WEAK TYPE ENDPOINT ESTIMATES FOR THE COMMUTATORS OF ROUGH SINGULAR INTEGRAL OPERATORS

Jiacheng Lan, XiangXing Tao and Guoen Hu

(Communicated by S. Varošanec)

Abstract

Let Ω be homogeneous of degree zero and have mean value zero on the unit sphere S^{n-1}, T_{Ω} be the convolution singular integral operator with kernel $\frac{\Omega(x)}{\mid x x^{n}}$. For $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, let $T_{\Omega, b}$ be the commutator of T_{Ω}. In this paper, by establishing suitable sparse dominations, the authors establish some weak type endpoint estimates of $L \log L$ type for $T_{\Omega, b}$ when $\Omega \in$ $L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty]$.

1. Introduction

We will work on $\mathbb{R}^{n}, n \geqslant 2$. Let Ω be homogeneous of degree zero, integrable and have mean value zero on the unit sphere S^{n-1}. Define the singular integral operator T_{Ω} by

$$
\begin{equation*}
T_{\Omega} f(x)=\mathrm{p} \cdot \mathrm{v} \cdot \int_{\mathbb{R}^{n}} \frac{\Omega\left(y^{\prime}\right)}{|y|^{n}} f(x-y) d y, \tag{1.1}
\end{equation*}
$$

where and in the following, $y^{\prime}=y /|y|$ for $y \in \mathbb{R}^{n}$. This operator was introduced by Calderón and Zygmund [2], and then studied by many authors in the last sixty years. Calderón and Zygmund [3] proved that if $\Omega \in L \log L\left(S^{n-1}\right)$, then T_{Ω} is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $p \in(1, \infty)$. Ricci and Weiss [23] improved the result of CalderónZygmund, and showed that $\Omega \in H^{1}\left(S^{n-1}\right)$ guarantees the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness on $L^{p}\left(\mathbb{R}^{n}\right)$ for $p \in(1, \infty)$. Seeger [25] showed that $\Omega \in L \log L\left(S^{n-1}\right)$ is a sufficient condition such that T_{Ω} is bounded from $L^{1}\left(\mathbb{R}^{n}\right)$ to $L^{1, \infty}\left(\mathbb{R}^{n}\right)$. For other works about the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness and weak type endpoint estimates for T_{Ω}, we refer the papers see [4, 7, 8, 9, 12, 23, 27] and the references therein.

Now let T be a linear operator from $\mathscr{S}\left(\mathbb{R}^{n}\right)$ to $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. The commutator of T with symbol b, is defined by

$$
T_{b} f(x)=b(x) T f(x)-T(b f)(x)
$$

A celebrated result of Coifman, Rochberg and Weiss [6] states that if T is a CalderónZygmund operator, then T_{b} is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for every $p \in(1, \infty)$ and also a converse result in terms of the Riesz transforms. Pérez [21] considered the weak type endpoint estimate for the commutator of Calderón-Zygmund operator, and proved the following result.

[^0]THEOREM 1.1. Let T be a Calderón-Zygmund operator and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. Then for any $\lambda>0$,

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|T_{b} f(x)\right|>\lambda\right\}\right| \lesssim n \int_{\mathbb{R}^{n}} \frac{|f(x)|}{\lambda} \log \left(\mathrm{e}+\frac{|f(x)|}{\lambda}\right) d x
$$

By Theorem 1.1, we know that if $\Omega \in \operatorname{Lip}_{\alpha}\left(S^{n-1}\right)$ with $\alpha \in(0,1]$, then for $b \in$ $\operatorname{BMO}\left(\mathbb{R}^{n}\right), T_{\Omega, b}$, the commutator of T_{Ω}, satisfies that,

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{n}:\left|T_{\Omega, b} f(x)\right|>\lambda\right\}\right| \lesssim n \int_{\mathbb{R}^{n}} \frac{|f(x)|}{\lambda} \log \left(\mathrm{e}+\frac{|f(x)|}{\lambda}\right) d x \tag{1.2}
\end{equation*}
$$

Let $p \in[1, \infty)$ and w be a nonnegative, locally integrable function on \mathbb{R}^{n}. We say that $w \in A_{p}\left(\mathbb{R}^{n}\right)$ if the A_{p} constant $[w]_{A_{p}}$ is finite, with

$$
[w]_{A_{p}}:=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}(x) d x\right)^{p-1}, p \in(1, \infty)
$$

the supremum is taken over all cubes in $\mathbb{R}^{n}, p^{\prime}=p /(p-1)$ and

$$
[w]_{A_{1}}:=\sup _{x \in \mathbb{R}^{n}} \frac{M w(x)}{w(x)}
$$

see [11] for the properties of $A_{p}\left(\mathbb{R}^{n}\right)$. For a weight $w \in A_{\infty}\left(\mathbb{R}^{n}\right)=\cup_{p \geqslant 1} A_{p}\left(\mathbb{R}^{n}\right)$, define $[w]_{A_{\infty}}$, the A_{∞} constant of w, by

$$
[w]_{A_{\infty}}=\sup _{Q \subset \mathbb{R}^{n}} \frac{1}{w(Q)} \int_{Q} M\left(w \chi_{Q}\right)(x) d x
$$

see [28]. By the result of Duandikoetxea and Rubio de Francia [8], and the result in [7], we know that if $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty]$, then for $p \in\left(q^{\prime}, \infty\right)$ and $w \in A_{p / q^{\prime}}\left(\mathbb{R}^{n}\right)$

$$
\left\|T_{\Omega} f\right\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} \lesssim_{n, p, w}\|f\|_{L^{p}\left(\mathbb{R}^{n}, w\right)}
$$

This, together with Theorem 2.13 in [1], tells us that if $\Omega \in L^{q}\left(S^{n-1}\right)$ for $q \in(1 \infty$], then for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$,

$$
\left.\left\|T_{\Omega, b} f\right\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} \lesssim n, p, w\right)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}\|f\|_{L^{p}\left(\mathbb{R}^{n}, w\right)}, p \in\left(q^{\prime}, \infty\right), w \in A_{p / q^{\prime}}\left(\mathbb{R}^{n}\right)
$$

Hu [13] proved that $\Omega \in L(\log L)^{2}\left(S^{n-1}\right)$ is a sufficient condition such that $T_{\Omega, b}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in(1, \infty)$ and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. However, as far as we know, there is no result concerning the weak type endpoint estimate for $T_{\Omega, b}$ when Ω only satisfies size condition. In this paper, we consider this question. Our first result can be stated as follows.

THEOREM 1.2. Let Ω be homogeneous of degree zero and have mean value zero on $S^{n-1}, b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. Suppose that $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty)$, then for any $\lambda>0$ and weight w such that $w^{q^{\prime}} \in A_{1}\left(\mathbb{R}^{n}\right)$,

$$
w\left(\left\{x \in \mathbb{R}^{n}:\left|T_{\Omega, b} f(x)\right|>\lambda\right\}\right) \lesssim_{n, w} \int_{\mathbb{R}^{n}} \frac{D|f(x)|}{\lambda} \log \left(\mathrm{e}+\frac{D|f(x)|}{\lambda}\right) w(x) d x
$$

with $D=\|\Omega\|_{L^{q}\left(S^{n-1}\right)}\|b\|_{\operatorname{BMO}\left(\mathbb{R}^{n}\right)}$.

In the last several years, considerable attention has been paid to the quantitative weighted bounds for T_{Ω} when $\Omega \in L^{\infty}\left(S^{n-1}\right)$. The first result in this area was established by Hytönen, Roncal and Tapiola [16], who proved that for $p \in(1, \infty)$ and $w \in A_{p}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\left\|T_{\Omega} f\right\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} \lesssim_{n, p}\|\Omega\|_{L^{\infty}\left(S^{n-1}\right)}[w]^{2 \max \left\{1, \frac{1}{p-1}\right\}}\|f\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} \tag{1.3}
\end{equation*}
$$

Li, Pérez, Rivera-Rios and Roncal [19] improved (1.3) and showed that for $p \in(1, \infty)$ and $w \in A_{p}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\left\|T_{\Omega} f\right\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} \lesssim_{n, p}[w]_{A_{p}}^{\frac{1}{p}}\left([w]_{A_{\infty}}^{\frac{1}{p^{\prime}}}+[\sigma]_{A_{\infty}}^{\frac{1}{p}}\right) \min \left\{[\sigma]_{A_{\infty}},[w]_{A_{\infty}}\right\}\|f\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} \tag{1.4}
\end{equation*}
$$

where and in the following, for $w \in A_{p}\left(\mathbb{R}^{n}\right), \sigma=w^{1-p^{\prime}}$. The estimate (1.4), via the method in [5], implies the following quantitative weighted estimate

$$
\begin{aligned}
\left\|T_{\Omega, b} f\right\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} \lesssim_{n, p} & {[w]_{A_{p}}^{\frac{1}{p}}\left([w]_{A_{\infty}}^{\frac{1}{p}}+[\sigma]_{A_{\infty}}^{\frac{1}{p}}\right) \min \left\{[\sigma]_{A_{\infty}},[w]_{A_{\infty}}\right\} } \\
& \times\left([w]_{A_{\infty}}+[\sigma]_{A_{\infty}}\right)\|f\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} .
\end{aligned}
$$

