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AN INEQUALITY INVOLVING THE CONSTANT ¢ AND
A GENERALIZED CARLEMAN-TYPE INEQUALITY

CHAO-PING CHEN AND RICHARD B. PARIS

(Communicated by I. Peric)

Abstract. In this paper, we establish a double inequality involving the constant e. As an appli-
cation, we give a generalized Carleman-type inequality.

1. Introduction

Let a, >0 forne N:={1,2,...} and 0 <Y, a, <eo. Then

oo

E(alag---an)l/”<62an. (1.1)
n=1 n=1

The constant e is the best possible. The inequality (1.1) was presented in 1922 in [3]
by the Swedish mathematician Torsten Carleman and it is called Carleman’s inequal-
ity. Carleman discovered this inequality during his important work on quasi-analytical
functions.

Carleman’s inequality (1.1) was generalized by Hardy [12] (see also [13, p. 256])
as follows: If @, >0, A4, >0, Ay, =30 _ Ay forn €N, and 0 < Y| Aua, < oo, then

iln(a%'agz---aﬂ”)l//\" <eil,,an. (1.2)
n=1 =

n=1

Note that inequality (1.2) is usually referred to as a Carleman-type inequality or weighted
Carleman-type inequality. In his original paper [12], Hardy himself said that it was

Pélya who pointed out this inequality to him. For information about the history of

Carleman-type inequalities, please refer to [15, 16, 18, 24].

In[4,5,6,9,10, 11, 14, 19,20, 21, 22,23, 26, 27, 28, 29, 30, 31], some strength-
ened and generalized results of (1.1) and (1.2) have been given by estimating the weight
coefficient (1+ 1/n)". For example, Mortici and Jang [23] proved that for 0 < x < 1,

e( 1 11 , 7 5 2447 , 959 5

Lo, 7 959 1
1= 35 5" 16" T 5760" 2304x><(1+x)

111 7 2447
1——x+—x— =+ ). 1.
<e< 2x+24x T +5760x> (1.3)
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According to Pélya’s proof of (1.1) in [25],

=3

oo 1 n
N (araz--an)'" <Y (HZ) an, (1.4)
n=1

n=1

and then the following strengthened Carleman’s inequality can be derived directly from
the right-hand side of (1.3):

=

(1.5)

11 7 2447
)" l——
Z (araz <e 2 ( 24n 16n3 * 5760n4>

n=1

In this paper, we develop the double inequality (1.3) to produce a general result.
As an application, we give a generalized Carleman-type inequality.

2. A double inequality involing the constant ¢

Brothers and Knox [2] (see also [17, 7]) derived, without a formula for the general
term, the following expansion:

1+ " 1 1 . 11 7 . 2447 959 n 238043
x) ~¢ 2x  24x2 16x3  5760x*  2304x5  580608x°
(2.1)

for x < —1 or x > 1. Chen and Choi [7] gave an explicit formula for successively
determining the coefficients. More precisely, these authors proved that

( _> Nez Dibpd (x ), 22)

X

where the coefficients b; are given by

1 1\
(5" (4 T) :
bo=1 and b= Y k,k Ig (Gzn @3
ky+2ko -+ jkj=j LR2:

summed over all nonnegative integers k; satisfying the equation ki + 2k +--- + jk; =
J-

A recurrence relation for the coefficients b; can be obtained by use of the result
given in [8, Lemma 3]. This states that for a function A(x) with asymptotic expansion
A(x) ~ X ox" as x — oo, the composition B(x) = exp[A(x)] has the expansion
B(x) ~ Y7 | Bux™" as x — oo, where fp = 1 and

1
= - Zkakﬁn_k (n > l)
s

From the Maclaurin expansion

—1)/x/

1
—ln l+x)=1+
( 2 Jj+1

J=1

(—l<x<1),
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it therefore follows (upon replacing x by 1/x) that the coefficients b; in (2.2) are given
by the recurrence relation
bp=1 and b»—li k b; (j=1 (2.4)
0= J_jkzlk'f'l Jj—k J=z1). .
Use of (2.4) is easily seen to generate the values

1,1 7 2447 959 238043
2T BT 16 YT 57600 0T 23047 °T 580608

which are the same coefficients as in (2.1). The representation using a recursive algo-
rithm for the coefficients b; is more practical for numerical evaluation than the expres-
sion in (2.3).

The above result immediately shows that b; > 0 so that (2.2) is an alternating
series for positive x. Replacement of x by 1/x in (2.1) and (2.2) then enables us to
write

(l—l—x)l/":ei(—l)jbjxj (-1<x<1). (2.5)
Jj=0

‘We now establish a monotonicity property satisfied by the coefficients b;.

LEMMA 2.1. The sequence {bj};-"zo in (2.5) is monotonically decreasing.

Proof. By Cauchy’s theorem it follows from (2.5) that

(-1)/ 1 dt
bj= ?{C(IH) /’F,

2mie
where C is a closed loop surrounding # = 0 described in the positive sense. Define

Aj :bj—bjurl.

