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AN INEQUALITY INVOLVING THE CONSTANT e AND

A GENERALIZED CARLEMAN–TYPE INEQUALITY

CHAO-PING CHEN AND RICHARD B. PARIS

(Communicated by I. Perić)

Abstract. In this paper, we establish a double inequality involving the constant e . As an appli-
cation, we give a generalized Carleman-type inequality.

1. Introduction

Let an � 0 for n ∈ N := {1,2, . . .} and 0 < ∑∞
n=1 an < ∞ . Then

∞

∑
n=1

(a1a2 · · ·an)1/n < e
∞

∑
n=1

an. (1.1)

The constant e is the best possible. The inequality (1.1) was presented in 1922 in [3]
by the Swedish mathematician Torsten Carleman and it is called Carleman’s inequal-
ity. Carleman discovered this inequality during his important work on quasi-analytical
functions.

Carleman’s inequality (1.1) was generalized by Hardy [12] (see also [13, p. 256])
as follows: If an � 0, λn > 0, Λn = ∑n

m=1 λm for n ∈ N , and 0 < ∑∞
n=1 λnan < ∞ , then

∞

∑
n=1

λn
(
aλ1

1 aλ2
2 · · ·aλn

n

)1/Λn < e
∞

∑
n=1

λnan. (1.2)

Note that inequality (1.2) is usually referred to as a Carleman-type inequality or weighted
Carleman-type inequality. In his original paper [12], Hardy himself said that it was
Pólya who pointed out this inequality to him. For information about the history of
Carleman-type inequalities, please refer to [15, 16, 18, 24].

In [4, 5, 6, 9, 10, 11, 14, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31], some strength-
ened and generalized results of (1.1) and (1.2) have been given by estimating the weight
coefficient (1+1/n)n . For example, Mortici and Jang [23] proved that for 0 < x � 1,

e

(
1− 1

2
x+

11
24

x2− 7
16

x3 +
2447
5760

x4− 959
2304

x5
)

< (1+ x)1/x

< e

(
1− 1

2
x+

11
24

x2 − 7
16

x3 +
2447
5760

x4
)

. (1.3)
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According to Pólya’s proof of (1.1) in [25],

∞

∑
n=1

(a1a2 · · ·an)1/n �
∞

∑
n=1

(
1+

1
n

)n

an, (1.4)

and then the following strengthened Carleman’s inequality can be derived directly from
the right-hand side of (1.3):

∞

∑
n=1

(a1a2 · · ·an)1/n < e
∞

∑
n=1

(
1− 1

2n
+

11
24n2 −

7
16n3 +

2447
5760n4

)
an. (1.5)

In this paper, we develop the double inequality (1.3) to produce a general result.
As an application, we give a generalized Carleman-type inequality.

2. A double inequality involing the constant e

Brothers and Knox [2] (see also [17, 7]) derived, without a formula for the general
term, the following expansion:(

1+
1
x

)x

= e

(
1− 1

2x
+

11
24x2 −

7
16x3 +

2447
5760x4 −

959
2304x5 +

238043
580608x6 −·· ·

)
(2.1)

for x < −1 or x � 1. Chen and Choi [7] gave an explicit formula for successively
determining the coefficients. More precisely, these authors proved that(

1+
1
x

)x

∼ e
∞

∑
j=0

(−1) jb jx
− j (x → ∞), (2.2)

where the coefficients b j are given by

b0 = 1 and b j = ∑
k1+2k2+···+ jk j= j

( 1
2

)k1
( 1

3

)k2 · · ·
(

1
j+1

)k j

k1!k2! · · ·k j!
( j � 1) (2.3)

summed over all nonnegative integers k j satisfying the equation k1 +2k2 + · · ·+ jk j =
j .

A recurrence relation for the coefficients b j can be obtained by use of the result
given in [8, Lemma 3]. This states that for a function A(x) with asymptotic expansion
A(x) ∼ ∑∞

n=1 αnx−n as x → ∞ , the composition B(x) = exp[A(x)] has the expansion
B(x) ∼ ∑∞

n=1 βnx−n as x → ∞ , where β0 = 1 and

βn =
1
n

n

∑
k=1

kαkβn−k (n � 1).