Rivera-Ríos [24] established the sparse domination for $T_{\Omega, b}$ when $\Omega \in L^{\infty}\left(S^{n-1}\right)$, and proved that for $p \in(1, \infty)$ and $w \in A_{1}\left(\mathbb{R}^{n}\right)$,

$$
\left\|T_{\Omega, b} f\right\|_{L^{p}\left(\mathbb{R}^{n}, w\right)} \lesssim n, p\|\Omega\|_{L^{\infty}\left(S^{n-1}\right)} p^{13} p^{2}[w]_{A_{1}}^{\frac{1}{p}}[w]_{A_{\infty}}^{1+\frac{1}{p^{\prime}}}\|f\|_{L^{p}\left(\mathbb{R}^{n}, w\right)}
$$

Our second result is the following quantitative weighted weak type estimate for $T_{\Omega, b}$.
THEOREM 1.3. Let Ω be homogeneous of degree zero and have mean value zero on $S^{n-1}, b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$. Suppose that $\Omega \in L^{\infty}\left(S^{n-1}\right)$ and $w \in A_{1}\left(\mathbb{R}^{n}\right)$, then for any $\lambda>0$,

$$
\begin{aligned}
& w\left(\left\{x \in \mathbb{R}^{n}:\left|T_{\Omega, b} f(x)\right|>\lambda\right\}\right) \\
\lesssim & {[w]_{A_{1}}[w]_{A_{\infty}}^{2} \log \left(\mathrm{e}+[w]_{A_{\infty}}\right) \int_{\mathbb{R}^{n}} \frac{D_{\infty}|f(x)|}{\lambda} \log \left(\mathrm{e}+\frac{D_{\infty}|f(x)|}{\lambda}\right) w(x) d x, }
\end{aligned}
$$

with $D_{\infty}=\|\Omega\|_{L^{\infty}\left(S^{n-1}\right)}\|b\|_{\operatorname{BMO}\left(\mathbb{R}^{n}\right)}$.
REMARK 1.4. Proofs of Theorem 1.2 and Theorem 1.3 depend essentially on the weak type endpoint estimates for the maximal operator defined by

$$
\begin{equation*}
\mathscr{M}_{r, T_{\Omega}} f(x)=\sup _{Q \ni x}\left(\frac{1}{|Q|} \int_{Q}\left|T_{\Omega}\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right)(\xi)\right|^{r} d \xi\right)^{1 / r} \tag{1.5}
\end{equation*}
$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^{n}$ containing x. This operator was introduced by Lerner [18], who proved that for any $r \in(1, \infty)$,

$$
\begin{equation*}
\left\|M_{r, T_{\Omega}} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim r\|\Omega\|_{L^{\infty}\left(S^{n-1}\right)}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} \tag{1.6}
\end{equation*}
$$

see [18, Lemma 3.3]. Although we can show that

$$
\left\|M_{r, T_{\Omega}} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim r^{\|}\| \|_{L^{q}\left(S^{n-1}\right)}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

we do not know if there exists a $\alpha \in(0, \infty)$ such that the estimate

$$
\left\|M_{r, T_{\Omega}} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim r^{\alpha}\|\Omega\|_{L^{q}\left(S^{n-1}\right)}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

holds true when $\Omega \in L^{q}\left(S^{n-1)}\right.$ for some $q \in(1, \infty)$. This is the main difficult which prevent us obtaining a desired quantitative weighted weak type endpoint estimates for $T_{\Omega, b}$ when $\Omega \in L^{q}\left(S^{n-1}\right)$ for $q \in(1, \infty)$.

In what follows, C always denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line. We use the symbol $A \lesssim B$ to denote that there exists a positive constant C such that $A \leqslant C B$. Specially, we use $A \lesssim_{n, p} B$ to denote that there exists a positive constant C depending only on n, p such that $A \leqslant C B$. Constant with subscript such as c_{1}, does not change in different occurrences. For any set $E \subset \mathbb{R}^{n}, \chi_{E}$ denotes its characteristic function. For a cube $Q \subset \mathbb{R}^{n}$ and $\lambda \in(0, \infty)$, we use λQ to denote the cube with the same center as Q and whose side length is λ times that of Q. For a fixed cube Q, denote by $\mathscr{D}(Q)$ the set of dyadic cubes with respect to Q, that is, the cubes from $\mathscr{D}(Q)$ are formed by repeating subdivision of Q and each of descendants into 2^{n} congruent subcubes. For a function f and cube $Q,\langle f\rangle_{Q}$ denotes the mean value of f on Q, and $\langle | f\left\rangle_{Q, r}=\left(\left.\langle | f\right|^{r}\right\rangle_{Q}\right)^{1 / r}$ for $r \in(0, \infty)$.

For a cube $Q, \beta \in(0, \infty)$ and suitable function f, define $\|f\|_{L(\log L)^{\beta}, Q}$ by

$$
\|f\|_{L(\log L)^{\beta}, Q}=\inf \left\{\lambda>0: \frac{1}{|Q|} \int_{Q} \frac{|f(y)|}{\lambda} \log ^{\beta}\left(\mathrm{e}+\frac{|f(y)|}{\lambda}\right) d y \leqslant 1\right\} .
$$

Also, we define $\|h\|_{\exp L, Q}$ as

$$
\|h\|_{\exp L, Q}=\inf \left\{t>0: \frac{1}{|Q|} \int_{Q} \exp \left(\frac{|h(y)|}{t}\right) \mathrm{d} y \leqslant 2\right\}
$$

By the generalization of Hölder's inequality (see [22, p. 64]), we know that for any cube Q and suitable functions f and h,

$$
\begin{equation*}
\int_{Q}|f(x) h(x)| d x \lesssim\|f\|_{L \log L, Q}\|h\|_{\exp L, Q}|Q| \tag{1.7}
\end{equation*}
$$

2. Proof of theorems

Given an operator T, define the maximal operator $M_{\lambda, T}$ by

$$
M_{\lambda, T} f(x)=\sup _{Q \ni x}\left(T\left(f \chi_{\mathbb{R}^{n} \backslash 3 Q}\right) \chi_{Q}\right)^{*}(\lambda|Q|),(0<\lambda<1)
$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^{n}$ containing x, and h^{*} denotes the non-increasing rearrangement of h. This operator was introduced by Lerner [18] and is useful in the study of weighted bounds for rough operators, see [18, 24].

Lemma 2.1. Let Ω be homogeneous of degree zero, have mean value zero and $\Omega \in L^{\infty}\left(S^{n-1}\right)$. Then for any $\lambda \in(0,1)$,

$$
\left\|M_{\lambda, T_{\Omega}} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim n\|\Omega\|_{L^{\infty}\left(S^{n-1}\right)}\left(1+\log \left(\frac{1}{\lambda}\right)\right)\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

Lemma 2.1 is Theorem 1.1 in [18].
For a function Ω on S^{n-1}, define $\|\Omega\|_{L \log L\left(S^{n-1}\right)}^{*}$ by

$$
\|\Omega\|_{L \log L\left(S^{n-1}\right)}^{*}=\inf \left\{\lambda>0: \int_{S^{n-1}} \frac{|\Omega(\theta)|}{\lambda} \log \left(\mathrm{e}+\frac{|\Omega(\theta)|}{\lambda}\right) d \theta \leqslant 1\right\}
$$

LEMMA 2.2. Let Ω be homogeneous of degree zero, have mean value zero and $\|\Omega\|_{L \log L\left(S^{n-1}\right)}^{*}<\infty$, then

$$
\left\|T_{\Omega} f\right\|_{L^{1, \infty}\left(S^{n-1}\right)} \lesssim\|\Omega\|_{L \log L\left(S^{n-1}\right)}^{*}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

Proof. This lemma is essentially a corollary of estimate (3.1) in [25]. At first, we claim that

$$
\begin{equation*}
\int_{S^{n-1}}|\Omega(\theta)| \log \left(\mathrm{e}+\frac{|\Omega(\theta)|}{\|\Omega\|_{L^{1}\left(S^{n-1}\right)}}\right) d \theta \lesssim\|\Omega\|_{L \log L\left(S^{n-1}\right)}^{*} \tag{2.1}
\end{equation*}
$$

In fact, by homogeneity, it suffices to prove (2.1) for the case $\|\Omega\|_{L^{1}\left(S^{n-1}\right)}=1$. Let

$$
\lambda_{0}=\int_{S^{n-1}}|\Omega(\theta)| \log (\mathrm{e}+|\Omega(\theta)|) d \theta
$$

