athematical
nequalities
& Papplications

Volume 23, Number 4 (2020), 1179-1195 doi:10.7153/mia-2020-23-91

WEAK TYPE ENDPOINT ESTIMATES FOR THE COMMUTATORS
OF ROUGH SINGULAR INTEGRAL OPERATORS

JIACHENG LAN, XTANGXING TAO AND GUOEN HU

(Communicated by S. Varosanec)

Abstract. Let Q be homogeneous of degree zero and have mean value zero on the unit sphere

§"~1, Ty be the convolution singular integral operator with kernel % . For b € BMO(R"),
let T, be the commutator of Tg . In this paper, by establishing suitable sparse dominations,
the authors establish some weak type endpoint estimates of LlogL type for Tg, when Q €

L9(8"1) for some g € (1, 9.
1. Introduction

We will work on R”, n > 2. Let Q be homogeneous of degree zero, integrable
and have mean value zero on the unit sphere §"~!. Define the singular integral operator
Io by

Tof@) =pv. | 29 f(c )y, (1)
R |y

where and in the following, y' = y/|y| for y € R". This operator was introduced by
Calder6n and Zygmund [2], and then studied by many authors in the last sixty years.
Calderén and Zygmund [3] proved that if Q € LlogL(S"!), then Tg is bounded
on LP(R") for p € (1,). Ricci and Weiss [23] improved the result of Calder6n-
Zygmund, and showed that Q € H!(5"~!) guarantees the L”(R") boundedness on
LP(R") for p € (1, ). Seeger [25] showed that Q € LlogL(S"~!) is a sufficient con-
dition such that T is bounded from L!'(R") to L= (R"). For other works about the
LP(R") boundedness and weak type endpoint estimates for T, we refer the papers see
[4,7,8,9, 12,23, 27] and the references therein.

Now let 7 be a linear operator from . (R") to .’/ (R") and b € BMO(R"). The
commutator of 7" with symbol b, is defined by

Tpf(x) = ()T f(x) = T(bf)(x).

A celebrated result of Coifman, Rochberg and Weiss [6] states that if 7 is a Calderén-
Zygmund operator, then T}, is bounded on L?(R") for every p € (1,e0) and also a
converse result in terms of the Riesz transforms. Pérez [21] considered the weak type
endpoint estimate for the commutator of Calderén-Zygmund operator, and proved the
following result.

Mathematics subject classification (2010): 42B20, 47A30.
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THEOREM 1.1. Let T be a Calderdn-Zygmund operator and b € BMO(R").
Then for any A >0,

{xeR": |Tpf(x)] > A} <n /R" V;—X)“Og <e+‘f;—x)|>dx.

By Theorem 1.1, we know that if Q € Lip,(S"~!) with a € (0, 1], then for b €
BMO(R"), Tq,p, the commutator of Tq, satisfies that,

{x R : |[To.of(¥)] > A} <a /R %—xﬂlog (e+ 'f(k—x)‘)dx. (12)

Let p € [1, =) and w be a nonnegative, locally integrable function on R”. We say
that w € A,(R") if the A, constant [w], is finite, with

wh = (g [ wiae) (18 L7 0ar) et

the supremum is taken over all cubes in R", p’ = p/(p—1) and
Mw(x)
W, == sup ,
R ATTEY

see [11] for the properties of A,(IR"). For a weight w € Ao(R") =U)>1A4,(R"), define
[W]a.. , the Ao constant of w, by

Wl = sup ﬁ /Q M(wyo)(x)dx

QCR" w
see [28]. By the result of Duandikoetxea and Rubio de Francia [8], and the result
in [7], we know that if Q € LI(S"~!) for some g € (1, |, then for p € (¢, ) and
w e Ap/q ( )
1 Taf e @ w) Snpw 1 llLe@ew)-

This, together with Theorem 2.13 in [1], tells us that if Q € LI(S"~!) for g € (19|,
then for » € BMO(R"),

HTQ,thLP(R",w) §n,p,w HbHBMO(R")Hf”LI’(R",w): pEc (6]/’ o), w EAp/q /(RY).

Hu [13] proved that Q € L(logL)?(S""!) is a sufficient condition such that To is
bounded on L”(R") for all p € (1,) and b € BMO(R"). However, as far as we
know, there is no result concerning the weak type endpoint estimate for T , when €
only satisfies size condition. In this paper, we consider this question. Our first result
can be stated as follows.

