AN INEQUALITY INVOLVING THE CONSTANT e AND A GENERALIZED CARLEMAN-TYPE INEQUALITY

Chao-Ping Chen and Richard B. Paris

(Communicated by I. Perić)

Abstract

In this paper, we establish a double inequality involving the constant e. As an application, we give a generalized Carleman-type inequality.

1. Introduction

Let $a_{n} \geqslant 0$ for $n \in \mathbb{N}:=\{1,2, \ldots\}$ and $0<\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty} a_{n} . \tag{1.1}
\end{equation*}
$$

The constant e is the best possible. The inequality (1.1) was presented in 1922 in [3] by the Swedish mathematician Torsten Carleman and it is called Carleman's inequality. Carleman discovered this inequality during his important work on quasi-analytical functions.

Carleman's inequality (1.1) was generalized by Hardy [12] (see also [13, p. 256]) as follows: If $a_{n} \geqslant 0, \lambda_{n}>0, \Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}$ for $n \in \mathbb{N}$, and $0<\sum_{n=1}^{\infty} \lambda_{n} a_{n}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}}<e \sum_{n=1}^{\infty} \lambda_{n} a_{n} \tag{1.2}
\end{equation*}
$$

Note that inequality (1.2) is usually referred to as a Carleman-type inequality or weighted Carleman-type inequality. In his original paper [12], Hardy himself said that it was Pólya who pointed out this inequality to him. For information about the history of Carleman-type inequalities, please refer to [15, 16, 18, 24].

In $[4,5,6,9,10,11,14,19,20,21,22,23,26,27,28,29,30,31]$, some strengthened and generalized results of (1.1) and (1.2) have been given by estimating the weight coefficient $(1+1 / n)^{n}$. For example, Mortici and Jang [23] proved that for $0<x \leqslant 1$,

$$
\begin{align*}
& e\left(1-\frac{1}{2} x+\frac{11}{24} x^{2}-\frac{7}{16} x^{3}+\frac{2447}{5760} x^{4}-\frac{959}{2304} x^{5}\right)<(1+x)^{1 / x} \\
&<e\left(1-\frac{1}{2} x+\frac{11}{24} x^{2}-\frac{7}{16} x^{3}+\frac{2447}{5760} x^{4}\right) \tag{1.3}
\end{align*}
$$

[^0]According to Pólya's proof of (1.1) in [25],

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leqslant \sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n} a_{n} \tag{1.4}
\end{equation*}
$$

and then the following strengthened Carleman's inequality can be derived directly from the right-hand side of (1.3):

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1-\frac{1}{2 n}+\frac{11}{24 n^{2}}-\frac{7}{16 n^{3}}+\frac{2447}{5760 n^{4}}\right) a_{n} \tag{1.5}
\end{equation*}
$$

In this paper, we develop the double inequality (1.3) to produce a general result. As an application, we give a generalized Carleman-type inequality.

2. A double inequality involing the constant e

Brothers and Knox [2] (see also [17, 7]) derived, without a formula for the general term, the following expansion:

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}=e\left(1-\frac{1}{2 x}+\frac{11}{24 x^{2}}-\frac{7}{16 x^{3}}+\frac{2447}{5760 x^{4}}-\frac{959}{2304 x^{5}}+\frac{238043}{580608 x^{6}}-\cdots\right) \tag{2.1}
\end{equation*}
$$

for $x<-1$ or $x \geqslant 1$. Chen and Choi [7] gave an explicit formula for successively determining the coefficients. More precisely, these authors proved that

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x} \sim e \sum_{j=0}^{\infty}(-1)^{j} b_{j} x^{-j} \quad(x \rightarrow \infty) \tag{2.2}
\end{equation*}
$$

where the coefficients b_{j} are given by

$$
\begin{equation*}
b_{0}=1 \quad \text { and } \quad b_{j}=\sum_{k_{1}+2 k_{2}+\cdots+j k_{j}=j} \frac{\left(\frac{1}{2}\right)^{k_{1}}\left(\frac{1}{3}\right)^{k_{2}} \cdots\left(\frac{1}{j+1}\right)^{k_{j}}}{k_{1}!k_{2}!\cdots k_{j}!} \quad(j \geqslant 1) \tag{2.3}
\end{equation*}
$$

summed over all nonnegative integers k_{j} satisfying the equation $k_{1}+2 k_{2}+\cdots+j k_{j}=$ j.