We consider the following two cases.
Case I. $\lambda_{0}>\mathrm{e}^{10}$. Let $S_{0}=\left\{\theta \in S^{n-1}:|\Omega(\theta)| \leqslant 2\right\}$, and

$$
S_{k}=\left\{\theta \in S^{n-1}: 2^{k}<|\Omega(\theta)| \leqslant 2^{k+1}\right\}, k \in \mathbb{N}
$$

Set $k_{0} \in \mathbb{N}$ such that $2^{k_{0}-1}<\lambda_{0} \leqslant 2^{k_{0}}$. Then $k_{0} \leqslant \lambda_{0} / 8$

$$
\begin{aligned}
\int_{S^{n-1}} \frac{|\Omega(\theta)|}{\lambda_{0}} \log \left(\mathrm{e}+\frac{|\Omega(\theta)|}{\lambda_{0}}\right) d \theta> & \lambda_{0}^{-1} \sum_{k=k_{0}+1}^{\infty}\left|S_{k}\right| 2^{k}\left(k-k_{0}\right)+\lambda_{0}^{-1} \sum_{k \leqslant k_{0}}\left|S_{k}\right| 2^{k} \\
> & \lambda_{0}^{-1}\left(\sum_{k=1}^{\infty} 2^{k} k\left|S_{k}\right|+\left|S_{0}\right|\right) \\
& -\lambda_{0}^{-1}\left(k_{0} \sum_{k \geqslant k_{0}+1} 2^{k}\left|S_{k}\right|+\sum_{1 \leqslant k \leqslant k_{0}} k 2^{k}\left|S_{k}\right|\right) .
\end{aligned}
$$

Obviously,

$$
\sum_{k=1}^{\infty} 2^{k} k\left|S_{k}\right|+\left|S_{0}\right| \geqslant \frac{1}{4} \int_{S^{n-1}}|\Omega(\theta)| \log (\mathrm{e}+|\Omega(\theta)|) d \theta=\frac{\lambda_{0}}{4}
$$

and

$$
k_{0} \sum_{k \geqslant k_{0}+1} 2^{k}\left|S_{k}\right|+\sum_{1 \leqslant k \leqslant k_{0}} k 2^{k}\left|S_{k}\right| \leqslant k_{0} \sum_{k \geqslant 1} 2^{k}\left|S_{k}\right| \leqslant k_{0}\|\Omega\|_{L^{1}\left(S^{n-1}\right)} .
$$

Recall that $\|\Omega\|_{L^{1}\left(S^{n-1}\right)}=1$. It then follows that

$$
\int_{S^{n-1}} \frac{|\Omega(\theta)|}{\lambda_{0}} \log \left(\mathrm{e}+\frac{|\Omega(\theta)|}{\lambda_{0}}\right) d \theta>\frac{1}{8}
$$

This in turn leads to that

$$
\|\Omega\|_{L \log L\left(S^{n-1}\right)}^{*}>\lambda_{0} / 8
$$

Case II. $\lambda_{0} \leqslant \mathrm{e}^{10}$. Let $\lambda>0$ satisfies that

$$
\begin{equation*}
\int_{S^{n-1}} \frac{|\Omega(\theta)|}{\lambda} \log \left(\mathrm{e}+\frac{|\Omega(\theta)|}{\lambda}\right) d \theta \leqslant 1 \tag{2.2}
\end{equation*}
$$

If $10 \mathrm{e}^{10} \lambda<\lambda_{0}$, we then have that

$$
\int_{S^{n-1}} \frac{|\Omega(\theta)|}{\lambda_{0}} \log \left(\mathrm{e}+\frac{|\Omega(\theta)|}{\lambda_{0}}\right) d \theta \leqslant \int_{Q} \frac{|\Omega(\theta)|}{10 \mathrm{e}^{10} \lambda} \log \left(\mathrm{e}+\frac{|\Omega(\theta)|}{10 \mathrm{e}^{10} \lambda}\right) d \theta \leqslant\left(10 \mathrm{e}^{10}\right)^{-1} .
$$

On the other hand, a trivial computation gives us that

$$
\begin{aligned}
\int_{S^{n-1}} \frac{|\Omega(\theta)|}{\lambda_{0}} \log \left(\mathrm{e}+\frac{|\Omega(\theta)|}{\lambda_{0}}\right) d \theta & >\int_{S^{n-1}} \frac{|\Omega(\theta)|}{\mathrm{e}^{10}} \log \left(\mathrm{e}+\frac{|\Omega(\theta)|}{\mathrm{e}^{10}}\right) d \theta \\
& >\int_{S^{n-1}}|\Omega(\theta)| \log (\mathrm{e}+|\Omega(\theta)|) d \theta\left(10 \mathrm{e}^{10}\right)^{-1} \\
& >\left(10 \mathrm{e}^{10}\right)^{-1}
\end{aligned}
$$

where the last inequality follows from the fact that $\lambda_{0} \geqslant\|\Omega\|_{L^{1}\left(S^{n-1}\right)}=1$ (recall that $\left.\|\Omega\|_{L^{1}\left(S^{n-1}\right)}=1\right)$. This is a contradiction. Thus, the positive numbers λ in (2.2) satisfy $\lambda \geqslant\left(10 \mathrm{e}^{10}\right)^{-1} \lambda_{0}$. Inequality (2.1) holds true in this case.

We now conclude the proof of Lemma 2.2. By the result of Seeger (see inequality (3.1) in [25]), we know that if $\Omega \in L \log L\left(S^{n-1}\right)$, then

$$
\begin{aligned}
\left\|T_{\Omega} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim n & {\left[\left\|T_{\Omega}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)}+\|\Omega\|_{L^{1}\left(S^{n-1}\right)}\right.} \\
& \left.+\int_{S^{n-1}}|\Omega(\theta)|\left(1+\log ^{+}\left(|\Omega(\theta)| /\|\Omega\|_{L^{1}\left(S^{n-1}\right)}\right)\right) d \theta\right]\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

where $\log ^{+} s=\log s$ if $s>1$ and $\log ^{+} s=0$ if $s \in(0,1]$. Thus by (2.1),

$$
\left\|T_{\Omega} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim n\left[\left\|T_{\Omega}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)}+\|\Omega\|_{L^{1}\left(S^{n-1}\right)}+\|\Omega\|_{L \log L\left(S^{n-1}\right)}^{*}\right]\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

On the other hand, we know that

$$
\left\|T_{\Omega} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \lesssim\left[1+\|\Omega\|_{L \log L\left(S^{n-1}\right)}\right]\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

with

$$
\|\Omega\|_{L \log L\left(S^{n-1}\right)}=\int_{S^{n-1}}|\Omega(\theta)|\left(1+\log ^{+}|\Omega(\theta)|\right) d \theta
$$

see [10, Theorem 4.2.10]. The last two inequality, along with homogeneity, yields

$$
\left\|T_{\Omega} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim_{n}\|\Omega\|_{L \log L\left(S^{n-1}\right)}^{*}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

and completes the proof of Lemma 2.2.
LEMMA 2.3. Let Ω be homogeneous of degree zero, have mean value zero and $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q \in(1, \infty)$. Then for any $\lambda \in(0,1)$ and $\varepsilon \in(0, \min \{1, q-1\})$,

$$
\left\|M_{\lambda, T_{\Omega}} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim q, \varepsilon\|\Omega\|_{L^{q}\left(S^{n-1}\right)}\left(\frac{1}{\lambda}\right)^{\frac{1+2 \varepsilon}{q}}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

Proof. For $\lambda \in(0,1)$, let $M_{0, \lambda}$ be the operator

$$
M_{0, \lambda} h(x)=\sup _{Q \ni x}\left(h \chi_{Q}\right)^{*}(\lambda|Q|)
$$

see [17, 26]. It is well known that for $\alpha>0$,

$$
\left|\left\{x \in \mathbb{R}^{n}: M_{0, \lambda} f(x)>\alpha\right\}\right| \lesssim \lambda^{-1}\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right| .
$$

Let S be a linear operator which is bounded from $L^{1}\left(\mathbb{R}^{n}\right)$ to $L^{1, \infty}\left(\mathbb{R}^{n}\right)$ with bound 1 . We claim that the operator S_{λ}^{\star} defined by

$$
S_{\lambda}^{\star} f(x)=\sup _{Q \ni x}\left(S\left(f \chi_{Q}\right)\right)^{*}(\lambda|Q|)
$$

is bounded from $L^{1}\left(\mathbb{R}^{n}\right)$ to $L^{1, \infty}\left(\mathbb{R}^{n}\right)$ with bound $C_{n} \lambda^{-1}$. To prove this, let

$$
E_{\alpha}=\left\{x \in \mathbb{R}^{n}: S_{\lambda}^{\star} f(x)>\alpha\right\}
$$

For each $x \in E_{\alpha}$, we can choose a cube Q such that $Q \ni x$ and

$$
\left|\left\{y \in Q:\left|S\left(f \chi_{Q}\right)(y)\right|>\alpha\right\}\right|>\lambda|Q|
$$