THEOREM 1.2. Let Q be homogeneous of degree zero and have mean value zero
on §"~1, b € BMO(R"). Suppose that Q € L1(S"~") for some q € (1, =), then for any
A >0 and weight w such that w? € Aj(R"),

w({x eR": [Topf(x)| > A}) Snow /Rn mlog (e—f— W) w(x)dx,

with D = |Q| za(sn-1) Dl BmO(R) -
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In the last several years, considerable attention has been paid to the quantitative
weighted bounds for Tp when Q € L=(S"~!). The first result in this area was es-
tablished by Hytonen, Roncal and Tapiola [16], who proved that for p € (1, ) and
weA,(R"),

2max{1,p+ (1.3)

1T f @ w) Snp 190z (sn-1) [W] ) Lo @ -

Li, Pérez, Rivera-Rios and Roncal [19] improved (1.3) and showed that for p € (1, o)
and w € A,(R")

1

7

1 1
ITaf @) Snp IR, (W15 + 013, ) min{[6]a., Wl HIFllLre, ) (1.4)

where and in the following, for w € A,(R"), 0 = wl=P". The estimate (1.4), via the
method in [5], implies the following quantitative weighted estimate

Lo
1T pf o @ew) Snp 1A, (WAL + 015, ) min{[o]a.., [Wla..}

X (Wlae + [Ola) Nl r e w)-
Rivera-Rios [24] established the sparse domination for T , when Q € L=(S"~ 1), and
proved that for p € (1, «) and w € A (R"),
NI R
1T, 0.f1Lr @, w) Snp 19 =127 D7 WIA, WAL " (11l Lo e -

Our second result is the following quantitative weighted weak type estimate for Tg j,.

THEOREM 1.3. Let Q be homogeneous of degree zero and have mean value zero
on "', b € BMO(R"). Suppose that Q € L=(S"~!) and w € A(R"), then for any
A >0,

w{x eR": |Tq,pf(x)| > A})
<o bl b togte+ ) [ 2 g (e 20 sy,

with Deo = ||| = (5n-1) 16 [l Bmo(En) -

REMARK 1.4. Proofs of Theorem 1.2 and Theorem 1.3 depend essentially on the
weak type endpoint estimates for the maximal operator defined by

1/r
M (5) = sup (é / ITQ(fon\ag)(é)’dé) , 15)

where the supremum is taken over all cubes Q C R" containing x. This operator was
introduced by Lerner [18], who proved that for any r € (1, ),

1My 70 f |1y S PR o501 [1F 1|2 ey (1.6)
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see [18, Lemma 3.3]. Although we can show that

||MV7TQfHLl>°°(]R") Sr HQHM(S'H)Hf||L1(R")7

we do not know if there exists a o € (0, o) such that the estimate
1My 7 f || 1oy S 7N Lagsn—1)1F 1]t ey

holds true when Q € L4(S"~!) for some g € (1, ). This is the main difficult which
prevent us obtaining a desired quantitative weighted weak type endpoint estimates for
T, when Q € LI(S"1) for g € (1, o).

In what follows, C always denotes a positive constant that is independent of the main
parameters involved but whose value may differ from line to line. We use the symbol
A < B to denote that there exists a positive constant C such that A < CB. Specially,
we use A S, B to denote that there exists a positive constant C depending only on
n, p such that A < CB. Constant with subscript such as ¢y, does not change in different
occurrences. For any set E C R", yg denotes its characteristic function. For a cube
QO CR" and A € (0, =), we use AQ to denote the cube with the same center as Q and
whose side length is A times that of Q. For a fixed cube Q, denote by 2(Q) the set of
dyadic cubes with respect to Q, that is, the cubes from Z(Q) are formed by repeating
subdivision of Q and each of descendants into 2" congruent subcubes. For a function
f and cube Q, (f)o denotes the mean value of £ on Q, and (|f])o., = ({|f]")0)"/"
for r € (0, ).
For a cube Q, B € (0, o) and suitable function f, define ||fHL(10gL)g7Q by

1
f||L(10gL)ﬁ7Q:inf{x >0 o | W0 150 (H@)dyg 1}.