A recurrence relation for the coefficients b_{j} can be obtained by use of the result given in [8, Lemma 3]. This states that for a function $A(x)$ with asymptotic expansion $A(x) \sim \sum_{n=1}^{\infty} \alpha_{n} x^{-n}$ as $x \rightarrow \infty$, the composition $B(x)=\exp [A(x)]$ has the expansion $B(x) \sim \sum_{n=1}^{\infty} \beta_{n} x^{-n}$ as $x \rightarrow \infty$, where $\beta_{0}=1$ and

$$
\beta_{n}=\frac{1}{n} \sum_{k=1}^{n} k \alpha_{k} \beta_{n-k} \quad(n \geqslant 1) .
$$

From the Maclaurin expansion

$$
\frac{1}{x} \ln (1+x)=1+\sum_{j=1}^{\infty} \frac{(-1)^{j} x^{j}}{j+1} \quad(-1<x \leqslant 1)
$$

it therefore follows (upon replacing x by $1 / x$) that the coefficients b_{j} in (2.2) are given by the recurrence relation

$$
\begin{equation*}
b_{0}=1 \quad \text { and } \quad b_{j}=\frac{1}{j} \sum_{k=1}^{j} \frac{k}{k+1} b_{j-k} \quad(j \geqslant 1) . \tag{2.4}
\end{equation*}
$$

Use of (2.4) is easily seen to generate the values

$$
b_{1}=\frac{1}{2}, \quad b_{2}=\frac{11}{24}, \quad b_{3}=\frac{7}{16}, \quad b_{4}=\frac{2447}{5760}, \quad b_{5}=\frac{959}{2304}, \quad b_{6}=\frac{238043}{580608}, \ldots,
$$

which are the same coefficients as in (2.1). The representation using a recursive algorithm for the coefficients b_{j} is more practical for numerical evaluation than the expression in (2.3).

The above result immediately shows that $b_{j}>0$ so that (2.2) is an alternating series for positive x. Replacement of x by $1 / x$ in (2.1) and (2.2) then enables us to write

$$
\begin{equation*}
(1+x)^{1 / x}=e \sum_{j=0}^{\infty}(-1)^{j} b_{j} x^{j} \quad(-1<x \leqslant 1) . \tag{2.5}
\end{equation*}
$$

We now establish a monotonicity property satisfied by the coefficients b_{j}.
Lemma 2.1. The sequence $\left\{b_{j}\right\}_{j=0}^{\infty}$ in (2.5) is monotonically decreasing.
Proof. By Cauchy's theorem it follows from (2.5) that

$$
b_{j}=\frac{(-1)^{j}}{2 \pi i e} \oint_{C}(1+t)^{1 / t} \frac{d t}{t^{j+1}},
$$

where C is a closed loop surrounding $t=0$ described in the positive sense. Define

$$
\Delta_{j}=b_{j}-b_{j+1} .
$$

Then

$$
\Delta_{j}=\frac{(-1)^{j}}{2 \pi i e} \oint_{C}(1+t)^{1 / t}\left(1+\frac{1}{t}\right) \frac{d t}{t^{j+1}}=\frac{(-1)^{j}}{2 \pi i e} \oint_{C}(1+t)^{1+1 / t} \frac{d t}{t^{j+2}} .
$$

In the t-plane there is a branch cut along $(-\infty,-1]$. Now expand C to be a large circle of radius R that is indented to pass along the upper and lower sides of the branch cut. The contribution from the large circle tends to zero as $R \rightarrow \infty$. Similarly, the contribution round the branch point $t=-1+\rho e^{i \theta},-\pi \leqslant \theta \leqslant \pi$ vanishes as $\rho \rightarrow 0$. Then we have upon putting $t=x e^{ \pm \pi i}$ on the upper and lower sides of the branch cut

$$
\begin{align*}
\Delta_{j} & =\frac{1}{2 \pi i e} \int_{\infty}^{1}(x-1)^{1-1 / x} e^{-\pi i / x} \frac{d x}{x^{j+2}}+\frac{1}{2 \pi i e} \int_{1}^{\infty}(x-1)^{1-1 / x} e^{\pi i / x} \frac{d x}{x^{j+2}} \\
& =\frac{1}{\pi e} \int_{1}^{\infty}(x-1)^{1-1 / x} \sin (\pi / x) \frac{d x}{x^{j+2}} . \tag{2.6}
\end{align*}
$$

Now on the interval $x \in[1, \infty)$ the function $\sin (\pi / x) \geqslant 0$ so that the integrand in (2.6) is non-negative on $[1, \infty)$. Hence $\Delta_{j}>0$ and the sequence $\left\{b_{j}\right\}_{j=0}^{\infty}$ is monotonically decreasing. This completes the proof.

