
under the names pseudo norm and absolute value. The label quasi norm was proposed
by Bourgin in 1943. Tychonoff gave the first example of a quasi Banach space. In

particular, he proved that ‖x+ y‖ 1
2

� 2
(
‖x‖ 1

2
+‖y‖ 1

2

)
for all x,y ∈ l 1

2
[12].

In this paper, we investigate the generalized triangle inequality of the second type

‖x1 + . . .+ xn‖q � ‖x1‖q

μ1
+ . . .+

‖xn‖q

μn
(q > 0) (2)

in the framework of quasi normed spaces. More precisely, by using the well-known
Aoki-Rolewicz theorem and some quasi normed inequalities, we obtain some regions
of R

n which contain the set of all n -tuples (μ1, . . . ,μn) satisfying inequality (2). More-
over, some reverse inclusions are discussed. As applications, we deduce some results
associated with generalizations of the triangle inequality in p -normed spaces and get
some already known results due to Belbachir et al. [2] and Dadipour et al. [3] in a new
fashion.

In the remainder of this section, we recall some basic concepts, preliminary results
and symbols that are used throughout the paper.
A quasi norm on a vector space X is a real valued function ‖ · ‖ : X → R satisfying the
following properties:

(i) ‖x‖ � 0, for all x ∈ X and ‖x‖ = 0 if and only if x = 0,

(ii) ‖λx‖ = |λ |‖x‖ , for all λ ∈ R and all x ∈ X ,

(iii) There is a constant C � 1 such that ‖x+y‖�C (‖x‖+‖y‖), for all x,y ∈ X (the
quasi triangle inequality).

The smallest possible C in (iii) is called the modulus of concavity of ‖ · ‖ and the pair
(X ,‖ · ‖) is called a quasi normed space. If C = 1, then obtain a norm. A quasi norm
‖ · ‖ is called a p -norm (0 < p � 1) if it satisfies

‖x+ y‖p � ‖x‖p +‖y‖p (x,y ∈ X).

In this case, a quasi normed space is called a p -normed space.
There are many different equivalent metrics on a quasi normed space one of which is
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given by Aoki and Rolewicz. The Aoki-Rolewicz theorem [11] states that if (X ,‖.‖) is
a quasi normed space with the modulus of concavity C , then there is a number p∈ (0,1]
such that the functional

�x� := inf

⎧⎨
⎩
(

n

∑
i=1

‖xi‖p

) 1
p

: n > 0, x1, . . . ,xn ∈ X , x =
n

∑
i=1

xi

⎫⎬
⎭ ,

defines a p -norm equivalent to the quasi norm ‖.‖ . Moreover �x� � ‖x‖ � 2C� x �

and 2
1
p−1 � C . So every quasi norm is equivalent to some p -norms (0 < p � 1) and

d(x,y) := �x−y�p defines a metric topology on X . A quasi normed space ( p -normed
space) is called a quasi Banach space ( p -Banach space) if every Cauchy sequence con-
verges. We refer the reader to [10, 12] for more information on quasi normed spaces.
The notion of q -norm is a specification of a quasi norm that Belbachir et al. [2] intro-
duced it as follows:
A real valued function ‖·‖ on a vector space X is called a q -norm (q � 1) if it satisfies
(i) and (ii) above and the following inequality

‖x+ y‖q � 2q−1(‖x‖q +‖y‖q) (x,y ∈ X). (3)

Considering the inequality ‖x‖q +‖y‖q � (‖x‖+‖y‖)q , we infer that every q -norm is

a quasi norm with the modulus of concavity C � 2
q−1
q .