Also, we define ||A|expr, 0 as

| L[ (B0
h =inf<r>0: — —— |dy<2>;.
Wileoso =int{o0: g7 fose () o

By the generalization of Holder’s inequality (see [22, p. 64]), we know that for any
cube Q and suitable functions f and £,

/Q F@RE)dx < | fltosr. ol lexpr. 0l (17)

2. Proof of theorems

Given an operator T, define the maximal operator M), y by
*
My 3) = sup (T (s so) o) (HIED. (0<2 < 1),
B2

where the supremum is taken over all cubes Q C R” containing x, and 4" denotes the
non-increasing rearrangement of .. This operator was introduced by Lerner [18] and
is useful in the study of weighted bounds for rough operators, see [18, 24].
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LEMMA 2.1. Let Q be homogeneous of degree zero, have mean value zero and
Qe L=(S" ). Thenforany 2 € (0, 1),

M52 ey o 1920 (1 +log( )) TR

Lemma 2.1 is Theorem 1.1 in [18].

For a function Q on S~ !, define by

HQHzlogL(S"*l)

" - . 2(6)] 12(6)]
HQHLlogL(S"’l) = 1nf{7L >0: Tlog e+ 2 do<1;.

sn—1

LEMMA 2.2. Let Q be homogeneous of degree zero, have mean value zero and

HQHzlogL(S”*I) < oo, then

1T llosms1y S 19 oguisn 1y 111t -

Proof. This lemma is essentially a corollary of estimate (3.1) in [25]. At first, we
claim that

1€2(6)] "
/Sn—l |Q(9)|10g <G+W d9§ HQHLlOgL(S"’l)' (21)

In fact, by homogeneity, it suffices to prove (2.1) for the case [|Q||;1(gn-1) = 1. Let

ho = / 0)|log(e + |22(6)])d6.

We consider the following two cases.
Casel. 2 >e'. Let Sp = {6 € S"!:|Q(0)| <2}, and

Sp = {9 e s 2k < |Q(8) <2k+1}, keN.

Set ko € Nsuch that 200~ < 15 < 2%0. Then ky < A9/8

=

/ 6] log <e+ |Q(9)|) d6 > 2" Y Sk (k—ko)+ g Y ISl2"
sn—1 A() 2'0 k=ko+1 ksko

k=1

2! (ko PANIESY k2k5k|>.

kzko+1 1<k<hy

> At (2 2kk|sk+so>

Obviously,

[

)

it 1
3. 215+ 150 > 7 [ 192(6) log(e+ |2(6) )6 =
k=1
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and

ko Y, 250Sel+ D K28ISkl < ko Y, 24(Sk] < kol|Q| 11 gn-1)-

k>ko+1 1<k<ko 1

Recall that |||/ g1y = 1. It then follows that

/S'H ‘Qg)‘ log (e—i— |Q§:)|)d9 > é

This in turn leads to that
”Q”)lk,logL(S"*l) > 2'0/8

Case II. Ay < e'0. Let A > 0 satisfies that

122(6)| 122(6)]
/S’HTlog <e+ T) do < 1. (2.2)

If 10e'94 < Ay, we then have that

12(0)] (0 Q(0 Q6 B
/S’H| )(LO)|1og <e+ %) do < 0 ‘10210)71 log <e+ |10e(10))1>d9< (10610) L

On the other hand, a trivial computation gives us that

/S’F1 |Q)(w—?)|log <e+ %) de > /S’F1 %10g <e+|ge(f(g)|) 46

> /S,,f1 12(0)[log(e +1€2(6)[)d6 (10¢') !

> (10e'%) 7

where the last inequality follows from the fact that Ao > ||| 1(gn-1) = 1 (recall that
|€[[ 1 (gn-1) = 1). This is a contradiction. Thus, the positive numbers A in (2.2) satisfy

A = (10e'9)~12y. Inequality (2.1) holds true in this case.
We now conclude the proof of Lemma 2.2. By the result of Seeger (see inequality
(3.1) in [25]), we know that if Q € LlogL(S"~!), then

Tl Sn |l sy + 120
+
+ [ 1) (1+10g (9<e>/szu<snl>))de} 1o gy
where log™ s = logs if s > 1 and log™ s = 0 if s € (0, 1]. Thus by (2.1),