From the Maclaurin expansion

1
x

ln(1+ x) = 1+
∞

∑
j=1

(−1) jx j

j +1
(−1 < x � 1),
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it therefore follows (upon replacing x by 1/x ) that the coefficients b j in (2.2) are given
by the recurrence relation

b0 = 1 and b j =
1
j

j

∑
k=1

k
k+1

b j−k ( j � 1). (2.4)

Use of (2.4) is easily seen to generate the values

b1 =
1
2
, b2 =

11
24

, b3 =
7
16

, b4 =
2447
5760

, b5 =
959
2304

, b6 =
238043
580608

, . . . ,

which are the same coefficients as in (2.1). The representation using a recursive algo-
rithm for the coefficients b j is more practical for numerical evaluation than the expres-
sion in (2.3).

The above result immediately shows that b j > 0 so that (2.2) is an alternating
series for positive x . Replacement of x by 1/x in (2.1) and (2.2) then enables us to
write

(1+ x)1/x = e
∞

∑
j=0

(−1) jb jx
j (−1 < x � 1). (2.5)

We now establish a monotonicity property satisfied by the coefficients b j .

LEMMA 2.1. The sequence {b j}∞
j=0 in (2.5) is monotonically decreasing.

Proof. By Cauchy’s theorem it follows from (2.5) that

b j =
(−1) j

2π ie

∮
C
(1+ t)1/t dt

t j+1 ,

where C is a closed loop surrounding t = 0 described in the positive sense. Define

Δ j = b j −b j+1.

Then

Δ j =
(−1) j

2π ie

∮
C
(1+ t)1/t

(
1+

1
t

)
dt

t j+1 =
(−1) j

2π ie

∮
C
(1+ t)1+1/t dt

t j+2 .

In the t -plane there is a branch cut along (−∞,−1] . Now expand C to be a large
circle of radius R that is indented to pass along the upper and lower sides of the branch
cut. The contribution from the large circle tends to zero as R → ∞ . Similarly, the
contribution round the branch point t = −1+ ρeiθ , −π � θ � π vanishes as ρ → 0.
Then we have upon putting t = xe±π i on the upper and lower sides of the branch cut

Δ j =
1

2π ie

∫ 1

∞
(x−1)1−1/xe−π i/x dx

x j+2 +
1

2π ie

∫ ∞

1
(x−1)1−1/xeπ i/x dx

x j+2

=
1

πe

∫ ∞

1
(x−1)1−1/x sin(π/x)

dx
x j+2 . (2.6)
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Now on the interval x ∈ [1,∞) the function sin(π/x) � 0 so that the integrand in
(2.6) is non-negative on [1,∞) . Hence Δ j > 0 and the sequence {b j}∞

j=0 is monotoni-
cally decreasing. This completes the proof.

REMARK 2.1. We thank a referee for providing the literature [1]. It was proved
in [1, Lemma 1] that

(x+1)
[
e−
(

1+
1
x

)x]
=

e
2

+
∫ 1

0

g(s)
x+ s

ds (x > 0), (2.7)

where

g(s) =
1
π

ss(1− s)1−s sin(πs) (0 � s � 1). (2.8)

By (2.7), we here give an integral representation of the coefficients b j in (2.5), and then
use it to prove Lemma 2.1.

Write (2.7) as(
1+

1
x

)x

= e− e
2(x+1)

−
∫ 1

0

g(s)
(x+1)(x+ s)

ds (x > 0). (2.9)

Replacing x by 1/t in (2.9) yields, for t > 0,

f (t) : = (1+ t)1/t =
e
2

+
e

2(t +1)
−
∫ 1

0

g(s)
s

t2

(t +1)(t + 1
s )

ds

=
e
2

+
e

2(t +1)
−
∫ 1

0

g(s)
s

{
1+

s
(1− s)(t +1)

− 1

s(1− s)(t + 1
s )

}
ds. (2.10)

Clearly,

eb0 = f (0) = e.