Let (X ,‖.‖) be a quasi normed space and q > 0. We denote the set of all n -
tuples (μ1, . . . ,μn) ∈ R

n with positive coordinates for which inequality (2) holds for all
x1, . . . ,xn ∈ X by F‖.‖(q) . When we deal with only one quasi norm in the underlying
space, for simplicity, we use F(q) instead of F‖.‖(q) . We also call inequality (2) as the
characteristic inequality of F(q) . It is noted that there is no n -tuple (μ1, . . . ,μn) ∈ R

n

with some negative coordinates satisfying inequality (2) (To see this, assume that there
exists (μ1, . . . ,μn)∈R

n such that μ j < 0 for some j = 1, . . . ,n and inequality (2) holds
for all x1, . . . ,xn ∈ X . One can take x j ∈ X \ {0} and xi = 0 (i = 1, . . . ,n, i �= j) to get
a contradiction.). So, our purpose is to investigate F(q) for all q > 0. In this direction,
the main results and consequences are prepared in the next two sections. In Section
2, we study F(q) for 0 < q � 1 by using the Aoki-Rolewicz theorem and the notion
of equivalent p -norms. In Section 3, we deal with F(q) for q > 1 by applying some
sharp quasi norm inequalities. Some ideas of this note are inspired by [3, 15].

2. F(q) for 0 < q � 1

As mentioned in the preceding section, by the Aoki-Rolewicz theorem, it is known
that every quasi norm is equivalent to some p -norm. Because of the simplicity of
dealing with p -norms rather than quasi norms, we prepare some p -norm inequalities.
In order to do this, in Theorem 1, we obtain some regions of R

n which contain F(q)
and vise versa. First we need the following lemma which is given in [3, Lemma 2.3].
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LEMMA 1. [3] Let 0 < r � 1 , Ω ⊆ {(s1, . . . ,sn) : s1, . . . ,sn � 0,∑n
i=1 si � 1} and

let Dr(Ω) := {(a1, . . . ,an) : a1, . . . ,an � 0,a1sr
1 + . . .+ ansr

n � 1 for all (s1, . . . ,sn) ∈
Ω} . Then the following hold:

(i) {(a1, . . . ,an) : a1 � 1, . . . ,an � 1} ⊆ Dr(Ω) ;

(ii) If {(e1, . . . ,en)} ⊆ Ω where {e1, . . . ,en} is the standard basis of R
n , then

Dr(Ω) = {(a1, . . . ,an) : a1 � 1, . . . ,an � 1}.

THEOREM 1. Let ‖.‖ and �.� be a quasi norm and a p-norm (0 < p � 1) ,
respectively, on a nonzero vector space X such that ‖.‖ is equivalent to �.� . Let α̂ :=
inf{α > 0 : ‖x‖ � α � x� for all x ∈ X} , β̂ := inf{β > 0 : �x� � β‖x‖ for all x ∈ X}
and 0 < q � p. Then the following hold:

(i) F‖.‖(q) ⊆ (0, α̂qβ̂ q]× . . .× (0, α̂qβ̂ q];

(ii) F‖.‖(q) ⊇ (0, 1
α̂qβ̂ q ]× . . .× (0, 1

α̂qβ̂ q ];

(iii) If α̂β̂ = 1 , then F‖.‖(q) = (0,1]× . . .× (0,1] .

Proof. First we note that α̂, β̂ > 0. For this, let α be an arbitrary positive number
such that ‖x‖� α �x � for all x ∈ X . Since X �= 0, we observe that 0 < ‖x0‖

�x0� � α for

some x0 �= 0. It follows from the definition of α̂ that α̂ > 0. Similarly, we have β̂ > 0.

Let Ω be the set consisting of all n -tuples
(

�x1�p

�∑n
i=1 xi�p , . . . , �xn�p

�∑n
i=1 xi�p

)
where x1, . . . ,xn∈

X and ∑n
i=1 xi �= 0. Thus Ω ⊆ {(s1, . . . ,sn) : s1, . . . ,sn � 0, ∑n

i=1 si � 1} because �.�
is a p -norm. We also note that 0 < q

p � 1 and Ω contains the standard basis of R
n and

so Ω contains too. From Lemma 1 we get D q
p
(Ω) = {(a1, ...,an) : a1 � 1, ...,an � 1}.