(‘U’j{ 1t 1\ dt (‘U’j{ 141y dt
Ai=—" 1+¢ 1+- | —= 141 —_—.
1T 2rie c( +1) +t i+l 2mie c( +1) 1i+2

In the 7 -plane there is a branch cut along (—e, —1]. Now expand C to be a large
circle of radius R that is indented to pass along the upper and lower sides of the branch
cut. The contribution from the large circle tends to zero as R — oo. Similarly, the
contribution round the branch point t = —1 + peie, —n < 0 < 7 vanishes as p — 0.
Then we have upon putting # = xe™™ on the upper and lower sides of the branch cut

1 1 i dx 1 i . dx
A= — 1 1-1/x 77'[1/)6'_ / 1 1—-1/x mi/x :
1 2mie /x, (x=1) ¢ xJt2 - 2mie J, (x=1) M)
_ L= 1—1/x dx
= E ! (.X.'— 1) sin (ﬂ/x) W (26)

Then
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Now on the interval x € [1,o0) the function sin (7/x) > 0 so that the integrand in
(2.6) is non-negative on [1,). Hence A; >0 and the sequence {b;}7_, is monotoni-
cally decreasing. This completes the proof.

REMARK 2.1. We thank a referee for providing the literature [1]. It was proved
in [1, Lemma 1] that

Nl e [Msls)
where
g(s) = %s“'(l —s5)Fsin(ns)  (0<s<1). (2.8)

By (2.7), we here give an integral representation of the coefficients b; in (2.5), and then
use it to prove Lemma 2.1.
Write (2.7) as

" e sl
(”;) _e_Z(x—l-l)_/o Grherss 620 29

Replacing x by 1/7 in (2.9) yields, for 7 > 0,

2

L e_e, e flgly)
S0 =00 =5 2T /0 s e’
(s

t
_¢ e [Tg(s) s B 1 )
_2+2(t+1) /0 S {1+(1_s)(t+1) s(l—s)(z+§)}d' (2.10)

Clearly,
eby = f(0) =e.
Differentiating the expression in (2.10), we find that for n > 1,

e e [e s 1 ds
n! - 2(;+1)"+1 0o s (l—S)(l+1)n+1 S(I—S)(Z‘F%)VHrl ’

we then obtain the following integral representation of the coefficients b; in (2.5):

(=1 f0) 1 1/11—s"—1
by=—"—"— = — — — d
" nle 2 elo 1l-—s g(s)ds
for n > 1, and we have
1/t
Aj:bj—b,ur]:—/ s~’71g(s)ds>0 (j=1). (2.11)
; e Jo

Noting that by =1 > % = b; holds, we see that the sequence {b j};"zo in (2.5) is mono-
tonically decreasing.

In fact, by an elementary change of variable x = 1/s (0 < s < 1), we see that (2.6)
<~ (2.11).
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From (2.5) and Lemma 2.1 we obtain the following theorem that develops the
double inequality (1.3) to produce a general result
THEOREM 2.1. For all integers m > 0
2m+1

e Z 1)/bjx! < (1+x l/x<62 1)/bx/ (0<x< 1),

(2.12)
Jj=0
or alternatively
2m+1 ip 1 X 2m -1 jb'
ey ( ’<<1+—) <ez(7),.*’ (x=1), (2.13)
J=0 . =0
where the coefficients b are given by the recursive relation (2.4)
3. A generalized Carleman-type inequality
THEOREM 3.1. Let 0 < Apy1 < Ay, Ay =30 1 An (Ap>1), ay 20 (n€N)
and 0 < Y7 | Apay < oo. Then for 0 < p <1,

. A
anﬂ(all“zz gt/
n=1

— 2 ' (1-p)/p

e o (2 (—1)ib p e

< D s | MdhAl 2 R
P = <j0 (An/An)? a ~ (cxag)? 3.1)

where bj is given by (2.4), and

C?m — (An+1)A"
n (An)Anfl :

Proof. The following inequality:

=

A A An\1/An
anJrl(allazz al )1/A

n=1

k=1

has been proved in Theorem 2.2 of [11] (see also [21, p. 96]). From (3.2) and the
right-hand side of (2.13), we obtain (3.1). The proof is complete

| = 1 PAm/ Ao m (1-p)/p
< = - P AP~L p .

REMARK 3.1. In Theorem 2.2 of [11], c,’}” — (i)™

Ay p)Me

e st e = G5l

el p W el e C}Ln - EI\}?—AI'?TT in Theorem 3.1 of [21] should be
e = (Ape)™

(A1 ;see [21, p. 96, Eq. (9)].
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The choice p =1 in (3.1) yields

i 7Ln+1(ai”a%2 . -aﬁ")l/A" <e i ZXW: % Anaty. (3.3)
| = \ 50 (An/An)/
Taking A, = 1 in (3.3) we obtain
o & (2 (—1)/b;
(a1a2~~~an)1/" <e 22 g, (3.4)

When m =2 in (3.4) we recover (1.5).
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