This, via the weak type $(1,1)$ boundedness of S, tells us that

$$
|Q| \leqslant \frac{1}{\alpha \lambda} \int_{Q}|f(y)| d y
$$

and so $M f(x) \geqslant \alpha \lambda$. Therefore,

$$
\left|E_{\alpha}\right| \leqslant\left|\left\{x \in \mathbb{R}^{n}: M f(x)>\lambda \alpha\right\}\right| \lesssim \frac{1}{\lambda \alpha}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

This verifies our claim.
We now conclude the proof of Lemma 2.3. Using the estimate $\log t \leqslant t^{\varepsilon} / \varepsilon$ when $t>1$ and $\varepsilon>0$, we can verify by homogeneity that

$$
\|\Omega\|_{L \log L\left(S^{n-1}\right)}^{*} \lesssim \varepsilon\|\Omega\|_{L^{1+\varepsilon}\left(S^{n-1}\right)}
$$

This, along with Lemma 2.2, tells us that for $\varepsilon>0$,

$$
\left\|T_{\Omega} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim n, \varepsilon\|\Omega\|_{L^{1+\varepsilon}\left(S^{n-1}\right)}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

Observe that

$$
M_{\lambda, T_{\Omega}} f(x) \leqslant M_{0, \frac{\lambda}{2}} T_{\Omega} f(x)+\sup _{Q \ni x}\left(T_{\Omega}\left(f \chi_{3 Q}\right) \chi_{Q}\right)^{*}\left(\frac{\lambda}{2}|Q|\right)
$$

and

$$
\sup _{Q \ni x}\left(T_{\Omega}\left(f \chi_{3 Q}\right) \chi_{Q}\right)^{*}\left(\frac{\lambda}{2}|Q|\right) \leqslant \sup _{Q \ni x}\left(T_{\Omega}\left(f \chi_{Q}\right) \chi_{Q}\right)^{*}\left(\frac{1}{3^{n}} \frac{\lambda}{2}|Q|\right) .
$$

Our claim states that

$$
\begin{equation*}
\left\|M_{\lambda, T_{\Omega}} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \lesssim \varepsilon \frac{1}{\lambda}\|\Omega\|_{L^{1+\varepsilon}\left(S^{n-1}\right)}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} \tag{2.3}
\end{equation*}
$$

Now let $\Omega \in L^{q}\left(S^{n-1}\right)$, have mean value zero on S^{n-1}. Without loss of generality, we assume that $\|\Omega\|_{L^{q}\left(S^{n-1}\right)}=1$. Set

$$
t_{0}=\left(\frac{1}{\lambda}\right)^{\frac{1+\varepsilon}{q}}\left[1+\log \left(\frac{1}{\lambda}\right)\right]^{-\frac{1+\varepsilon}{q}}
$$

Let

$$
\Omega^{t_{0}}(\theta)=\Omega(\theta) \chi_{\left\{|\Omega(\theta)|>t_{0}\right\}}(\theta), \Omega_{t_{0}}(\theta)=\Omega(\theta) \chi_{\left\{|\Omega(\theta)| \leqslant t_{0}\right\}}(\theta)
$$

and

$$
\widetilde{\Omega}^{t_{0}}(\theta)=\Omega^{t_{0}}(\theta)-A^{t_{0}}, \widetilde{\Omega}_{t_{0}}(\theta)=\Omega_{t_{0}}(\theta)-A_{t_{0}}
$$

where

$$
A^{t_{0}}=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1}} \Omega^{t_{0}}(\theta) d \theta, A_{t_{0}}=\frac{1}{\left|S^{n-1}\right|} \int_{S^{n-1}} \Omega_{t_{0}}(\theta) d \theta
$$

Both of $\widetilde{\Omega}^{t_{0}}$ and $\widetilde{\Omega}_{t_{0}}$ have mean value zero. Moreover,

$$
\left\|\widetilde{\Omega}^{t_{0}}\right\|_{L^{1+\varepsilon}\left(S^{n-1}\right)} \lesssim t_{0}^{1-\frac{q}{1+\varepsilon}},\left\|\widetilde{\Omega}_{t_{0}}\right\|_{L^{\infty}\left(S^{n-1}\right)} \lesssim t_{0}
$$

and $\Omega(\theta)=\widetilde{\Omega}^{t_{0}}(\theta)+\widetilde{\Omega}_{t_{0}}(\theta)$. Applying Lemma 2.1 and (2.3), we deduce that

$$
\begin{aligned}
\left\|M_{\lambda, T_{\Omega}} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} & \lesssim\left\|M_{\lambda, T_{\Omega^{t} 0}} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)}+\left\|M_{\lambda, T_{\widetilde{\Omega}_{t_{0}}}} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \\
& \lesssim \varepsilon \frac{1}{\lambda}\left\|\widetilde{\Omega}^{t_{0}}\right\|_{L^{1+\varepsilon}\left(S^{n-1}\right)}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

$$
\begin{aligned}
&+\left[1+\log \left(\frac{1}{\lambda}\right)\right]\left\|\widetilde{\Omega}_{t_{0}}\right\|_{L^{\infty}\left(S^{n-1}\right)}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} \\
& \lesssim_{q, \varepsilon}\left(\frac{1}{\lambda}\right)^{\frac{1+\varepsilon}{q}}\left[1+\log \left(\frac{1}{\lambda}\right)\right]^{1-\frac{1+\varepsilon}{q}}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} \\
& \lesssim_{q, \varepsilon}\left(\frac{1}{\lambda}\right)^{\frac{1+2 \varepsilon}{q}}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)},
\end{aligned}
$$

where in the last inequality, we again invoked the fact that $\log t \leqslant t^{\alpha} / \alpha$ for all $t>1$ and $\alpha>0$. This completes the proof of Lemma 2.3.

Lemma 2.4. Let $r \in(1, \infty)$ and w be a weight. The following two statements are equivalent.
(i) $w \in A_{1}\left(\mathbb{R}^{n}\right)$ and $w^{1-p^{\prime}} \in A_{p^{\prime} / r}\left(\mathbb{R}^{n}\right)$ for some $p \in\left(1, r^{\prime}\right)$;
(ii) $w^{r} \in A_{1}\left(\mathbb{R}^{n}\right)$.

Proof. Let $w \in A_{1}\left(\mathbb{R}^{n}\right)$ and $w^{1-p^{\prime}} \in A_{p^{\prime} / r}\left(\mathbb{R}^{n}\right)$ for some $p \in\left(1, r^{\prime}\right)$, then for any cube $Q \subset \mathbb{R}^{n}$,

$$
\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{r \frac{p^{\prime}-1}{p^{\prime}-r}}(x) d x\right)^{\frac{p^{\prime}}{r}-1} \leqslant\left[w^{1-p^{\prime}}\right]_{A_{p^{\prime} / r}}
$$

and so

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q} w^{r \frac{p^{\prime}-1}{p^{\prime}-r}}(x) d x & \leqslant\left[w^{1-p^{\prime}}\right]_{A_{p^{\prime} / r}}^{\frac{1}{p^{\prime}}-1}\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}(x) d x\right)^{-\frac{1}{\frac{p^{\prime}}{r}-1}} \\
& \leqslant\left[w^{1-p^{\prime}}\right]_{A_{p^{\prime} / r}^{\frac{p^{\prime}}{r}}}^{\frac{1}{p^{\prime}}}[w]_{A_{1}}^{\frac{1}{p^{\prime}}-1} \frac{1}{p-1}\left(\frac{1}{|Q|} \int_{Q} w(x) d x\right)^{\frac{1}{\frac{p^{\prime}}{r}-1} \frac{1}{p-1}} \\
& \leqslant\left[w^{1-p^{\prime}}\right]_{A_{p^{\prime} / r}^{\frac{1}{p^{\prime}}}}^{\frac{1}{p^{\prime}}}[w]_{A_{1}}^{\frac{1}{\frac{p^{\prime}}{p^{\prime}}} \frac{1}{p-1}}\left(\operatorname{essinf}_{y \in Q} w(y)\right)^{\frac{p^{\prime}-1}{p^{\prime}}-1}
\end{aligned}
$$

where the second inequality follows from the fact that

$$
\left(\frac{1}{|Q|} \int_{Q} w(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}(x) d x\right)^{p-1} \geqslant 1
$$

