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EULER–LAGRANGE EQUATIONS ASSOCIATED WITH EXTREMAL

FUNCTIONS OF SEVERAL NONLOCAL INEQUALITIES

YAYUN LI

(Communicated by I. Perić)

Abstract. This paper is concerned with the extremal functions of several kinds of non-local in-
equalities, including the Hardy-Littlewood-Sobolev inequality, fractional Gagliardo-Nirenberg
inequality, nonlocal Gagliardo-Nirenberg inequality and Coulomb-Sobolev inequality. First, we
derive the Euler-Lagrange equations which they satisfy. Second, we investigate the existence of
some integrable classical solutions for these equations, where the Pohozaev identity plays a key
role.

1. Introduction

This paper is concerned with nonlocal Gagliardo-Nirenberg inequalities. We study
the Euler-Lagrange equations which the extremal functions satisfy.

Recall the Hardy-Littlewood-Sobolev (HLS) inequality (cf. [16])
∣∣∣∣
∫

Rn

∫
Rn

f (x)g(y)
|x− y|n−α dxdy

∣∣∣∣ � C‖ f‖s‖g‖t, ∀ f ∈ Ls, g ∈ Lt , (1)

where 0 < α < n, s, t > 1, and 1
s + 1

t + n−α
n = 2. Such an inequality comes into play

in the study of estimating the Coulomb energy (cf. [3], [4], [12])

∫
Rn

∫
Rn

up(x)up(y)
|x− y|n−α dxdy.

In order to obtain the upper bound of the Coulomb energy, investigating the best
constant of (1) is necessary. In 1983, Lieb [11] employed Schwarz symmetrization to
figure successfully out the Euler-Lagrange equation as

⎧⎪⎪⎨
⎪⎪⎩

u(x) =
∫

Rn

vq(y)
|x− y|n−α dy,

v(x) =
∫

Rn

up(y)
|x− y|n−α dy,

(2)
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and the explicit representation of the extremal functions when u = v and p = q as

u ≡ v ≡ c

(
δ

δ 2 + |x− x0|2
) n−α

2

. (3)

Afterwards, Chen-Li-Ou [5] and Li [10] proved that all the regular solutions of (2)
with u = v and p = q are the form of (3).

By the Hölder inequality and the definition of norm of operator, the classical HLS
inequality (1) in Rn with n � 2 is equivalent to the following inequality

‖Tg‖r � C‖g‖ nr
n+αr

, (4)

where Tg =
∫

Rn

g(y)
|x− y|n−α dy and r > n

n−α . Moreover, if u is a rapidly decreasing

function, then (4) is equivalent to the inequality below

‖u‖r � c‖(−Δ)
α
2 u‖ nr

n+αr
, (5)

where r > n
n−α and

(−Δ)
α
2 u := Cn,αP.V.

∫
Rn

u(x)−u(y)
|x− y|n+α dy = Cn,α lim

ε→0+

∫
|x−y|�ε

u(x)−u(y)
|x− y|n+α dy.

Here Cn,α is a positive constant. So it is natural that (1) and (5) are equivalent.
In the following special cases: (i) f = g, and s = t in (1); (ii) r = 2n

n−α in (4) (or

r = 2n
n−α in (5)); (iii) u = v, and p = q in (2), they have the same optimal function (3)

(cf. [11], [5]).
Except for these special cases, what the extremal functions are is still an open

problem.
Recall the fractional Gagliardo-Nirenberg (GN) inequality (cf. [7] and the refer-

ences therein)
‖u‖p � C‖(−Δ)

α
4 u‖θ

2‖u‖1−θ
q , ∀ u ∈ Dα ,2 ∩Lq, (6)

where n � 2, 1 < q < p � 2n
n−2α and θ = 2n(p−q)

p[2n−(n−α)q]. When α = 2 and 1 < q �
2n−2
n−2 , p = 2q− 2, Del Pino and Dolbeault [6] obtained the best constant. When α =
q = 2, p = 2n+4

n and θ = n
n+2 , Weinstein [17] proved the extremal functions of (6)

satisfy a static Schrödinger equation

−ΔR+R = |R|γR,

where γ = 4
n .