(i) Let (μ1, . . . ,μn) ∈ F‖.‖(q) . Thus μi > 0 for all i = 1, . . . ,n and the following
inequality holds

‖x1 + · · ·+ xn‖q � ‖x1‖q

μ1
+ · · ·+ ‖xn‖q

μn
(x1, . . . ,xn ∈ X), (4)

whence
n

∑
i=1

‖xi‖q

μi‖x1 + . . .+ xn‖q � 1, (5)

for all x1, . . .xn ∈ X in which ∑n
i=1 xi �= 0. Since ‖x‖ � α̂ � x � and �x� �

β̂‖x‖ (x ∈ X) by the definition of α̂ and β̂ , inequality (5) turns into

n

∑
i=1

α̂qβ̂ q �xi�
q

μi � x1 + . . .+ xn�q � 1 (6)

for all x1, . . . ,xn ∈ X in which ∑n
i=1 xi �= 0. From inequality (6) we infer that

( α̂qβ̂ q

μ1
, . . . , α̂qβ̂ q

μn
)∈D q

p
(Ω) , or equivalently, we get α̂qβ̂ q

μi
� 1, whence μi � α̂qβ̂ q

for all i = 1, . . . ,n.
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(ii) Let μ1, . . . ,μn be positive numbers such that μi � 1
α̂qβ̂ q for all i = 1, . . . ,n.

Thus we get 1
μiα̂qβ̂ q � 1 (i = 1, . . . ,n) and so

(
1

μ1α̂qβ̂ q , . . . , 1
μnα̂qβ̂ q

)
∈ D q

p
(Ω) ,

or equivalently, the following inequality holds

�x1�
q

μ1α̂qβ̂ q � ∑n
i=1 xi�q

+ . . .+
�xn�

q

μnα̂qβ̂ q � ∑n
i=1 xi�q

� 1 (x1, . . . ,xn ∈X ,
n

∑
i=1

xi �= 0).

(7)
Due to the definition of α̂ and β̂ , we observe that ‖x‖ � α̂ � x � and �x� �
β̂‖x‖ for all x ∈ X . According to two last inequalites, inequality (7) turns into

‖x1‖q

μ1‖∑n
i=1 xi‖q + . . .+

‖xn‖q

μn‖∑n
i=1 xi‖q � 1 (x1, . . . ,xn ∈ X ,

n

∑
i=1

xi �= 0).

Hence inequality (4) holds.

(iii) It follows from (i) and (ii).

It is known that each p -norm is a quasi norm. Hence, a special case of Theorem 1 gives
the following result. In Corollary 1, F(q) is completely characterized in the setting of
p -normed spaces.

COROLLARY 1. Let (X ,‖.‖) be a p-normed space (0 < p � 1) and 0 < q � p.
Then

F(q) = (0,1]× . . .× (0,1].

Proof. Applying Theorem 1 to ‖.‖ as a p -norm and quasi norm we get α̂ = β̂ = 1.
The result follows from parts (i) and (ii).
A special case of Corollary 1, where p = 1 gives rise to the following result due to [3,
Theorem 2.5 (i)].

COROLLARY 2. [3] Let (X ,‖.‖) be a normed space and 0 < q � 1 . Then

F(q) = (0,1]× . . .× (0,1].

3. F(q) for q > 1

We start this section with the following two lemmas which generalize the quasi
triangle inequality for n vectors. The first lemma easily follows from the quasi triangle
inequality by induction and the second lemma is given in [6, Lemma 2].

LEMMA 2. Let X be a quasi normed space with the modulus of concavity C and
n � 1. Then the following inequalities hold:

(i)

∥∥∥∥∥
n

∑
i=1

xi

∥∥∥∥∥� C
n
2

n

∑
i=1

‖xi‖ ( n is even and x1, . . . ,xn ∈ X); (8)

(ii)

∥∥∥∥∥
n

∑
i=1

xi

∥∥∥∥∥� C
n+1
2

n

∑
i=1

‖xi‖ ( n is odd and x1, . . . ,xn ∈ X). (9)
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LEMMA 3. [6] Let (X ,‖.‖) be a quasi normed space with the modulus of concav-
ity C and n > 1. Then ∥∥∥∥∥

n

∑
i=1

xi

∥∥∥∥∥� C1+log2(n−1)
n

∑
i=1

‖xi‖ (10)

for all x1, . . . ,xn ∈ X .