REMARK 2.1. We thank a referee for providing the literature [1]. It was proved in [1, Lemma 1] that

$$
\begin{equation*}
(x+1)\left[e-\left(1+\frac{1}{x}\right)^{x}\right]=\frac{e}{2}+\int_{0}^{1} \frac{g(s)}{x+s} \mathrm{~d} s \quad(x>0) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
g(s)=\frac{1}{\pi} s^{s}(1-s)^{1-s} \sin (\pi s) \quad(0 \leqslant s \leqslant 1) \tag{2.8}
\end{equation*}
$$

By (2.7), we here give an integral representation of the coefficients b_{j} in (2.5), and then use it to prove Lemma 2.1.

Write (2.7) as

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}=e-\frac{e}{2(x+1)}-\int_{0}^{1} \frac{g(s)}{(x+1)(x+s)} \mathrm{d} s \quad(x>0) \tag{2.9}
\end{equation*}
$$

Replacing x by $1 / t$ in (2.9) yields, for $t>0$,

$$
\begin{align*}
f(t): & =(1+t)^{1 / t}=\frac{e}{2}+\frac{e}{2(t+1)}-\int_{0}^{1} \frac{g(s)}{s} \frac{t^{2}}{(t+1)\left(t+\frac{1}{s}\right)} \mathrm{d} s \\
& =\frac{e}{2}+\frac{e}{2(t+1)}-\int_{0}^{1} \frac{g(s)}{s}\left\{1+\frac{s}{(1-s)(t+1)}-\frac{1}{s(1-s)\left(t+\frac{1}{s}\right)}\right\} \mathrm{d} s . \tag{2.10}
\end{align*}
$$

Clearly,

$$
e b_{0}=f(0)=e
$$

Differentiating the expression in (2.10), we find that for $n \geqslant 1$,

$$
\frac{(-1)^{n} f^{(n)}(t)}{n!}=\frac{e}{2(t+1)^{n+1}}-\int_{0}^{1} \frac{g(s)}{s}\left\{\frac{s}{(1-s)(t+1)^{n+1}}-\frac{1}{s(1-s)\left(t+\frac{1}{s}\right)^{n+1}}\right\} \mathrm{d} s
$$

we then obtain the following integral representation of the coefficients b_{j} in (2.5):

$$
b_{n}=\frac{(-1)^{n} f^{(n)}(0)}{n!e}=\frac{1}{2}-\frac{1}{e} \int_{0}^{1} \frac{1-s^{n-1}}{1-s} g(s) \mathrm{d} s
$$

for $n \geqslant 1$, and we have

$$
\begin{equation*}
\Delta_{j}=b_{j}-b_{j+1}=\frac{1}{e} \int_{0}^{1} s^{j-1} g(s) \mathrm{d} s>0 \quad(j \geqslant 1) \tag{2.11}
\end{equation*}
$$

Noting that $b_{0}=1>\frac{1}{2}=b_{1}$ holds, we see that the sequence $\left\{b_{j}\right\}_{j=0}^{\infty}$ in (2.5) is monotonically decreasing.

In fact, by an elementary change of variable $x=1 / s(0 \leqslant s \leqslant 1)$, we see that (2.6) $\Longleftrightarrow(2.11)$.

From (2.5) and Lemma 2.1 we obtain the following theorem that develops the double inequality (1.3) to produce a general result.

THEOREM 2.1. For all integers $m \geqslant 0$,

$$
\begin{equation*}
e \sum_{j=0}^{2 m+1}(-1)^{j} b_{j} x^{j}<(1+x)^{1 / x}<e \sum_{j=0}^{2 m}(-1)^{j} b_{j} x^{j} \quad(0<x \leqslant 1) \tag{2.12}
\end{equation*}
$$

or alternatively

$$
\begin{equation*}
e \sum_{j=0}^{2 m+1} \frac{(-1)^{j} b_{j}}{x^{j}}<\left(1+\frac{1}{x}\right)^{x}<e \sum_{j=0}^{2 m} \frac{(-1)^{j} b_{j}}{x^{j}} \quad(x \geqslant 1) \tag{2.13}
\end{equation*}
$$

where the coefficients b_{j} are given by the recursive relation (2.4).