For more general exponents, the Euler-Lagrange equation is

−Δu+ |u|q−2u = |u|p−2u. (7)

This type of problems can be seen as a prototype of the pattern formation in biol-
ogy, which is related to the steady-state problem for a chemotactic aggregation model
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introduced by Keller and Segel. This equation also plays an important role in the study
of biological patterning of the activator-inhibitor system, which was proposed by Gierer
and Meinhardt. This type of problems, as well as the associated evolutionary equations,
describes the phenomenon of super-diffusion. De Gennes presented the models to de-
scribe the long van der Waals interaction on the solid surface.

Inserting the HLS inequality into the GN inequality yields

‖Tu‖r � C‖(−Δ)
α
4 u‖θ

2‖u‖1−θ
q , (8)

where 1 < q < nr
n+αr and θ = 2[nr−(n+αr)q]

r[2n−(n−α)q] . This is also a fractional GN inequality.
Another fractional GN inequality is the following Coulomb-Sobolev inequality (cf. [1],
[14])

‖u‖p � C‖∇u‖θ
2

(∫ ∫
Rn×Rn

uq(x)uq(y)
|x− y|n−α dxdy

)τ
, ∀ u ∈ X1,α , (9)

where

1
p

= θ (
1
2
− 1

n
)+ (1−θ )

n+ α
2nq

, θ =
n+ α − 2qn

p

(n+ α)−q(n−2)
, τ =

2n− (n−2)p
p(n+2+2α)

,

and

X1,α =
{

u ∈ D1,2;
∫ ∫

Rn×Rn

uq(x)uq(y)
|x− y|n−α dxdy < ∞

}
.

Such an inequality plays a key role in estimating the lower bound of the Coulomb
energy (cf. [2]). In addition, this inequality is equivalent partly to the Lieb-Thirring
type inequality (cf. [13]). The extremal functions belong to the Coulomb-Sobolev
space. In 2010, Ruiz used this space to study a Schrödinger-Poisson-Slater equation
(cf. [8], [15]).

We will prove the following results.

THEOREM 1. The extremal functions in (6) satisfy the elliptic equation in the
weak sense

(−Δ)
α
2 u+uq−1 = up−1. (10)

THEOREM 2. The extremal functions in (8) satisfy the semilinear equation in the
weak sense

θ (−Δ)
α
2 v+(1−θ )vq−1 = σ p

∫
Rn

wp−1(x)
|x− y|n−α dx, (11)

where σ is a positive constant associated with the best constant C , θ = 2n(p−q)
p[2n−(n−α)q] ,

and w(x) :=
∫

Rn

v(y)
|x− y|n−α dy.

THEOREM 3. The extremal functions in (9) satisfy the elliptic equation in the
weak sense

−Δu+
2σ
θ

q ·uq−1V (x) = σ pup−1, (12)
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where σ is a positive constant associated with the best constant C , θ =
n+α− 2qn

p
(n+α)−q(n−2) ,

and V (x) :=
∫

Rn

uq(y)
|x− y|n−α dy.

Next, we consider the simplified forms of (10), (11) and (12), i.e.

−Δu+uq−1 = up−1; (13)

−Δv+ vq−1 =
∫

Rn

wp−1(x)
|x− y|n−α dx (14)

with w(x) :=
∫

Rn

v(y)
|x− y|n−α dy; and

−Δu+uq−1V (x) = up−1 (15)

with V (x) :=
∫

Rn

uq(y)
|x− y|n−α dy.

And we will prove the following results.

THEOREM 4. If the elliptic equation (13) has positive classical solutions in D1,2∩
Lq , then one of the following holds:

(i) q < p <
2n

n−2
;

(ii) q > p >
2n

n−2
;

(iii) q = p =
2n

n−2
.

THEOREM 5. If the elliptic equation (14) has positive classical solutions in D1,2∩
Lq , then one of the following holds:

(i) q <
np

n+ α
and p <

2(n+ α)
n−2

;

(ii) q >
np

n+ α
and p >

2(n+ α)
n−2

;

(iii) q =
2n

n−2
and p =

2(n+ α)
n−2

.

