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TWO-WEIGHTED INEQUALITIES FOR THE FRACTIONAL
INTEGRAL ASSOCIATED TO THE SCHRODINGER OPERATOR

R. CRESCIMBENI, S. HARTZSTEIN AND O. SALINAS

(Communicated by L. Pick)

Abstract. In this article we prove that the fractional integral operator associated to the Schrodinger
second order differential operator .2 ~%/2 = (—A + V)~%/2 maps with continuity weak Lebesgue

space LP*°(v) into weighted Campanato-Holder type spaces BMO!;(W) , thus improving regu-
larity under appropriate conditions on the pair of weights (v,w) and the parameters p, o and

B . We also prove the continuous mapping from BM Of;(v) to BMOQ (w) for adequate pair of
weights. Our results improve those known for the same weight in both sides of the inequality and
they also enlarge the families of weights known for the classical fractional integral associated to
the Laplacian operator . = —A.

1. Introduction

Regularity estimates of solutions of second order differential operators are central
in the study of partial differential equations. Sometimes these results are closely related
to regularity estimates for negative powers of those operators. Keeping in mind this fact
in this paper we focus our attention on estimates on Campanato-Holder type spaces of
fractional integrals -negative powers- of the Schrodinger differential operator

L =—A+V,

on R? with d > 3, where the potential V > 0 belongs to a reverse Holder class RH,,
for some exponent g > % , as defined in (1.4). For a deeper insight in this direction see
[14, 24, 25].

At this point we must recall that the Holder- ¢ continuous space of functions
f such that [|fge = sup,, VOl < oo 0 < o < 1, can be identified with the

be—y*
Campanato space BMO” defined by the seminorm || f||gpr0o = supg W Jp | f(x)—

f|dx, where the supremum is taken over all the balls B € R? and f is the mean value
of f on B, see for example [38, 22, 26]. In the Schrodinger setting analogous result
was obtained in [2] by identifying a Campanato-type space BMO%, with certain type
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Holder- o continuous space, see next section. This identification will be the key tool to
interpret the information given by our results in terms of regularity.
Let us recall that negative powers of the Schrddinger operator can be expressed in

terms of the heat diffusion semigroup generated by .%, e < , as

Tof(x) = L7 f(x) :/:e—ffff(x)ﬂﬂ% o > 0. (1.1)

The above operator is also named (Schrodinger) fractional integral operator of order
. When V =0 then . = —A is the Laplacian operator and we have the classical
fractional integral I .

For each ¢ > 0 the operator e’ is an integral operator with kernel & (x,y) having
a better behaviour far away from the diagonal {(x,x), x € R?} than the heat diffusion
kernel ( 4m1) v /Ze_"‘_”z/ 4 associated to —A, see Lemma 2.1 below and [12], [13] and

[23]. It follows from this property that .7, f is finite a.e. for f € L? with p > 1

When applied on L?-spaces the value p = d /o constitutes a breaking-point for
the classical fractional integral I, . More clearly, for p < d/a itsatisfies a (p,q)-norm
inequality with é %— &, see [18, 19, 21], but for p > d/a I, instead shows
regularity properties of the form

1L

W/B|Iaf(x)—CB,f|dx<Cf||p (1.2)
P

for f € LP, any ball B and some constant cp,r- In other words Ia S belongs to the

Campanato space BUOP with B = i % see for example [38, 22, 29]. In particular,

when p =d/o the arrival space is BMO0 BMO, the well known space of bounded
mean oscillation functions of John and Nirenberg.

The Schrodinger fractional integral %, behaves similarly to I, when p <d/o in
the sense that it also maps LP in L7 with é ; — & but for p = d/ o the behavior of

S 1s better since it maps L% into a space, denoted BMO ¢, which is in fact smaller
than the classical BMO-space, see [10]. Finally for p > d/o the operator .#, maps
with continuity L? into a Campanato-type space BMO{;, see [2, 3, 24]. This space is
shown to be the dual of the H” -space introduced in [11] and [13], as it can be easily
checked from the atomic decomposition given there. For definition and properties of
weighted H? -spaces see [1].

Going back again to the classical setting, Harboure, Viviani and Salinas in [17]
obtained a more general estimate than (1.2) with I, defined on a weak weighted L? -

Space. That is
70! T / |Iaf — CB. f|dx |: :| (1.3)
V(B 77; v P

for an adequate class of weights H (., p).
We recall that the weak weighted L/=(v), p > 1 is the space of measurable

functions f such that [ 1p = (sup,~ot?|{x: ‘f(()f > tH)r » < oo where v is a measurable
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non-negative function and that the expression on the left side of (1.3) represents a semi-
norm in a weighted BMO%4/P(v), see also [35] and references therein.

The class of weights H(o, p) introduced in [17] was later used in [2] to derive for
the Schrodinger fractional integral .#, estimates, one of which is of the type of (1.3),
that show the continuity of the operator from L”**(v) into a weighted Campanato-type
space BM 0@(\)). However, since the kernel of .7, behaves away from the diagonal
better than the kernel of the classical fractional integral, it is natural to wonder if there
exists a wider class of weights than those used in [2] from which the same continuity
result can be deduced.

The first kind of estimates in the present paper gives a positive answer to this
question. Moreover, it deals with the two-weight version of the boundedness results
obtained in [2].

Our two-weighted results involve hypothesis based on a “power bump” property.
This type of conditions already appeared in several papers dealing with two-weighted
inequalities, see for instance [32, 15]. Even a weaker “log bump” condition also ap-
peared, for example, in [7, 8, 27, 9] and references therein. For two-weighted inequal-
ities for classical potential operators see for instance [5, 31, 30, 6, 34, 33, 28], and for
the Schrodinger fractional integral and maximal operators associated see [20].