We thus deduce that $w^{r} \in A_{1}\left(\mathbb{R}^{n}\right)$, with $\left[w^{r}\right]_{A_{1}} \leqslant\left[w^{1-p^{\prime}}\right]_{A_{p^{\prime} / r}^{\prime}}^{\frac{1}{p^{\prime}}}[w]_{A_{1}}^{r}$.
Let $w^{r} \in A_{1}\left(\mathbb{R}^{n}\right)$. By the reverse Hölder inequality, we know that $w^{r \frac{p^{\prime}-1}{p^{\prime}-r}} \in A_{1}\left(\mathbb{R}^{n}\right)$ for some $p \in\left(1, r^{\prime}\right)$, and $[w]_{A_{1}} \leqslant\left[w^{r}\right]_{A_{1}},\left[w^{r \frac{p^{\prime}-1}{p^{\prime}-r}}\right]_{A_{1}} \leqslant\left[w^{r}\right]_{A_{1}}^{\left(p^{\prime}-1\right) /\left(p^{\prime}-r\right)}$. Thus for any cube $Q \subset \mathbb{R}^{n}$,

$$
\left(\frac{1}{|Q|} \int_{Q} w^{1-p^{\prime}}(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{r \frac{p^{\prime}-1}{p^{\prime}-r}}(x) d x\right)^{\frac{p^{\prime}}{r}-1}
$$

$$
\leqslant\left[\operatorname{essinf}_{y \in Q} w(y)\right]^{1-p^{\prime}}\left[w^{r \frac{p^{\prime}-1}{p^{\prime}-r}}\right]_{A_{1}}^{\frac{p^{\prime}}{r}-1}\left[\operatorname{essinf}_{y \in Q} w(y)\right]^{p^{\prime}-1} \leqslant\left[w^{r}\right]_{A_{1}}^{\frac{p^{\prime}-1}{r}}
$$

This shows that $w^{1-p^{\prime}} \in A_{p^{\prime} / r}\left(\mathbb{R}^{n}\right)$.
Lemma 2.5. Let T be a sublinear operator. Suppose that there exists a constant $\tau \in(0,1)$, such that for all $\lambda \in(0,1 / 2)$,

$$
\left\|M_{\lambda, T} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \leqslant \lambda^{-\tau}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

Then for $p_{0} \in(1,1 / \tau)$,

$$
\left\|\mathscr{M}_{p_{0}, T} f\right\|_{L^{1, \infty}\left(\mathbb{R}^{n}\right)} \leqslant 2^{2+\frac{4}{1-\tau p_{0}}}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

where $\mathscr{M}_{p_{0}, T}$ is the maximal operator defined as (1.5).
Proof. We employ the argument used in the proof of Lemma 3.3 in [18]. As it was proved in [18],

$$
\mathscr{M}_{p_{0}, T} f(x) \leqslant\left(\int_{0}^{1}\left(M_{\lambda, T} f(x)\right)^{p_{0}} d \lambda\right)^{\frac{1}{p_{0}}}
$$

For $N>0$, denote

$$
G_{p_{0}, T, N} f(x)=\left(\int_{0}^{1}\left(\min \left\{M_{\lambda, T} f(x), N\right\}\right)^{p_{0}} d \lambda\right)^{\frac{1}{p_{0}}}
$$

and

$$
\mu_{f}(\alpha, R)=\left|\left\{x \in \mathbb{R}^{n}:|x| \leqslant R,|f(x)|>\alpha\right\}\right|, \alpha, R>0
$$

Let $p_{0} \in(1, \infty)$ such that $\tau p_{0} \in(0,1), k=\left\lfloor\frac{4}{1-\tau p_{0}}\right\rfloor+1$, where and in the following, for $a \in \mathbb{R},\lfloor a\rfloor$ denotes the integer part of a. By Hölder's inequality,

$$
\begin{aligned}
G_{p_{0}, T, N} f(x) & \leqslant\left(\int^{\frac{1}{2^{k p_{0}}}}\left(\min \left\{M_{\lambda, T} f(x), N\right\}\right)^{p_{0}} d \lambda\right)^{\frac{1}{p_{0}}}+M_{1 / 2^{k p_{0}, T}} f(x) \\
& \leqslant \frac{1}{2^{k-1}} G_{k p_{0}, T, N} f(x)+M_{1 / 2^{k p_{0}, T}} f(x)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mu_{G_{p_{0}, T, N} f}(\alpha, R) & \leqslant \mu_{G_{k p_{0}, T, N} f}\left(2^{k-2} \alpha, R\right)+\mu_{M_{1 / 2} k p_{0}, T} f(\alpha / 2, R) \\
& \leqslant \mu_{G_{k p_{0}, T, N} f}\left(2^{k-2} \alpha, R\right)+\frac{1}{\alpha} 2^{\tau k p_{0}+1}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

Repeating the last inequality j times, we have that

$$
\mu_{G_{p_{0}, T, N} f}(\alpha, R) \leqslant \mu_{G_{k} p_{p_{0}, T, N} f}\left(2^{j(k-2)} \alpha, R\right)+\frac{2^{k-2}}{\alpha} \sum_{l=1}^{j}\left(\frac{2^{\tau k p_{0}+1}}{2^{k-2}}\right)^{l}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

Since $G_{p_{0}, T, N} f$ is uniformly bounded in p_{0}, we obtain that $\mu_{G_{k j} j_{0}, T, N} f(\alpha, R) \rightarrow 0$ as $j \rightarrow \infty$. We finally deduce that

$$
\mu_{G_{p_{0}, T, N} f}(\alpha, R) \leqslant 2^{2+\frac{4}{1-\tau p_{0}}} \frac{1}{\alpha}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

This completes the proof of Lemma 2.5.
Let $\eta \in(0,1)$ and $\mathscr{S}=\left\{Q_{j}\right\}$ be a family of cubes. We say that \mathscr{S} is η-sparse, if for each fixed $Q \in \mathscr{S}$, there exists a measurable subset $E_{Q} \subset Q$, such that $\left|E_{Q}\right| \geqslant \eta|Q|$ and E_{Q} 's are pairwise disjoint. For sparse family \mathscr{S} and constants $\beta, r \in[0, \infty)$, we define the bilinear sparse operator $\mathscr{A}_{\mathscr{S} ; L(\log L)^{\beta}, L^{r}}$ by

$$
\mathscr{A}_{\mathscr{S} ; L(\log L)^{\beta}, L^{r}}(f, g)=\sum_{Q \in \mathscr{S}}|Q|\|f\|_{L(\log L)^{\beta}, Q}\langle | g| \rangle_{Q, r} .
$$

We denote $\mathscr{A}_{\mathscr{S} ; L(\log L)^{1}, L^{r}}$ by $\mathscr{A}_{\mathscr{S} ; L \log L, L^{r}}$ for simplicity, and $\mathscr{A}_{\mathscr{S}} ; L(\log L)^{0}, L^{r}$ by $\mathscr{A}_{\mathscr{S} ; L, L^{r}}$.
Lemma 2.6. Let $\alpha, \beta \in \mathbb{N} \cup\{0\}$ and U be an operator. Suppose that for any $r \in(1,3 / 2)$, and bounded function f with compact support, there exists a sparse family of cubes \mathscr{S}, such that for any function $g \in L^{1}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} U f(x) g(x) d x\right| \leqslant r^{\prime \alpha} \mathscr{A}_{\mathscr{S} ; L(\log L)^{\beta}, L^{r}}(f, g) \tag{2.4}
\end{equation*}
$$

Then for any $u \in A_{1}\left(\mathbb{R}^{n}\right)$ and bounded function f with compact support,

$$
\begin{aligned}
& w\left(\left\{x \in \mathbb{R}^{n}:|U f(x)|>\lambda\right\}\right) \\
& \lesssim_{n, \alpha, \beta}[w]_{A_{\infty}}^{\alpha} \log ^{1+\beta}\left(\mathrm{e}+[w]_{A_{\infty}}\right)[w]_{A_{1}} \int_{\mathbb{R}^{d}} \frac{|f(x)|}{\lambda} \log ^{\beta}\left(\mathrm{e}+\frac{|f(x)|}{\lambda}\right) w(x) d x
\end{aligned}
$$

Lemma 2.6 is Corollary 3.6 in [14].
THEOREM 2.7. Let $p_{0} \in(1, \infty), r \in(1, \infty), b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, T be a linear operator and T_{b} be the commutator of T. Suppose that both of operators T and $\mathscr{M}_{p_{0}, T}$ are bounded from $L^{1}\left(\mathbb{R}^{n}\right)$ to $L^{1, \infty}\left(\mathbb{R}^{n}\right)$ with bound 1 . Then for bounded functions f with compact supports, there exists a $\frac{1}{2} \frac{1}{3^{n}}$-sparse family \mathscr{S} and functions $\mathrm{H}_{1} f, \mathrm{H}_{2} f$, such that for each function $g \in L_{\mathrm{loc}}^{r p_{0}^{\prime}}\left(\mathbb{R}^{n}\right)$,

$$
\begin{align*}
& \left|\int_{\mathbb{R}^{n}} \mathrm{H}_{1} f(x) g(x) d x\right| \lesssim_{n}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right) r^{\prime} p_{0}^{\prime} \mathscr{A}_{\mathscr{S} ; L^{1}, L^{r p_{0}^{\prime}}}(f, g),}\left|\int_{\mathbb{R}^{n}} \mathrm{H}_{2} f(x) g(x) d x\right| \lesssim n\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)^{\mathscr{A}} \mathscr{S}_{\mathscr{S}} \log L, L^{p_{0}^{\prime}}}(f, g), \tag{2.5}
\end{align*}
$$

and for a. e. $x \in \mathbb{R}^{n}$,

$$
T_{b} f(x)=\mathrm{H}_{1} f(x)+\mathrm{H}_{2} f(x)
$$

Proof. We will employ the ideas in [18], see also the proof of Theorem 3.2 in [14]. Without loss of generality, we may assume that $\|b\|_{\mathrm{BMO}\left(R^{n}\right)}=1$. For a fixed cube Q_{0}, define the local analogy of $\mathscr{M}_{p_{0}, T}$ by

$$
\mathscr{M}_{p_{0}, T ; Q_{0}} f(x)=\sup _{Q \ni x, Q \subset Q_{0}}\left(\frac{1}{|Q|} \int_{Q}\left|T\left(f \chi_{3 Q_{0} \backslash 3 Q}\right)(y)\right|^{p_{0}} d y\right)^{\frac{1}{p_{0}}}
$$