THEOREM 6. If the elliptic equation (15) has positive classical solutions in X1,α ,
then one of the following holds:

(i) q <
p(n+ α)

2n
and p <

2n
n−2

;

(ii) q >
p(n+ α)

2n
and p >

2n
n−2

;

(iii) q =
n+ α
n−2

and p =
2n

n−2
.
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We use variational calculations to derive the Euler-Lagrange equations satisfied
by the extremal functions of the inequalities. This method comes from [17]. And the
Pohozaev identities play a key role in proving the non-existence of solutions. We use
the method in [9] to derive the Pohozaev identities.

2. Euler-Lagrange equations

In this section, we derive the Euler-Lagrange equations satisfied by the extremal
functions of three non-local inequalities.

Proof of Theorem 1.
We set

J(u) =
‖(−Δ)

α
4 u‖θ

2‖u‖1−θ
q

‖u‖p
, (16)

and
σ = inf

u∈Dα,2∩Lq,u �=0
J(u). (17)

Now we consider a minimizing sequence (un)n�0. By the GN inequality, we know that
σ > 0. We consider vn defined by vn(x) = μnun(λnx) with

λn =
‖un‖θ1

q

‖(−Δ)
α
4 un‖θ2

2

and μn =
‖un‖θ3

q

‖(−Δ)
α
4 un‖θ4

2

,

where,

θ1 = θ2 =
2q

2n− (n−α)q
, θ3 =

(n−α)q
2n− (n−α)q

and θ4 =
2n

2n− (n−α)q
.

Thus,
‖vn‖q = ‖(−Δ)

α
4 vn‖2 = 1,

and
‖vn‖−1

p = J(vn) = J(un) → σ > 0, as n → ∞.

By symmetrization, we may assume that vn is spherically symmetric, and hence there
exists a subsequence, which we still denote by (vn)n�0 , and v ∈ D1,2 ∩Lq(Rn) such
that vn → v in D1,2∩Lq(Rn) weakly and in Lp(Rn) strongly. Since

‖vn‖p = lim
n→∞

‖vn‖p = σ−1 > 0,

it follows that v �= 0. This implies that

J(v) = σ and ‖v‖q = ‖(−Δ)
α
4 v‖2 = 1. (18)

The corresponding functional is

E(v(x)) =
(∫

Rn
|(−Δ)

α
4 v(x)|2dx

) θ
2
(∫

Rn
|v(x)|qdx

) 1−θ
q

− σ p

p

(∫
Rn
|v(x)|pdx− 1

σ p

)
.

(19)
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For all ϕ ∈ H1(Rn), we get

d
dt

E(v(x)+ tϕ(x))
∣∣
t=0 =

d
dt

[ (∫
Rn
|(−Δ)

α
4 (v(x)+ tϕ(x))|2dx

) θ
2

·
(∫

Rn
|v(x)+ tϕ(x)|qdx

) 1−θ
q

−σ p

p

(∫
Rn
|v(x)+ tϕ(x)|pdx− 1

σ p

)]
t=0

= 0.

Taking into account (18), we obtain

θ (−Δ)
α
2 v+(1−θ )vq−1 = σ pvp−1.

Let now u be defined by v(x) = au(bx) with a = ( 1−θ
σ p )

1
p−q and b = [ 1−θ

θ ( 1−θ
σ p )

q−2
p−q ]

1
α ,

so u is a solution of
(−Δ)

α
2 u+uq−1 = up−1,

and
J(u) = J(v) = σ .

Thus we complete the proof of the Theorem 1.

Proof of Theorem 2.
We set

J(u) =
‖(−Δ)

α
4 u‖θ

2‖u‖1−θ
q

‖Tu‖p
, (20)

and
σ = inf

u∈Dα,2∩Lq,u �=0
J(u). (21)

Now we consider a minimizing sequence (un)n�0. By the GN inequality, we know that
σ > 0. We consider vn defined by vn(x) = μnun(λnx) with

λn =
‖un‖θ1

q

‖(−Δ)
α
4 un‖θ2

2

and μn =
‖un‖θ3

q

‖(−Δ)
α
4 un‖θ4

2

,

where,

θ1 = θ2 =
2q

2n− (n−α)q
, θ3 =

(n−α)q
2n− (n−α)q

and θ4 =
2n

2n− (n−α)q
.