HTQfHLLN(R") gn [HTQ”LZ(R")HLZ(R") + HQHLI(S"*I) + ||Q||ZlogL(sn—l)] Hf||L1(R")~



COMMUTATOR 1185
On the other hand, we know that

HTQf”LZ(JRn) S [1 + HQHLlogL(S"’l)] Hf||L2(R")7
with
9 sogrrny = [, ,1920)](1+1og" [2(6)])d.
see [10, Theorem 4.2.10]. The last two inequality, along with homogeneity, yields
HTQfHLL""(R") Sn HQHzlogL(er)||fHL1(R”)7

and completes the proof of Lemma 2.2. [

LEMMA 2.3. Let Q be homogeneous of degree zero, have mean value zero and
Qe LI(S" 1) for some q € (1, ). Thenforany A € (0, 1) and € € (0, min{1,g—1}),

1:2¢
1,1 ity S 120y (5) I
Proof. For A € (0, 1), let M, ; be the operator
Mo, 3 h(x) = sup(hyo)"(2|Q]),
0>x
see [17, 26]. It is well known that for o > 0,
[{reR": My f(x) > a}| SAT {x € R": |f(x)]| > e}

Let S be a linear operator which is bounded from L'(R") to L!'**(R") with bound 1.
We claim that the operator S defined by

S5 f(x) = sup (S(fx0)) (AlQ])

is bounded from L!'(R") to L= (R") with bound C,A~!. To prove this, let
Eqo={xeR": S f(x) > o}.
For each x € E,, we can choose a cube Q such that Q > x and

{yeQ: [S(fxo) )| > a}| > A|Q].
This, via the weak type (1, 1) boundedness of S, tells us that

1
<
10| < o /Qlf(Y)\dy,
and so M f(x) > aA . Therefore,

N 1
Bal < [fx €R": MF(x) > A0} S 5[ ll1 ooy
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This verifies our claim.
We now conclude the proof of Lemma 2.3. Using the estimate logz < /e when
t > 1 and € > 0, we can verify by homogeneity that

190 rogrsr1) Se [191e(sn1)-

This, along with Lemma 2.2, tells us that for € > 0,

”TQf“LL""(]R”) S ‘QHLHS(S'H)Hf”Ll(R")-

Observe that

« [ A
My 1, f(xX) < M, %Tgf(X) + Sél;P (Ta(fx30)%0) <§|Q|> ,

and

w (A «f 1A
sup (T 1:0)10)" (5101) < swp (Tarxoto)” (555101
05x 05x

Our claim states that
1
105 70 Fll 1wy S 7 11w sty 1A 0 ey (2.3)

Now let Q € L4 (S”_l), have mean value zero on $"~!. Without loss of generality, we
assume that [|Q|4(gn-1) = 1. Set

SOOI

Let
Qﬂ)(e) = Q(G)x{‘g(e)bm}(e), Q,O(G) = Q(@)%{‘Q(G)KIO}(9)7
and N N
Q0(0) = Q0(0) — A0, Q,(0) = Q) (0) — Ay,
where . 1
o __ 17 o
Al — 5T o Q(0)de, A, = —|S"*1| o Q,,(0)d0.

Both of Q and Q;, have mean value zero. Moreover,

~ 1—-4 ~
Q0 preeen1y Sty 0 (10l =51y S o,

and Q(0) = Q0 (0) + Ezto(e). Applying Lemma 2.1 and (2.3), we deduce that

IMa 1o fllpt =@y S ||M7L,Tﬁt0fHL1~°°(R”) + ”M)L,Tﬁlof”Ll“"‘(R")

1 ~
Se XHQIOHLI%(S"*I)Hf”Ll(]R")
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1 ~
+ 1 10g (5 ) [ 19801 o

l+e 1— 1te
1Y) ¢ 1 q
Sa.e (z) {1 +log (I)] 112 (e
142¢

1\ ¢
Sq.e (z) Hf“Ll(R")»

where in the last inequality, we again invoked the fact that logr < */o for all # > 1
and o > 0. This completes the proof of Lemma 2.3. [

LEMMA 2.4. Let r € (1, o) and w be a weight. The following two statements are
equivalent.

(i) we A (R") and w7 € Ay (R") for some p € (1,1');
(i) w" € Aj(R).

Proof. Let we Aj(R") and w' 7' € Ay /(R") for some p € (1,7’), then for any
cube Q C R",

!

1 , 1 s -l o
(@ v <x>dx) (@ v (x)dx) <,

and so

[ s < b (o [ >d)”+1
— w Pr(x)dx < |w — w X)dx r
10| Jo A\ 10| Jo

1

<L (esinfyegw(s) B

where the second inequality follows from the fact that

(é /Q w(x)dx) (é /Q wlf”(x)abc)p_1 > 1.