Let $E=\cup_{j=1}^{4} E_{j}$ with

$$
\begin{aligned}
& E_{1}=\left\{x \in Q_{0}:\left|T\left(f \chi_{3 Q_{0}}\right)(x)\right|>D\langle | f| \rangle_{3 Q_{0}}\right\}, \\
& E_{2}=\left\{x \in Q_{0}:\left|T\left(\left(b-\langle b\rangle_{Q_{0}}\right) f \chi_{3 Q_{0}}\right)(x)\right|>D\langle |\left(b-\langle b\rangle_{Q_{0}}\right) f| \rangle_{3 Q_{0}}\right\}, \\
& E_{3}=\left\{x \in Q_{0}: \mathscr{M}_{p_{0}, T ; Q_{0}} f(x)>D\langle | f| \rangle_{3 Q_{0}}\right\},
\end{aligned}
$$

and

$$
E_{4}=\left\{x \in Q_{0}: \mathscr{M}_{p_{0}, T_{\Omega} ; Q_{0}}\left(\left(b-\langle b\rangle_{Q_{0}}\right) f\right)(x)>D\langle | b-\langle b\rangle_{Q_{0}}| | f| \rangle_{Q_{0}}\right\},
$$

where D is a positive constant. If we choose D large enough, it then follows from the weak type $(1,1)$ boundedness of T and $\mathscr{M}_{p_{0}, T}$ that

$$
|E| \leqslant \frac{1}{2^{n+2}}\left|Q_{0}\right|
$$

Now on the cube Q_{0}, we apply the Calderón-Zygmund decomposition to χ_{E} at level $\frac{1}{2^{n+1}}$, and obtain pairwise disjoint cubes $\left\{P_{j}\right\} \subset \mathscr{D}\left(Q_{0}\right)$, such that

$$
\frac{1}{2^{n+1}}\left|P_{j}\right| \leqslant\left|P_{j} \cap E\right| \leqslant \frac{1}{2}\left|P_{j}\right|
$$

and $\left|E \backslash \cup_{j} P_{j}\right|=0$. Observe that $\sum_{j}\left|P_{j}\right| \leqslant \frac{1}{2}\left|Q_{0}\right|$. Let

$$
\begin{aligned}
G_{Q_{0}}^{1}(x) & =\left(b(x)-\langle b\rangle_{Q_{0}}\right) T\left(f \chi_{3 Q_{0}}\right) \chi_{Q_{0} \backslash \cup_{l} P_{l}}(x)+\sum_{l}\left(b(x)-\langle b\rangle_{Q_{0}}\right) T\left(f \chi_{3 Q_{0} \backslash 3 P_{l}}\right) \chi_{P_{l}}(x) \\
G_{Q_{0}}^{2}(x) & =T\left(\left(b-\langle b\rangle_{Q_{0}}\right) f \chi_{3 Q_{0}}\right) \chi_{Q_{0} \backslash \cup_{l} P_{l}}(x)+\sum_{l} T\left(\left(b-\langle b\rangle_{Q_{0}}\right) f \chi_{3 Q_{0} \backslash 3 P_{l}}\right) \chi_{P_{l}}(x)
\end{aligned}
$$

It then follows that

$$
T_{b}\left(f \chi_{3 Q_{0}}\right)(x) \chi_{Q_{0}}(x)=G_{Q_{0}}^{1}(x)+G_{Q_{0}}^{2}(x)+\sum_{l} T_{b}\left(f \chi_{3 P_{l}}\right)(x) \chi_{P_{l}}(x)
$$

We now estimate $G_{Q_{0}}^{1}$ and $G_{Q_{0}}^{2}$. By (1.7) and the John-Nirenberg inequality (see [11, p.128]), we know that

$$
\begin{aligned}
\int_{Q_{0}}\left|b(x)-\langle b\rangle_{Q_{0}}\right||h(x)| d x & \lesssim\left|Q_{0}\right|\left\|b-\langle b\rangle_{Q_{0}}\right\|_{\exp L, Q}\|h\|_{L \log L, Q_{0}} \\
& \lesssim\left|Q_{0}\right|\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}\|h\|_{L \log L, Q_{0}}
\end{aligned}
$$

This, along with the fact that $\left|E \backslash \cup_{j} P_{j}\right|=0$, implies that

$$
\left|\int_{Q_{0} \backslash \cup P_{l}}\left(b(x)-\langle b\rangle_{Q_{0}}\right) T\left(f \chi_{3 Q_{0}}\right)(x) g(x) d x\right| \lesssim\langle | f\left\rangle_{3 Q_{0}}\|g\|_{L \log L, Q_{0}}\right| Q_{0} \mid
$$

and

$$
\left.\left|\int_{Q_{0} \backslash \cup_{l} P_{l}} T\left(\left(b-\langle b\rangle_{Q_{0}}\right) f \chi_{3 Q_{0}}\right)(x) g(x) d x\right| \lesssim\langle | f\left\rangle_{L \log L, 3 Q_{0}}\langle | g\right|\right\rangle_{Q_{0}}\left|Q_{0}\right|
$$

On the other hand, the fact that $P_{j} \cap E^{c} \neq \emptyset$ tells us that

$$
\left.\begin{array}{rl}
& \sum_{l}\left|\int_{P_{l}}\left(b(x)-\langle b\rangle_{Q_{0}}\right) T\left(f \chi_{3 Q_{0} \backslash 3 P_{l}}\right)(x) g(x) d x\right| \\
\lesssim & \sum_{l}\left(\int_{P_{l}}\left|b(x)-\langle b\rangle_{Q_{0}}\right|^{p_{0}^{\prime}}|g(x)|^{p_{0}^{\prime}} d x\right)^{\frac{1}{p_{0}^{\prime}}}\left(\int_{P_{l}}\left|T\left(f \chi_{3 Q_{0} \backslash 3 P_{l}}\right)(x)\right|^{p_{0}} d x\right)^{p_{0}} \\
\lesssim & \sum_{l}\left(\int_{P_{l}}\left|b(x)-\langle b\rangle_{Q_{0}}\right|^{p_{0}^{\prime} r^{\prime}}\right)^{\frac{1}{p_{0}^{\prime r^{\prime}}}}\left|P_{l}\right|^{\frac{1}{p_{0}^{r}}}+\frac{1}{p_{0}}
\end{array}|g|\right\rangle_{P_{l}, p_{0}^{\prime} r} \inf _{y \in P_{l}} \mathscr{M}_{T, p_{0}, Q_{0}} f(y),
$$

here we have invoked the following estimate

$$
\left(\int_{Q_{0}}\left|b(x)-\langle b\rangle_{Q_{0}}\right|^{p_{0}^{\prime} r^{\prime}} d x\right)^{\frac{1}{p_{0}^{\prime} r^{\prime}}} \lesssim r^{\prime} p_{0}^{\prime}\left|Q_{0}\right|^{\frac{1}{p_{0}^{0^{\prime}}}}
$$

see [11, p. 128]. Similarly, we can deduce that

$$
\begin{aligned}
& \sum_{l}\left|\int_{P_{l}} T\left(\left(b-\langle b\rangle_{Q_{0}}\right) f \chi_{3 Q_{0} \backslash 3 P_{l}}\right)(x) g(x) d x\right| \\
\lesssim & \sum_{l}\left|P_{l}\right|\langle | g| \rangle_{P_{l}, p_{0}^{\prime}} \inf _{y \in P_{l}} \mathscr{M}_{p_{0}, T ; Q_{0}}\left(b-\langle b\rangle_{Q_{0}}\right) f(y) \\
\lesssim & \left.\langle | f\left\rangle_{3 Q_{0}} \sum_{l}\right| P_{l}|\langle | g|\right\rangle_{P_{l}, p_{0}^{\prime}} \lesssim\langle | f| \rangle_{3 Q_{0}}\langle | g| \rangle_{Q_{0}, p_{0}^{\prime}}\left|Q_{0}\right| .
\end{aligned}
$$