Thus,
‖vn‖q = ‖(−Δ)

α
4 vn‖2 = 1

and
‖Tvn‖−1

p = J(vn) = J(un) → σ > 0, as n → ∞.
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By symmetrization, we may assume that vn is spherically symmetric, and so there
exists a subsequence, which we still denote by (vn)n�0 , and v ∈ D1,2 ∩Lq(Rn) such
that vn → v in D1,2∩Lq(Rn) weakly and in Lp(Rn) strongly. Since

‖Tv‖p = lim
n→∞

‖Tvn‖p = σ−1 > 0,

it follows that v �= 0. This implies that

J(v) = σ and ‖v‖q = ‖(−Δ)
α
4 v‖2 = 1. (22)

The corresponding functional is

E(v(x))=
(∫

Rn
|(−Δ)

α
4 v(x)|2dx

) θ
2
(∫

Rn
|v(x)|qdx

) 1−θ
q

−σ p

p

(∫
Rn
|Tv(x)|pdx− 1

σ p

)
.

(23)
For all ϕ ∈ H1(Rn), by letting

d
dt

E(v(x)+ tϕ(x))|t=0 =
d
dt

[ (∫
Rn
|(−Δ)

α
4 (v(x)+ tϕ(x))|2dx

) θ
2

·
(∫

Rn
|v(x)+ tϕ(x)|qdx

) 1−θ
q

−σ p

p

(∫
Rn
|T (v(x)+ tϕ(x))|pdx− 1

σ p

)]
t=0

= 0,

we have

θ
(∫

Rn
|(−Δ)

α
4 v(x)|2dx

) θ
2 −1 (∫

Rn
(−Δ)

α
4 v(x)(−Δ)

α
4 ϕ(x)dx

)(∫
Rn
|v(x)|qdx

) 1−θ
q

+(1−θ )
(∫

Rn
|(−Δ)

α
4 v(x)|2dx

) θ
2
(∫

Rn
|v(x)|qdx

) 1−θ
q −1 ∫

Rn
|v(x)|q−2vϕdx

−σ p
∫

Rn

(∫
Rn

v(y)
|x− y|n−β dy

)p−1 (∫
Rn

ϕ(y)
|x− y|n−β dy

)
dx = 0.

Taking into account (22), we obtain

θ (−Δ)
α
2 v+(1−θ )vq−1 = σ p

∫
Rn

wp−1(x)
|x− y|n−β dx, (24)

here w(x) :=
∫

Rn

v(y)
|x− y|n−β dy. Thus we complete the proof of the Theorem 2.

Proof of Theorem 3.
Similar to the proof of the Theorem 2, we consider vn defined by vn(x)= μnun(λnx)

with

λn =

(∫ ∫
Rn×Rn

uq
n(x)u

q
n(y)

|x− y|n−α dxdy

)θ1

‖∇un‖θ2
2

,



1172 YAYUN LI

μn =

(∫ ∫
Rn×Rn

uq
n(x)u

q
n(y)

|x− y|n−α dxdy

)θ3

‖∇un‖θ4
2

.

Where

θ1 =
2

n+2+2α
, θ2 =

4q
n+2+2α

, θ3 =
n−2

n+2+2α
and θ4 =

2q(n−2)+n+2+2α
n+2+2α

.

Thus, ∫ ∫
Rn×Rn

vq
n(x)v

q
n(y)

|x− y|n−α dxdy = ‖∇vn‖2 = 1,

and
‖vn‖−1

p = J(vn) = J(un) → σ > 0, as n → ∞.

Using the similar argument in the proof of the Theorem 2, we get the Euler-Lagrange
equation is

−Δu+
2σ
θ

q ·uq−1V (x) = σ pup−1, (25)

here

V (x) :=
∫

Rn

uq(y)
|x− y|n−α dy.

Thus we complete the proof of the Theorem 3.