L
We thus deduce that w” € A} (R"), with [w']4, < [w!~7'] ;;’j/‘ Wi, -
p/r
Pt
Let w” € A;(R"). By the reverse Holder inequality, we know that w' 7~ € A (R")
rl’;*I /1 /_
for some p € (1,7), and [w]a, < [Wla,, W 7"]a, < [Wr]x )/ (p'=r)

cube Q C R",

. Thus for any

!

(ﬁ/lep’(x)dx) (é/(gwr%(x)dx> B_1
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/

_ P Tl
< [essinfyeQw(y)]1 P [wrﬁ’r] [essinfyeow(y)]” " < [w'] A
Ay

This shows that w!' =7 € A, /,(R"). O

LEMMA 2.5. Let T be a sublinear operator. Suppose that there exists a constant
€ (0, 1), such that for all A € (0,1/2),

M3 7l ey < ATl ey

Then for po € (1,1/7),

< 2+
[ po, 7l 1= ey < 2 O [l £ 1l eny s

where My, T is the maximal operator defined as (1.5).

Proof. We employ the argument used in the proof of Lemma 3.3 in [18]. As it was
proved in [18],

My 1 () < ( [ (MA,Tf<x>>”“dx) E

For N > 0, denote

1

G700 = ( [ (min{atz 0.8} an )"

and
pr(o, R)=[{xeR": x| <R, [f(x)| > a}|, o, R>0.

Let po € (1, ) such that 7pg € (0, 1), k = | —— e j + 1, where and in the following,
for a € R, |a]| denotes the integer part of a. By Holder s inequality,

1

G 1./ () < ( [ (min{aty () N})POdA) My i, ()

1
< k-1 GkP07T7Nf(x) +M1/2km7rf(x)-

Therefore,

UG,y rnf (0 R) < .qu,,O#T#Nf(zk_zaa R) + tum r(0t/2,R)

1
k=2
< ”GkPQ‘T‘Nf(z o, R)+ o

1/2kP0 1

2750 £l 1 ey -

Repeating the last inequality j times, we have that

(fe— k=2 Tkpo+1
‘quO,T,Nf((X’R) < “ij,,ojv,vf(z](k 2)OC,R) + 2_ { 1 (22k02 ) Hf“Ll R™):
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Since Gp,,7,nf is uniformly bounded in pg, we obtain that 1, (a,R) — 0 as

PO T‘Nf

J — co. We finally deduce that

24 |
UG, nf (0 R) <27 7700 aHf”Ll(R")'

This completes the proof of Lemma 2.5. [

Let n € (0,1) and .7 = {Q;} be a family of cubes. We say that .7 is 1 -sparse, if for
each fixed Q € ., there exists a measurable subset Eyp C Q, such that |[Eg| > 1|Q|
and E’s are pairwise disjoint. For sparse family . and constants 3, r € [0, «), we
define the bilinear sparse operator </, LiogL)B L7 by

JZZy;L(logL)ﬁ’Lr(fag) = 2 ‘Q|”fHL(logL)ﬁ’quDQ,w
Qe

We denote 7. 100101, 17 DY 7 L10g, - Tor simplicity, and 5. 100 1 DY Fr:1,1r

LEMMA 2.6. Let o, € NU{0} and U be an operator. Suppose that for any
re€ (1,3/2), and bounded function f with compact support, there exists a sparse family
of cubes ., such that for any function g € L'(R"),

‘ Rn Uf(x)g(x)dx‘ < r/agfjﬁ;L(logL)ﬁ’Lr (fv g) (24)
Then for any u € A (R") and bounded function f with compact support,
w{xeR": | Uf(x)| > A})
S g 1o e bl bl [, 5 0g? (e 50 ) wian

Lemma 2.6 is Corollary 3.6 in [14].