Therefore, for function $g \in L_{\text {loc }}^{r}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} G_{Q_{0}}^{1}(x) g(x) d x\right| \lesssim r^{\prime} p_{0}^{\prime}\langle | f| \rangle_{3 Q_{0}}\langle | g| \rangle_{Q_{0}, r p_{0}^{\prime}}\left|Q_{0}\right| \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} G_{Q_{0}}^{2}(x) g(x) d x\right| \lesssim\|f\|_{L \log L, 3 Q_{0}}\langle | g| \rangle_{Q_{0}, p_{0}^{\prime}}\left|Q_{0}\right| \tag{2.8}
\end{equation*}
$$

We repeat argument above with $T\left(f \chi_{3 Q_{0}}\right)(x) \chi_{Q_{0}}$ replaced by $T\left(\chi_{3 P_{l}}\right)(x) \chi_{P_{l}}(x)$, and so on. Let $Q_{0}^{j_{0}}=Q_{0}, Q_{0}^{j_{1}}=P_{j}$, and for fixed $j_{1}, \ldots, j_{m-1},\left\{Q_{0}^{j_{1} \ldots j_{m-1} j_{m}}\right\}_{j_{m}}$ be the
cubes obtained at the m-th stage of the decomposition process to the cube $Q_{0}^{j_{1} \ldots j_{m-1}}$. Set $\mathscr{F}=\left\{Q_{0}\right\} \cup_{m=1}^{\infty} \cup_{j_{1}, \ldots, j_{m}}\left\{Q_{0}^{j_{1} \ldots j_{m}}\right\}$. Then $\mathscr{F} \subset \mathscr{D}\left(Q_{0}\right)$ is a $\frac{1}{2}$-sparse family. We define the functions $H_{1, Q_{0}}$ and $H_{2, Q_{0}}$ by

$$
\begin{aligned}
H_{1, Q_{0}}(x)= & \sum_{m=1}^{\infty} \sum_{j_{1} \ldots j_{m-1}}\left(b(x)-\langle b\rangle_{Q_{0}^{j_{1}, \ldots, j_{m-1}}}\right) \times T\left(f \chi_{3 Q_{0}^{j_{1} \ldots j_{m-1}}}\right)(x) \chi_{Q_{0}^{j_{1}, \ldots, j_{m-1}} \backslash \cup_{j_{m}} Q_{0}^{j_{1}, \ldots, j_{m}}}(x) \\
& +\sum_{m=1}^{\infty} \sum_{j_{1} \ldots j_{m}}\left(b(x)-\langle b\rangle_{Q_{0}^{j_{1}, \ldots, j_{m-1}}}\right) \times T\left(f \chi_{3 Q_{0}^{j_{1} \ldots j_{m-1}} \backslash \cup_{j_{m}} 3 Q_{0}^{j_{1} \ldots j_{m}}}\right)(x) \chi_{Q_{0}^{j_{1} \ldots j_{m}}}(x)
\end{aligned}
$$

and

$$
\begin{array}{rl}
H_{2, Q_{0}}(x)=\sum_{m=1}^{\infty} \sum_{j_{1} \ldots j_{m-1}} T & T\left(\left(b(x)-\langle b\rangle_{Q_{0}^{j_{1}, \ldots, j_{m-1}}}\right) f \chi_{3 Q_{0}^{j_{1} \ldots j_{m-1}}}\right)(x) \\
& \times \chi_{Q_{0}^{j_{1}, \ldots, j_{m-1}} \backslash \cup_{j_{m}} Q_{0}^{j_{1}, \ldots, j_{m}}(x)} \\
+\sum_{m=1}^{\infty} \sum_{j_{1} \ldots j_{m}} T & \left.T\left((b(x)-\langle b\rangle\rangle_{0}^{j_{1}, \ldots, j_{m-1}}\right) f \chi_{3 Q_{0}^{j_{1} \ldots j_{m}} \backslash \cup_{j_{m+1}} 3 Q_{0}^{j_{1} \ldots j_{m-1}}}\right)(x) \\
& \times \chi_{Q_{0}^{j_{1} \ldots j_{m-1}}}(x) .
\end{array}
$$

Then for a. e. $x \in Q_{0}$,

$$
T_{b}\left(f \chi_{3 Q_{0}}\right)(x)=H_{1, Q_{0}}(x)+H_{2, Q_{0}}(x)
$$

Moreover, as in inequalities (2.7)-(2.8), the process of producing $\left\{Q_{0}^{j_{1} \ldots j_{m}}\right\}$ leads to that

$$
\left|\int_{Q_{0}} g(x) H_{1, Q_{0}}(x) d x\right| \lesssim r^{\prime} p_{0}^{\prime} \sum_{Q \in \mathscr{F}}|Q|\langle | f| \rangle_{3 Q}\langle | g| \rangle_{Q, r p_{0}^{\prime}}
$$

and

$$
\left|\int_{Q_{0}} g(x) H_{2, Q_{0}}(x) d x\right| \lesssim \sum_{Q \in \mathscr{F}}|Q|\|f\|_{L \log L, 3 Q}\langle | g| \rangle_{Q, p_{0}^{\prime}}
$$

We can now conclude the proof of Theorem 2.7. In fact, as in [18], we decompose \mathbb{R}^{n} by cubes $\left\{R_{l}\right\}$, such that $\operatorname{supp} f \subset 3 R_{l}$ for each l, and R_{l} 's have disjoint interiors. Then for a. e. $x \in \mathbb{R}^{n}$,

$$
T_{b} f(x)=\sum_{l} H_{1, R_{l}} f(x)+\sum_{l} H_{2, R_{l}} f(x)=: \mathrm{H}_{1} f(x)+\mathrm{H}_{2} f(x)
$$

Obviously, $\mathrm{H}_{1}, \mathrm{H}_{2}$ satisfies (2.5) and (2.6). Our desired conclusion then follows directly.

Lemma 2.8. Let $\gamma \in \mathbb{N} \cup\{0\}, r \in[1, \infty)$, and U be an operator. Suppose that for any bounded function f with compact support, there exists a sparse family of cubes \mathscr{S}, such that for any function $g \in L_{\mathrm{loc}}^{r}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} U f(x) g(x) d x\right| \leqslant \mathscr{A}_{\mathscr{S} ; L(\log L)^{\gamma}, L^{r}}(f, g) \tag{2.9}
\end{equation*}
$$

Then for any w with $w^{r} \in A_{1}\left(\mathbb{R}^{n}\right), \alpha>0$ and bounded function f with compact support,

$$
w\left(\left\{x \in \mathbb{R}^{n}:|U f(x)|>\alpha\right\}\right) \lesssim_{n, \gamma, w} \int_{\mathbb{R}^{d}} \frac{|f(x)|}{\alpha} \log ^{\gamma}\left(\mathrm{e}+\frac{|f(x)|}{\alpha}\right) w(x) d x
$$

Proof. By Theorem 3.2 in [14], we know that U satisfies the following estimate:

$$
\begin{align*}
w\left(\left\{x \in \mathbb{R}^{d}:|U f(x)|>1\right\}\right) \lesssim & \left(1+\left\{p_{1}^{\prime 1+\gamma}\left(\frac{p_{1}^{\prime}}{r}\right)^{\prime}\left(t \frac{p_{1}^{\prime} / r-1}{p_{1}^{\prime}-1}\right)^{\prime \frac{1}{p_{1}^{\prime}}}\right\}^{p_{1}}\right) \\
& \times \int_{\mathbb{R}^{n}}|f(y)| \log ^{\gamma}(\mathrm{e}+|f(y)|) M_{t} w(y) d y, \tag{2.10}
\end{align*}
$$

where $t \in[1, \infty), p_{1} \in\left(1, r^{\prime}\right)$ such that $\frac{p_{1}^{\prime} / r-1}{p_{1}^{\prime}-1}>1$, and M_{t} is defined by

$$
M_{r} f(x)=\left[M\left(|f|^{r}\right)(x)\right]^{1 / r}
$$

Let $w^{r} \in A_{1}\left(\mathbb{R}^{n}\right)$. We choose $\varepsilon>0$ such that $w^{r(1+\varepsilon)} \in A_{1}\left(\mathbb{R}^{n}\right)$. Set $t=r(1+\varepsilon)$ and $p_{1}^{\prime}=2(r-1) \frac{1+\varepsilon}{\varepsilon}+1$. Then $t \frac{p_{1}^{\prime} / r-1}{p_{1}^{\prime}-1}=1+\frac{\varepsilon}{2}$. We obtain from (2.10) that

$$
w\left(\left\{x \in \mathbb{R}^{d}:|U f(x)|>1\right\}\right) \lesssim_{n, \gamma, w} \int_{\mathbb{R}^{n}}|f(y)| \log ^{\gamma}(\mathrm{e}+|f(y)|) w(y) d y .
$$