3. A generalized Carleman-type inequality

THEOREM 3.1. Let $0<\lambda_{n+1} \leqslant \lambda_{n}, \Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}\left(\Lambda_{n} \geqslant 1\right)$, $a_{n} \geqslant 0(n \in \mathbb{N})$ and $0<\sum_{n=1}^{\infty} \lambda_{n} a_{n}<\infty$. Then for $0<p \leqslant 1$,

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}} \\
& \quad<\frac{e^{p}}{p} \sum_{n=1}^{\infty}\left(\sum_{j=0}^{2 m} \frac{(-1)^{j} b_{j}}{\left(\Lambda_{n} / \lambda_{n}\right)^{j}}\right)^{p} \lambda_{n} a_{n}^{p} \Lambda_{n}^{p-1}\left(\sum_{k=1}^{n} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p} \tag{3.1}
\end{align*}
$$

where b_{j} is given by (2.4), and

$$
c_{n}^{\lambda_{n}}=\frac{\left(\Lambda_{n+1}\right)^{\Lambda_{n}}}{\left(\Lambda_{n}\right)^{\Lambda_{n-1}}}
$$

Proof. The following inequality:

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}} \\
& \quad \leqslant \frac{1}{p} \sum_{m=1}^{\infty}\left(1+\frac{1}{\Lambda_{m} / \lambda_{m}}\right)^{p \Lambda_{m} / \lambda_{m}} \lambda_{m} a_{m}^{p} \Lambda_{m}^{p-1}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p} \tag{3.2}
\end{align*}
$$

has been proved in Theorem 2.2 of [11] (see also [21, p. 96]). From (3.2) and the right-hand side of (2.13), we obtain (3.1). The proof is complete.

REMARK 3.1. In Theorem 2.2 of [11], $c_{k}^{\lambda_{n}}=\frac{\left(\Lambda_{n+1}\right)^{\Lambda_{n}}}{\left(\Lambda_{n}\right)^{\Lambda_{n-1}}}$ should be $c_{n}^{\lambda_{n}}=\frac{\left(\Lambda_{n+1}\right)^{\Lambda_{n}}}{\left(\Lambda_{n}\right)^{\Lambda_{n-1}}}$; see [11, p. 44, line 3]. Likewise, $c_{s}^{\lambda_{n}}=\frac{\left(\Lambda_{n+1}\right)^{\Lambda_{n}}}{\left(\Lambda_{n}\right)^{\Lambda_{n-1}}}$ in Theorem 3.1 of [21] should be $c_{n}^{\lambda_{n}}=\frac{\left(\Lambda_{n+1}\right)^{\Lambda_{n}}}{\left(\Lambda_{n}\right)^{\Lambda_{n-1}}} ;$ see $[21$, p. 96, Eq. (9)].

The choice $p=1$ in (3.1) yields

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}}<e \sum_{n=1}^{\infty}\left(\sum_{j=0}^{2 m} \frac{(-1)^{j} b_{j}}{\left(\Lambda_{n} / \lambda_{n}\right)^{j}}\right) \lambda_{n} a_{n} \tag{3.3}
\end{equation*}
$$

Taking $\lambda_{n} \equiv 1$ in (3.3) we obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(\sum_{j=0}^{2 m} \frac{(-1)^{j} b_{j}}{n^{j}}\right) a_{n} \tag{3.4}
\end{equation*}
$$

When $m=2$ in (3.4) we recover (1.5).