REMARK 1. The preceding two lemmas provide some estimations of ‖x1 + . . .+
xn‖ in quasi normed spaces. According to sharp inequalities, some estimations of ‖x1 +
. . .+xn‖ is more accurate. In fact, inequality (10) gives a sharper bound for ‖x1 + . . .+
xn‖ (n is even except for 4,6) than inequality (8) and inequality (8) gives us sharper
bound than inequality (10) for n = 4,6. The constant in inequality (10) is also sharper
than that of inequality (9) where n is odd. To see these, it is enough to check that:

(i) C1+log2(n−1) � C
n
2 (n is even except for 4,6);

(ii) C
n
2 � C1+log2(n−1) (n = 4,6);

(iii) C1+log2(n−1) � C
n+1
2 (n is odd).

To check (i) and (ii), we define the differentiable real valued function f as f (x) =
x
2 − (1+ log2(x−1)) for all x ∈ (1,∞) . One can show that the equation f ′(x) = 0 has
exactly one solution x0 = 1+2ln(2)−1 , f ′(x) < 0 on (1,x0) and f ′(x) > 0 on (x0,∞) ,
whence the function f takes the absolute minimum at the point of x0. We also get the
logarithmic equation x

2 − (1+ log2(x−1)) = 0 has exactly two solutions, say, x1 and
x2 .
Obviously x1 = 2 and by using the software MATLAB we observe that x2 ∈ (7,8).
Due to the facts that the function f increases on (x0,∞) , x2 ∈ (x0,∞) , f (x2) = 0 and
x2 < 8, we get f (n) � 0 for all n = 2k (k ∈ N \ {1,2,3}). In addition, f (2) = 0
therefore f (n) � 0 for all n = 2k (k ∈ N\{2,3}). We also notice that f (x) � 0 for all
x ∈ [x1,x2] and 4,6 ∈ [x1,x2], whence f (n) � 0 for n = 4,6. In a similar way, we can
check (iii).

Applying Lemma 2 and Lemma 3 and according to the preceding remark, we
obtain some regions of R

n which are contained in F(q) with as accurate as possible.
So we can state the following theorem.

THEOREM 2. Let (X ,‖.‖) be a quasi normed space with the modulus of concavity
C and q > 1 . Then

(i) F(q)⊇
{

(μ1, . . . ,μn) : μ1, . . . ,μn > 0 and

(
∑n

i=1 μ
1

q−1
i

)q−1

� C−q(1+log2(n−1))

}
;

(the case where n �= 4,6);

(ii) F(q) ⊇
{

(μ1, . . . ,μn) : μ1, . . . ,μn > 0 and

(
∑n

i=1 μ
1

q−1
i

)q−1

� C− nq
2

}
;

(the case where n = 4,6).
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Proof. (i) Let μ1, . . . ,μn be positive numbers satisfying the following inequality

(
n

∑
i=1

μ
1

q−1
i

)q−1

� C−q(1+log2(n−1)) (11)

and x1, . . . ,xn ∈ X be arbitrary. From Lemma 3 we deduce that∥∥∥∥∥
n

∑
i=1

xi

∥∥∥∥∥
q

� Cq(1+log2(n−1))

(
n

∑
i=1

‖xi‖
)q

. (12)

Applying the so-called Hölder inequality on the couple q
q−1 ,q as conjugate exponents

we get

n

∑
i=1

‖xi‖ �
(

n

∑
i=1

μ
1

q−1
i

) q−1
q
(

n

∑
i=1

‖xi‖q

μi

) 1
q

,

whence inequality (12) turns into

∥∥∥∥∥
n

∑
i=1

xi

∥∥∥∥∥
q

� Cq(1+log2(n−1))

(
n

∑
i=1

μ
1

q−1
i

)q−1 n

∑
i=1

‖xi‖q

μi
. (13)

From (11) and the last inequality we get ‖∑n
i=1 xi‖q � ∑n

i=1
‖xi‖q

μi
, or equivalently,

(μ1, . . . ,μn) ∈ F(q) .
(ii) With a similar argument to the proof of part (i) and by applying Lemma 2 (i), one
can show that the desired inclusion holds. So we omit the details.