3. Necessary conditions

In this section, we will prove Theorems 4-6.

Proof of Theorem 4.
Assume u ∈ D1,2 ∩Lq is a positive classical solution of (13). Then we can find

Rj → ∞ such that

Rj

∫
∂Bj

(u
2n

n−2 + |∇u|2)ds → 0.

By means of the Hölder inequality and u ∈ D1,2 , we get
∣∣∣∣
∫

∂Bj

u
∂u
∂ν

ds

∣∣∣∣
�

(
Rj

∫
∂Bj

u
2n

n−2 ds

) n−2
2n

(∫
∂Bj

| ∂u
∂ν

|2ds

) 1
2

|∂Bj| 1
2− n−2

2n R
− n−2

2n − 1
2

j → 0,

(26)

when R = Rj → ∞. Multiplying (13) by u and integrating on B , we have

∫
B
updx =

∫
B
|∇u|2dx+

∫
B
uqdx−

∫
∂B

u
∂u
∂ν

ds. (27)
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Letting R → ∞ and using the result above, we have
∫

Rn
|∇u|2dx+

∫
Rn

uqdx =
∫

Rn
updx. (28)

Hence u ∈ Lp(Rn). The functional corresponding to the equation (13) is

E(u(x)) =
1
2

∫
Rn
|∇u(x)|2dx+

1
q

∫
Rn

uq(x)dx− 1
p

∫
Rn

up(x)dx. (29)

Obviously, the definition of E(u(x)) makes sense. Clearly,

E(u(λx)) =
1
2

∫
Rn
|∇u(λx)|2dx+

1
q

∫
Rn

uq(λx)dx− 1
p

∫
Rn

up(λx)dx

=
λ 2−n

2

∫
Rn
|∇u|2dx+

λ−n

q

∫
Rn

uqdx− λ−n

p

∫
Rn

updx.

Since the solution of (13) is a critical point of E(u) , d
dλ E(u(λx))|λ=1 = 0. Therefore,

we obtain the Pohozaev identity

2−n
2

∫
Rn
|∇u|2dx+

n
p

∫
Rn

updx =
n
q

∫
Rn

uqdx. (30)

Combining (28) and (30), it follows that

⎧⎪⎪⎨
⎪⎪⎩

(
n
p
− n−2

2

)∫
Rn
|∇u|2dx =

(
n
q
− n

p

)∫
Rn

uqdx,
(

n
q
− n−2

2

)∫
Rn
|∇u|2dx =

(
n
q
− n

p

)∫
Rn

updx.

Then one of the following consequences holds
(i) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n
p
− n−2

2
> 0,

n
q
− n

p
> 0,

n
q
− n−2

2
> 0,

which implies q < p < 2n
n−2 .

(ii) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n
p
− n−2

2
< 0,

n
q
− n

p
< 0,

n
q
− n−2

2
< 0,



1174 YAYUN LI

which implies q > p > 2n
n−2 .

(iii) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n
p
− n−2

2
= 0,

n
q
− n

p
= 0,

n
q
− n−2

2
= 0,

which implies q = p = 2n
n−2 . Theorem 4 is proved.

Proof of Theorem 5.
Assume u ∈ D1,2 ∩Lq is a positive classical solution of (14). Similar to the ar-

gument in the proof of Theorem 4, we have the same conclusion with (26). Then
multiplying (14) by v and integrating on B and letting R → ∞ , we have

∫
Rn
|∇v|2dx+

∫
Rn

vqdx =
∫

Rn
(Tv)pdx. (31)

The functional corresponding to the equation (14) is

E(v(x)) =
1
2

∫
Rn
|∇v(x)|2dx+

1
q

∫
Rn

vq(x)dx− 1
p

∫
Rn

(∫
Rn

v(y)
|x− y|n−α dy

)p

dx. (32)

The definition of E(v(x)) makes sense, too. Clearly,

E(v(λx)) =
1
2

∫
Rn
|∇v(λx)|2dx+

1
q

∫
Rn

vq(λx)dx− 1
p

∫
Rn

(∫
Rn

v(λy)
|x− y|n−α dy

)p

dx

=
λ 2−n

2

∫
Rn
|∇v(x)|2dx+

λ−n

q

∫
Rn

vq(x)dx− λ−(n+α)

p

∫
Rn

(Tv(x))pdx.