REFERENCES

[1] H. Alzer and C. Berg, Some classes of completely monotonic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), 445-460,
[2] H. J. Brothers and J. A. Knox, New closed-form approximations to the logarithmic constant e, Math. Intelligencer 20 (1998), 25-29.
[3] T. CARLEMAN, Sur les fonctions quasi-analytiques, Comptes rendus du V^{e} Congres des Mathematiciens Scandinaves, Helsingfors (1922), 181-196.
[4] H.-W. Chen, On an infinite series for $(1+1 / x)^{x}$ and its application, Int. J. Math. Math. Sci. 29 (2002), 675-680.
[5] C.-P. Chen, Generalization of weighted Carleman-type inequality, East J. Approx. 12 (2006), 63-69.
[6] C.-P. Chen, W.-S. Cheung and F. Qi, Note on weighted Carleman type inequality, Int. J. Math. Math. Sci. 3 (2005), 475-481.
[7] C.-P. Chen and J. Choi, Asymptotic formula for $(1+1 / x)^{x}$ based on the partition function, Amer. Math. Monthly 121 (2014), 338-343.
[8] C.-P. Chen, N. Elezović and L. Vukšić, Asymptotic formulae associated with the Wallis power function and digamma function, J. Classical Anal. 2, 2 (2013), 151-166.
[9] C.-P. Chen and F. Qi, Generalization of Hardy's inequality, Proc. Jangjeon Math. Soc. 7 (2004), 57-61.
[10] A. ČIžmeŠija, J. PeČarić and L. E. Persson, On strengtened weighted Carleman's inequality, Bull. Austral. Math. Soc. 68 (2003), 481-490.
[11] S. S. Dragomir and Y.-H. Kim, The strengthened Hardy inequalities and their new generalizations, Fac. Sci. Math. 20, 2 (2006), 39-49.
[12] G. H. Hardy, Notes on some points in the integral calculus, Messenger of Math. 54 (1925), 150-156.
[13] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1952.
[14] Y. Hu, A strengthened Carleman's inequality, Commun. Math. Anal. 1 (2006) 115-119.
[15] M. Johansson, L. E. Persson and A. Wedestig, Carleman's inequality-history, proofs and some new generalizations, J. Inequal. Pure Appl. Math. 4, 3 (2003), Art. 53. http://www.emis.de/journals/JIPAM/images/135_02_JIPAM/135_02_www.pdf.
[16] S. Kaijser, L. E. Persson and A. Öberg, On Carleman and Knopp's inequalities, J. Approx. Theory 117 (2002), 140-151.
[17] J. A. Knox and H. J. Brothers, Novel series-based approximations to e, College Math. J. 30 (1999), 269-275.
[18] A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific, New Jersey/London, Singapore/Hong Kong, 2003.
[19] J.-L. Li, Notes on an inequality involving the constant e, J. Math. Anal. Appl. 250 (2000), 722-725.
[20] H.-P. Liu and L. ZHU, New strengthened Carleman's inequality and Hardy's inequality, J. Inequal. Appl. J. Inequal. Appl. 2007, Art. ID 84104, 7 pp.
http://link.springer.com/article/10.1155/2007/84104/fulltext.html.
[21] Z. LÜ, Y. Gao and Y. Wei, Note on the Carleman's inequality and Hardy's inequality, Comput. Math. Appl. 59 (2010), 94-97.
[22] C. Mortici and Y. Hu, On some convergences to the constant e and improvements of Carleman's inequality, Carpathian J. Math. 31 (2015), 249-254.
[23] C. Mortici and X.-J. Jang, Estimates of $(1+x)^{1 / x}$ Involved in Carleman's Inequality and Keller's Limit, Filomat 29, 7 (2015), 1535-1539.
[24] J. Pečarić and K. B. Stolarsky, Carleman's inequality: history and new generalizations, Aequationes Math. 61 (2001), 49-62.
[25] G. PÓlya, Proof of an inequality, Proc. London Math. Soc. 24 (1926), 57.
[26] Z. XIE AND Y. ZHONG, A best approximation for constant e and an improvement to Hardy's inequality, J. Math. Anal. Appl. 252 (2000), 994-998.
[27] P. Yan and G.-Z. Sun, A strengthened Carleman's inequality, J. Math. Anal. Appl. 240 (1999), 290-293.
[28] B.-C. Yang and L. Debnath, Some inequalities involving the constant e, and an application to Carleman's inequality, J. Math. Anal. Appl. 223 (1998), 347-353.
[29] B.-C. Yang, On Hardy's inequality, J. Math. Anal. Appl. 234 (1999), 717-722.
[30] X.-J. Yang, On Carleman's inequality, J. Math. Anal. Appl. 253 (2001), 691-694.
[31] X.-J. Yang, Approximations for constant e and their applications, J. Math. Anal. Appl. 262 (2001), 651-659.

School of Mathematics and Informatics
Henan Polytechnic University Jiaozuo City 454000, Henan Province, China
e-mail: chenchaoping@sohu.com
Richard B. Paris
Division of Computing and Mathematics
University of Abertay
Dundee, DD1 1HG, UK
e-mail: R.Paris@abertay.ac.uk

[^0]: Mathematics subject classification (2010): 26D15.
 Keywords and phrases: Carleman's inequality, weight coefficient.
 This work was supported by Key Science Research Project in Universities of Henan (20B110007).