THEOREM 2.7. Let pg € (1,00), re (1,), b € BMO(R"), T be a linear op-
erator and Ty, be the commutator of T . Suppose that both of operators T and My, T
are bounded from L'(R") to L'»*(R") with bound 1. Then for bounded functions f
with compact supports, there exists a é 3 -sparse family ./ and functions H f, Haof,

such that for each function g € L 7o (R™),

loc

| [ B @] Su [Bllson) 26T, 1 oy (- 8) 2.5)
| [ Baf @) @dx| S [bllsozn) 7, o0, s - 8) 2.6)

andfora. e. x € R",

Ty f(x) = Hy f(x) + Ha f (x).
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Proof. We will employ the ideas in [18], see also the proof of Theorem 3.2 in [14].
Without loss of generality, we may assume that ||b||gmo(re) = 1. For a fixed cube Qy,
define the local analogy of .#),, 7 by

1
1 %
My raf)= s (161, TUan00Imas )"
Let E = U}_ | E; with
= {x€ Qo [T(fx30,) )| > D{| D30, }»

={x€Qo: |T((b—(b)ay)f1300) (X)] > D{|(b = (b)gy) )30, }
{XEQO PoTQof( )>D<|f|>3Qo}v

and

={x€ Q0 Mpy 15:0, (b= (b)gy) ) (x) > D{|b— (B)gy |11} 0 }»

where D is a positive constant. If we choose D large enough, it then follows from the
weak type (1, 1) boundedness of T and .#),, r that

1
E| < W|QO|-

Now on the cube Qp, we apply the Calderén-Zygmund decomposition to yg at level
2,1%, and obtain pairwise disjoint cubes {P;} C Z(Qp), such that

2"+1 |Pj| < |PNE|< %\Pj\

and |E\ U; Pj| = 0. Observe that ¥; |P;| < 5|Qo|. Let

Gp, (x) = (b(x) = (BY oo ) T (1300 ) X00\UsP, (X +z )T (f2300\30,) %P, (%),
Gy () = T ((b— (b)oy) f 2300) Xop\uip, (¥ +ZT( b)0y) F X300\38) XP, (X)-

It then follows that

Ty (f2%30,) () 20y (x) = Gy, () + Gy, () + X, Ty (foam) (%), ().
]

We now estimate GIQ0 and GzQ0 . By (1.7) and the John-Nirenberg inequality (see
[11, p.128]), we know that

|, 166) = (o In(x) e < 100l = (B)ey . ol st

< 1QollIbllsmo(en) 1Al 1ogL. 0y -
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This, along with the fact that |E'\\ U; P;| = 0, implies that
[ 00~ BT (F2300) ()] S (10 18 toet. 0 ol
Qo\UiP,
and
|/ — (B)ay)f00) (8(x)ex| < (1D eioer. 300 I8l ao ol
QO\UIPI

On the other hand, the fact that P;N E€ # @ tells us that

3| [ 60~ )o)T (a0 am) W)

[

/16 - <b>Qop’o|g<x>|P’odx) A ( Irzasmmas)”

/ 44 L
2(/ b(x) QPo/) |P‘I’r p0<|g‘>1)]p0rlnfvﬂTp0Q0f()
I

}"/p ‘f‘ 3QOZ‘PZ| ‘g| P[ rpl ~ S }" <‘f‘>3Q0<‘g|>QO rpg, |Q0|

here we have invoked the following estimate

1

w7 .
see [11, p. 128]. Similarly, we can deduce that
S| [, 7O ®a)rtam) s

< Z|PI I{|g]) P, Ph mf//oT Qo( <b>Qo)f(y)

< hson . 1) poy < (11300 (18D gy Q0.
1
Therefore, for function g € L .(R"),

| ., Gy @)e(dx| S 7D (17130018 )y, g ol @7
and
| ., Gou@)e(dx| S |t 30, I8]) g ry 00l 238)

We repeat argument above with 7'(fx30,)(x) X0, replaced by T (x3p,)(x)xp, (x),
and so on. Let Q)" = Qy, Q) = P;, and for fixed ji, ..., jm—1, {Qy /" '/"},, be the
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cubes obtained at the m-th stage of the decomposition process to the cube QJ boeJm=l

Set Z ={Qo}Ur_,Uj,... jm{Q(’)l Jm) Then F C 2(Qp) is a 1 -sparse family. We
define the functions Hy ¢, and Hj o, by

Hy gy (x mzm EJ‘M( B) giveinet) X T (F Xy giicines) g i i ()
UZI 2 (0= 0) gt )XT (gt sgf-in) O gh i)
and
Hy g, (x mil“ > lT( >Qél AAAAA e 1)f)c Qj1In- 1) (x)
xe_(,;l,...A,,,, l\qu ..... jm (X)
+§l “2] T((b(x) — (B i1 )fx, g, sl n ) (x)

XxQél“*jmfl ()C)
Then fora. e. x € Qy,
Ty (f2300)(x) = Hi,0,(x) + Ha,04 (%)