EXAMPLE 1. Here we provide some regions of R
2 containing ordered pairs

(μ1,μ2) that satisfy the conditions of Theorem 2. Let us make this in the sequence
space l p .
Let p ∈ (0,1] be arbitrary and X = l p . Then

‖x‖p =

(
∞

∑
j=1

|ξ j|p
) 1

p

(x = (ξ j)∞
j=1 ∈ l p)

is a quasi norm with the modulus of concavity Cp = 2
1
p−1 [1].

The inequality conditions in Theorem 2 equivalently turn into

μ
1

q−1
1 + μ

1
q−1
2 � 2

(
1
p−1

)
( q

1−q ) (q > 1, μ1,μ2 > 0). (14)

In Figure 1 that its diagrams have been drawn by the software Wolfram Mathematica,
we can observe the regions of R

2 which satisfy inequality (14) under the following
assumptions:

a) p = 1, X = l1, C1 = 1, q = 1.05, 1.2, 1.4, 1.65, 2, 2.5, 3, 4, 5;
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C1 = 1 C 2
3
=
√

2 C 1
2
= 2

Figure 1: Plots of μ
1

q−1
1 + μ

1
q−1
2 = 2

(
1
p−1

)
( q

1−q )

b) p = 2
3 , X = l

2
3 , C 2

3
=
√

2, q = 1.05, 1.2, 1.4, 1.65, 2, 2.5, 3;

c) p = 1
2 , X = l

1
2 , C 1

2
= 2, q = 1.05, 1.2, 1.4, 1.65, 2, 2.5, 3.

By Theorem 2, the above mentioned regions are contained in F‖.‖p(q) and so the char-
acteristic inequality of F‖.‖p(q) (inequality (2)) holds for all ordered pairs (μ1,μ2)
belonging to these regions.

Next, as a reverse inclusion of the last results, we can get a region of R
n which contains

F(q) . Similar to the first half of the proof of [3, Theorem 2.4 (i)], one can easily check

the following proposition by putting xi = μ
1

q−1
i x (for some x �= 0 and for all i = 1, . . . ,n)

in the characteristic inequality of F(q) .

PROPOSITION 1. Let (X ,‖.‖) be a quasi normed space and q > 1 . Then the
following inclusion holds:

F(q) ⊆
{

(μ1, . . . ,μn) : μ1, . . . ,μn > 0 and
n

∑
i=1

μ
1

q−1
i � 1

}
.

The results in the following corollaries are derived from Theorem 2 and Proposition 1
as some special cases.
Taking C = 1 and by using Theorem 2 and Proposition 1, we have the following corol-
lary which was presented in [3, Theorem 2.4 (i)].

COROLLARY 3. [3] Let (X ,‖.‖) be a normed space and q > 1. Then

F(q) =

{
(μ1, . . . ,μn) : μ1, . . . ,μn > 0,

n

∑
i=1

μ
1

q−1
i � 1

}
.

Finally with connection to the notion of q -norms, we get the following result proved in
[2, Proposition 2.1].

COROLLARY 4. [2] Every norm in a usual sense is a q-norm for all q > 1 .
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Proof. Let q > 1 be arbitrary. Applying Theorem 2 (i) by setting n = 2, one can
observe that (21−q,21−q) ∈ F(q) , or equivalently, ‖x+y‖q � 2q−1(‖x‖q +‖y‖q) for all
x,y ∈ X .

Acknowledgements. The authors would like to thank the referees for some valuable
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