Differentiating the expression in (2.10), we find that for n � 1,

(−1)n f (n)(t)
n!

=
e

2(t +1)n+1 −
∫ 1

0

g(s)
s

{
s

(1− s)(t +1)n+1 −
1

s(1− s)
(
t + 1

s

)n+1

}
ds,

we then obtain the following integral representation of the coefficients b j in (2.5):

bn =
(−1)n f (n)(0)

n!e
=

1
2
− 1

e

∫ 1

0

1− sn−1

1− s
g(s)ds

for n � 1, and we have

Δ j = b j −b j+1 =
1
e

∫ 1

0
s j−1g(s)ds > 0 ( j � 1). (2.11)

Noting that b0 = 1 > 1
2 = b1 holds, we see that the sequence {b j}∞

j=0 in (2.5) is mono-
tonically decreasing.

In fact, by an elementary change of variable x = 1/s (0 � s � 1), we see that (2.6)
⇐⇒ (2.11).
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From (2.5) and Lemma 2.1 we obtain the following theorem that develops the
double inequality (1.3) to produce a general result.

THEOREM 2.1. For all integers m � 0 ,

e
2m+1

∑
j=0

(−1) jb jx
j < (1+ x)1/x < e

2m

∑
j=0

(−1) jb jx
j (0 < x � 1), (2.12)

or alternatively

e
2m+1

∑
j=0

(−1) jb j

x j <

(
1+

1
x

)x

< e
2m

∑
j=0

(−1) jb j

x j (x � 1), (2.13)

where the coefficients b j are given by the recursive relation (2.4).

3. A generalized Carleman-type inequality

THEOREM 3.1. Let 0 < λn+1 � λn , Λn = ∑n
m=1 λm (Λn � 1) , an � 0 (n ∈ N)

and 0 < ∑∞
n=1 λnan < ∞ . Then for 0 < p � 1 ,

∞

∑
n=1

λn+1(a
λ1
1 aλ2

2 · · ·aλn
n )1/Λn

<
ep

p

∞

∑
n=1

(
2m

∑
j=0

(−1) jb j

(Λn/λn) j

)p

λna
p
nΛp−1

n

(
n

∑
k=1

λk(ckak)p

)(1−p)/p

, (3.1)

where b j is given by (2.4), and

cλn
n =

(Λn+1)Λn

(Λn)Λn−1
.

Proof. The following inequality:

∞

∑
n=1

λn+1(a
λ1
1 aλ2

2 · · ·aλn
n )1/Λn

� 1
p

∞

∑
m=1

(
1+

1
Λm/λm

)pΛm/λm

λmap
mΛp−1

m

(
m

∑
k=1

λk(ckak)p

)(1−p)/p

(3.2)

has been proved in Theorem 2.2 of [11] (see also [21, p. 96]). From (3.2) and the
right-hand side of (2.13), we obtain (3.1). The proof is complete.

REMARK 3.1. In Theorem 2.2 of [11], cλn
k = (Λn+1)Λn

(Λn)Λn−1
should be cλn

n = (Λn+1)Λn

(Λn)Λn−1
;

see [11, p. 44, line 3]. Likewise, cλn
s = (Λn+1)Λn

(Λn)Λn−1
in Theorem 3.1 of [21] should be

cλn
n = (Λn+1)Λn

(Λn)Λn−1
; see [21, p. 96, Eq. (9)].
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The choice p = 1 in (3.1) yields

∞

∑
n=1

λn+1(a
λ1
1 aλ2

2 · · ·aλn
n )1/Λn < e

∞

∑
n=1

(
2m

∑
j=0

(−1) jb j

(Λn/λn) j

)
λnan. (3.3)

Taking λn ≡ 1 in (3.3) we obtain

∞

∑
n=1

(a1a2 · · ·an)1/n < e
∞

∑
n=1

(
2m

∑
j=0

(−1) jb j

n j

)
an. (3.4)

When m = 2 in (3.4) we recover (1.5).
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