Since the solution of (14) is a critical point of E(v) , d
dλ E(v(λx))|λ=1 = 0. Therefore,

we obtain the Pohozaev identity

2−n
2

∫
Rn
|∇v|2dx− n

q

∫
Rn

vqdx = −n+ α
p

∫
Rn

(Tv)pdx. (33)

Inserting this into (34) we get

⎧⎪⎪⎨
⎪⎪⎩

(
n
q
− n−2

2

)∫
Rn
|∇v|2dx =

(
n
q
− n+ α

p

)∫
Rn

(Tv)pdx,
(

n+ α
p

− n−2
2

)∫
Rn
|∇v|2dx =

(
n
q
− n+ α

p

)∫
Rn

(Tv)pdx.

Then one of the following consequences holds
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(i) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n
q
− n−2

2
> 0,

n+ α
p

− n−2
2

> 0,

n
q
− n+ α

p
> 0,

which implies q < np
n+α and p <

2(n+α)
n−2 .

(ii) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n
q
− n−2

2
< 0,

n+ α
p

− n−2
2

< 0,

n
q
− n+ α

p
< 0,

which implies q > np
n+α and p >

2(n+α)
n−2 .

(iii) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n
q
− n−2

2
= 0,

n+ α
p

− n−2
2

= 0,

n
q
− n+ α

p
= 0,

which implies q = 2n
n−2 and p = 2(n+α)

n−2 . Theorem 5 is proved.

Proof of Theorem 6.
Assume u ∈ X1,α is a positive classical solution of (15). By the same argument

in Theorem 5, we have
∫

Rn
|∇u|2dx+

∫
Rn

uqVdx =
∫

Rn
updx. (34)

Then the functional corresponding to the equation (15) is

E(u(x)) =
1
2

∫
Rn
|∇u(x)|2dx+

1
2q

∫
Rn

uq(x)V (x)dx− 1
p

∫
Rn

up(x)dx. (35)

The definition of E(u(x)) makes sense, too. Clearly,

E(u(λx)) =
1
2

∫
Rn
|∇u(λx)|2dx+

1
2q

∫
Rn

uq(λx)
∫

Rn

uq(λy)
|x− y|n−α dydx− 1

p

∫
Rn

up(λx)dx

=
λ 2−n

2

∫
Rn
|∇u(x)|2dx+

λ−(n+α)

2q

∫
Rn

uq(x)V (x)dx− λ−n

p

∫
Rn

up(x)dx.
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Since the solution of (15) is a critical point of E(u) , d
dλ E(u(λx))|λ=1 = 0. Therefore,

we obtain the Pohozaev identity

2−n
2

∫
Rn
|∇u|2dx− n+ α

2q

∫
Rn

uqVdx = − n
p

∫
Rn

updx. (36)

Combining this result with (34) yields

⎧⎪⎪⎨
⎪⎪⎩

(
n
p
− n−2

2

)∫
Rn
|∇u|2dx =

(
n+ α
2q

− n
p

)∫
Rn

uqVdx,
(

n+ α
2q

− n−2
2

)∫
Rn
|∇u|2dx =

(
n+ α
2q

− n
p

)∫
Rn

updx.

Then one of the following consequences holds
(i) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n
p
− n−2

2
> 0,

n+ α
2q

− n
p

> 0,

n+ α
2q

− n−2
2

> 0,

which implies q < p(n+α)
2n and p < 2n

n−2 .
(ii) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n
p
− n−2

2
< 0,

n+ α
2q

− n
p

< 0,

n+ α
2q

− n−2
2

< 0,

which implies q > p(n+α)
2n and p > 2n

n−2 .
(iii) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n
p
− n−2

2
= 0,

n+ α
2q

− n
p

= 0,

n+ α
2q

− n−2
2

= 0,

which implies q = n+α
n−2 and p = 2n

n−2 . Theorem 6 is proved.
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