This, via homogeneity, leads to our desired conclusion.
Proof of Theorem 1.2. By homogeneity, we may assume that $\|\Omega\|_{L^{q}\left(S^{n-1}\right)}=1=$ $\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}$. Let $w^{q^{\prime}} \in A_{1}\left(\mathbb{R}^{n}\right)$. We choose $\varepsilon>0$ such that $\varepsilon \in(0, \min \{1,(q-1) / 3\})$ and $w^{q^{\prime}(1+\varepsilon)} \in A_{1}\left(\mathbb{R}^{n}\right)$. On the other hand, by Lemma 2.3 and Lemma 2.5, we know that for any $p_{0} \in(0, q /(1+2 \varepsilon))$,

$$
\left\|\mathscr{M}_{p_{0}, T_{\Omega}} f\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \lesssim 2^{4 \frac{1}{1-p_{0} \frac{1+2 \varepsilon}{q}}}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

Take $p_{0}=q /(1+3 \varepsilon)$ and $r=\frac{q-(1+3 \varepsilon)}{q-1}(1+\varepsilon)$, then $r p_{0}^{\prime}=(1+\varepsilon) q^{\prime}$. Applying Theorem 2.7 with such indices p_{0} and r, we see that for any bounded function f with compact support, there exists a sparse family of cubes \mathscr{S}, such that for any $g \in L_{\text {loc }}^{q^{\prime}(1+\varepsilon)}\left(\mathbb{R}^{n}\right)$,

$$
\left|\int_{\mathbb{R}^{n}} T_{b} f(x) g(x) d x\right| \lesssim p_{0}^{\prime} r^{\prime} 2^{4 \frac{1+3 \varepsilon}{\varepsilon}} \mathscr{A}_{\mathscr{S} ; L \log L, L^{q^{\prime}(1+\varepsilon)}}(f, g)
$$

Theorem 1.2 now follows from Lemma 2.8 immediately.
Proof of Theorem 1.3. Again we assume that $\|\Omega\|_{L^{\infty}\left(S^{n-1}\right)}=1=\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}$. Let $s \in(1, \infty)$. Applying (1.6) and Theorem 2.7 (with $p_{0}=(\sqrt{s})^{\prime}$ and $r=\sqrt{s}$), we know
that for bounded function f with compact support, there exists a $\frac{1}{2} \frac{1}{3^{n}}$-sparse family of cubes $\mathscr{S}=\{Q\}$, and functions $\mathrm{H}_{1} f, \mathrm{H}_{2} f$, such that for each function $g \in L_{\text {loc }}^{s}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{n}} \mathrm{H}_{1} f(x) g(x) d x\right| \lesssim(\sqrt{s})^{\prime 2} \mathscr{A}_{\mathscr{S} ; L^{1}, L^{s}}(f, g) \lesssim s^{\prime 2} \mathscr{A}_{\mathscr{S} ; L^{1}, L^{s}}(f, g), \\
& \left|\int_{\mathbb{R}^{n}} \mathrm{H}_{2} f(x) g(x) d x\right| \lesssim(\sqrt{s})^{\prime} \mathscr{A}_{\mathscr{S} ; L \log L, L^{\sqrt{s}}}(f, g) \lesssim s^{\prime} \mathscr{A}_{\mathscr{S} ; L \log L, L^{s}}(f, g),
\end{aligned}
$$

and for a. e. $x \in \mathbb{R}^{n}$,

$$
T_{\Omega, b} f(x)=\mathrm{H}_{1} f(x)+\mathrm{H}_{2} f(x)
$$

Let $w \in A_{1}\left(\mathbb{R}^{n}\right), \lambda>0, f$ be a bounded function with compact support. It follows from Lemma 2.6 that

$$
\begin{aligned}
& w\left(\left\{x \in \mathbb{R}^{n}:\left|T_{\Omega, b} f(x)\right|>\lambda\right\}\right) \\
\leqslant & w\left(\left\{x \in \mathbb{R}^{n}:\left|\mathrm{H}_{1} f(x)\right|>\lambda / 2\right\}\right)+w\left(\left\{x \in \mathbb{R}^{n}:\left|\mathrm{H}_{2} f(x)\right|>\lambda / 2\right\}\right) \\
\lesssim & {[w]_{A_{1}}[w]_{A_{\infty}}^{2} \log \left(\mathrm{e}+[w]_{A_{\infty}}\right) \int_{\mathbb{R}^{n}} \frac{|f(x)|}{\lambda} w(x) d x } \\
& +[w]_{A_{1}}[w]_{A_{\infty}} \log ^{2}\left(\mathrm{e}+[w]_{A_{\infty}}\right) \int_{\mathbb{R}^{n}} \frac{|f(x)|}{\lambda} \log \left(\mathrm{e}+\frac{|f(x)|}{\lambda}\right) w(x) d x \\
\lesssim & {[w]_{A_{1}}[w]_{A_{\infty}}^{2} \log \left(\mathrm{e}+[w]_{A_{\infty}}\right) \int_{\mathbb{R}^{n}} \frac{|f(x)|}{\lambda} \log \left(\mathrm{e}+\frac{|f(x)|}{\lambda}\right) w(x) d x . }
\end{aligned}
$$

This completes the proof of Theorem 1.3.

Acknowledgement. The research of the second author was supported by the NNSF of China under grant \#11771399, and the research of the third author was supported by the NNSF of China under grant \# 11871108.

The authors would like to thank the referee for his/her valuable suggestions and comments.

REFERENCES

[1] J. Alvarez, R. J. Babgy, D. Kurtz and C. PÉrez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), 195-209.
[2] A. P. CALDERÓN AND A. ZYgMund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
[3] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309.
[4] M. Christ and J.-L. Rubio de Francia, Weak type (1, 1) bounds for rough operators, II, Invent. Math. 93 (1988), 225-237.
[5] D. Chung, M. C. Pereyra, and C. Pérez, Sharp bounds for general commutators on weighted Lebesgue spaces, Trans. Amer. Math. Soc. 364 (2012), 1163-1177.
[6] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635.
[7] J. DUOANDIKOETXEA, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1993), 869-880.
[8] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integrals via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
[9] D. FAN AND Y. PAN, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), 799-839.
[10] L. Grafakos, Classical Fourier Analysis, GTM249, 2nd Edition, Springer, New York, 2008.
[11] L. Grafakos, Modern Fourier Analysis, GTM250, 2nd Edition, Springer, New York, 2008.
[12] L. GRAFAKOS AND A. Stefanov, L^{p} bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), 455-469.
[13] G. Hu, $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for the commutator of a homogeneous singular integral, Studia Math. 154 (2003), 13-47.
[14] G. Hu, X. Lai and Q. Xue, Weighted bounds for the compositions of rough singular integral operators, J. Geom. Anal., to appear; available at arXiv:1811.02878.
[15] T. Hytönen, M. T. Lacey and C. Pérez, Sharp weighted bounds for the q-variation of singular integrals, Bull. Lond. Math. Soc. 45 (2013), 529-540.
[16] T. HYtönen, L. Roncal, and O. Tapiola, Quantitative weighted estimates for rough homogeneous singular integrals, Israel J. Math. 218 (2017), 133-164.
[17] F. John, Quasi-isometric mappings, In: 1965 Seminari 1962/63 Anal. Alg. Geom. e Topol., 2, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, pp. 462-473.
[18] A. K. Lerner, A weak type estimates for rough singular integrals, Rev. Mat. Iberoam. 35 (2019), 1583-1602.
[19] K. Li, C. Pérez, Isreal P. Rivera-Rios and L. Roncal, Weighted norm inequalities for rough singular integral operators, J. Geom. Anal. 29 (2019), 2526-2564.
[20] C. PÉREZ, I. P. RIVERA-Rios, L. Roncal, A_{1} theory of weights for rough homogeneous singular integrals and commutators, Annali della Scuola normale superiore di Pisa, Classe di scienze. DOI: 10.2422/2036-2145.201608-011.
[21] C. PÉREZ, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163-185.
[22] M. Rao and Z. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., New York, 1991.
[23] F. Ricci and G. Weiss, A characterization of $H^{1}\left(S^{n-1}\right)$, Proc. Sympos. Pure Math. of Amer. Math. Soc., (S. Wainger and G. Weiss eds), Vol. 35 I(1979), 289-294.
[24] I. P. RIVERA-RÍOs, Improved $A_{1}-A_{\infty}$ and related estimate for commutators of rough singular integrals, Proc. Edinburgh Math. Soc. 61 (2018), 1069-1086.
[25] A. SEEGER, Singular integral operators with rough convolution kernels, J. Amer. Math. Soc. 9 (1996), 95-105.
[26] J. O. Strömberg, Bounded mean oscillation with Orlicz, norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544.
[27] A. M. Vargas, Weighted weak type $(1,1)$ bounds for rough operators, J. London Math. Soc. 54 (1996), 297-310.
[28] M. J. Wilson, Weighted inequalities for the dyadic square function without dyadic A_{∞}, Duke Math. J. 55 (1987), 19-50.

Xiangxing Tao

Beijing Normal University Zhuhai 519087, P. R. China
e-mail: guoenxx@163.com

[^1]
[^0]: Mathematics subject classification (2010): 42B20, 47A30.
 Keywords and phrases: Commutator, singular integral operator, sparse operator, maximal operator.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