Moreover, as in inequalities (2.7)-(2.8), the process of producing {Qé""j'"} leads to
that

| s@Ha,x < 'ph 3 100 Dsolleho.m,

0eF

and

| 02 0,(ax| S 3 1011 lewer.sollsho

0eF

We can now conclude the proof of Theorem 2.7. In fact, as in [ 18], we decompose
R" by cubes {R;}, such that suppf C 3R; for each [, and R;’s have disjoint interiors.
Then for a. e. x € R",

Ty f(x) 2H1 R0+ D Ho g, f(x) =2 Hi f(x) + Ho f ().
]

Obviously, Hy, H» satisfies (2.5) and (2.6). Our desired conclusion then follows di-
rectly. U

LEMMA 2.8. Let Y € NU{0}, r € [l,), and U be an operator. Suppose that
for any bounded function f with compact support, there exists a sparse family of cubes
<, such that for any function g € Lj . (R"),

/ Uf(x) < Ay 1g0gy,rr (f5 8)- (2.9)
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Then for any w with w" € A1 (R"), o > 0 and bounded function f with compact sup-
port,

w(tre R 070]> o) S [, L v0g? (e LN ) wian

Proof. By Theorem 3.2 in [14], we know that U satisfies the following estimate:

w({x e RY: [Uf(x)] >1}) < <1+{p,11+y(p_}}>’< p;{r__ll> }m>

x [ 17Wllogh e+ FODMw()dy,  (2.10)
Rn

where 1 € [1, ), p; € (1,r) such that tpz'),/r__l1 > 1, and M, is defined by
1

M, f(x) = [ @)

Let w" € A (R"). We choose € > 0 such that w'(17€) ¢ A|(R"). Set t = r(1 +¢) and
pi=2(r—1)£+1. Then t% =1+ 5. We obtain from (2.10) that
1

w({x e R [US(x)] > 1}) Sngw /Rn [f()[log” (e + £ (y))w(y)dy.

This, via homogeneity, leads to our desired conclusion. [J

Proof of Theorem 1.2. By homogeneity, we may assume that [|Q| g1y = 1=
|b][Bmo(mn) - Let w? € Aj(R"). We choose & > 0 such that & € (0, min{1, (g—1)/3})

and w9 (1+€) ¢ A;(R"). On the other hand, by Lemma 2.3 and Lemma 2.5, we know
that for any pg € (0, ¢/(1+2¢)),

2o, 10 f |11 () <2 0| £l -

Take po = ¢q/(1+3¢) and r = %(1 + ), then rpj = (1+€)q’. Applying
Theorem 2.7 with such indices pg and r, we see that for any bounded function f
with compact support, there exists a sparse family of cubes .7, such that for any

g€ Lq,(1+5) (Rn)

loc

14+3¢e

JZ‘éﬁ;Llosz,Lq’(He) (f, &)

/ Ty f(x)g(x)dx| < pj F24E
Theorem 1.2 now follows from Lemma 2.8 immediately. [

Proof of Theorem 1.3. Again we assume that [|Q|| (g1 = 1 = ||b|[gmo(rn) - Let
s € (1,00). Applying (1.6) and Theorem 2.7 (with py = (\/E)’ and r = /s), we know
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that for bounded function f with compact support, there exists a 2 3n -sparse family of
cubes . = {Q}, and functions H, f, Haf, such that for each function g € L7 (R"),

loc
| [ B @)s@ds| S (V32T 12 (F.8) S Plyps (S 9)

’ R H2f(x) dx’ < ) JZ{5” ;LlogL, Lf(fv ) S SIMV;UO%L’U (f7 g)’
and fora.e. x € R",

Topf(x) =Hf(x) +Haf (x).

Let we A (R"), A >0, f be a bounded function with compact support. It follows
from Lemma 2.6 that

w({x €eR": [Ta,pf(x)| > A})
Sw({x eR": [Hif(x)| > A4/2}) +w({x e R : [Haf (x)| > 4/2})

ol o3 togte + ) [ LS

+[wla, [W]a.. logz(e + [w]a.) /Rn VEL—XH log (e + |f§L_x)|) w(x)dx

< Wla, W3 log(e+ [Wla.) /R ) ‘f;—x”mg (e+ |f(AX)| ) w(x)dx.

A

This completes the proof of Theorem 1.3. [
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