The purpose of those hypothesis is to get simpler conditions on the weights by
avoiding extra assumptions or conditions involving the operators under consideration.

In order to introduce our main results we turn our attention to the Schrédinger
operator . = —A+ V. We say that the function V belongs to a reverse Holder class
of order g denoted by RH,, for some g > % if

L V(y)idy é<£ V(y)dy (1.4)
|B| /B |B| /B

for any ball B C RY. In the sequel we denote go = sup{q:V € RH,} and & =
min(1,2— &),
A “critical radii” function associated to V is defined by

1 d
p(x):sup{r>0: E/BW)V@}, xeRY. (1.5)

Such function is finite for all x € R and plays an important role in the description of
the spaces and, hence, in the inequalities related to regularity of the operators acting on
or arriving at these spaces associated to .Z, see [10, 12, 13, 36].

We also denote by Llloc the set of locally integrable functions of R?. By a weight
we mean a locally integrable function w > 0 a.e. and along this work we denote w(E) =
Jw(x)dx for any measurable subset E € R?.

Given 1 > 1, a weight w belongs to the class Dy, w € Dy, if there exists a
constant C such that w(tB) < Ct?"w(B) for any ball B C RY and ¢ > 1. It is easy
to see that a weight w belongs to D = Up>1Dy, if and only if it satisfies the doubling
condition

w(2B) < Cw(B) for any ball B (1.6)
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and some constant C.
The classes of weights defined in this work are naturally associated to the decay of
the kernel of %, and the function “critical radius” p related. There is some connection

between these classes and a two-weighted version of the classes Ag’e , introduced in [4]
in relation with L” -norm inequalities for several operators. As usual p’ denotes the
Holder’s conjugate exponent of p.

DEFINITION 1.1. Given 1 < p <, § and A real numbers and Ny > 0, the pair
of weights (v,w) belongs to .“(p,8,A,Ny) if there exist C > 0 such that
L N
( ( ,)>p <C<l+ 6R>OW(B)5
|93‘1 p(x) \B\l—a

for all & > 1, any ball B= B(x,R) and 6B = B(x,0R). The above inequality can be

rephrased as
/ OR 4 ) (B)
7 (0B 1+ —— !
(v >) <( +p(x)) 07 piE=

Y =
d
The class . (1,8,A,Ny) is defined by
OR )1\709_)L w(B) .
p(x) B|\=°7"
We also define .7 (p,8,4) = Uy,>0-" (P, 6,4, No). If (v,v) belongsto .7 (p, 5,4 )
we simply say that v € . (p,8,4). Our first result is

supv < C(l +
0B

(1.7)

THEOREM 1.1. Let 1 < p <eo, ot >0 and a—%—?t < 0. If w is doubling (see
(1.6)), (vyw) € Z((p'r),8,1) for some r>1and . — 86 < o0 — % then there exists a
positive constant C such that for all f € LP=(v)

1 a—d s
m/B‘jaf() cpldx < CR* 7+ x[ﬂp, R < p(xs) (1.8)

Sfor any (subcritical) ball B = B(xg,R), and some positive constant cg and

1 a-d15-a[f
m/B\faf(x)\dx<Cp(xB) up (1.9)

Sfor any critical ball B= B(xg,p(x5)).

In the one-weighted situation, the following corollary of Theorem 1.1 improves
the result in [2] since the inequalities therein are deduced for a wider class of weights.

COROLLARY 1.1. Let 1 < p < oo, % <oand o0 — % —A < &. If v is doubling
and belongs to ./ (p,A,A) then there exists a constant C such that for all f € LP*(v)

v

1 a-d1f
@/B\Jaf(x)—cﬂdngR ; H,/ (1.10)
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for B=B(xp,R) with R < p(xp), and some positive constant cg, and

1 a-drf
S et @l <o) F[L] (L11)

Sfor any critical ball B= B(xg,p(x5)).

Inequalities (1.8) and (1.9) indicate that the arrival space for .#, is the follow-
ing weighted Campanato-type space associated to the Schrodinger operator which was
introduced in [2].

DEFINITION 1.2. Given a weight w and f3 > 0 the space BMO?K(W) is the set of
functions f in L] _satisfying for any ball B = B(x,r), with x € R? and r > 0,

loc

1 b1
m/B|f—f3|<C|B|d, with fi = ‘B‘/Bf, (1.12)

and

1 B .
W/B\f\ <CIB|?, ifr>p(x). (1.13)

Since (1.13) implies (1.12) for r > p(x) then it is enough to consider (1.12) only
for radius r < p(x). The constants in (1.12) and (1.13) are independent of the choice
of B but may depend on f. A norm (up to an identification of functions differing by a
constant) in the space BM OEZ(W) is given by the infima of the constants C satisfying
(1.12) and (1.13). As in the classical case, the mean value fp in (1.12) may be replaced
by any positive constant cg depending only on the ball.

In view of the above definition we are able to rephrase Theorem 1.1 and Corollary
1.1 in terms of a continuous mapping. That is,

—4dis)
Iy LP=(v) = BMOS, P (w)

and
d

T 1 LP7(v) — BMOY, P (v),
with continuity.
In our next theorem we obtain pointwise regularity estimates for .#,f when-
ever f € BM 0@(\)) with B small. Those kind of inequalities characterize weighted

Campanato-type spaces of order smaller than 1. Let us consider the function Wg de-
fined by

B w(z)
Wﬁ(Xﬂ") = /B(XJ) mdz (114)

forxeR?Y, r>0,B>0and we L]

loc*
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THEOREM 1.2. Let o0 >0, B >0, B>A, B—A+a < 8 and 0 and A be
real numbers. If 0 < B4+oa+0—A <1, w is a doubling weight (see ((1.6))) and

(v,w) € F(e0,8,A) then there exists a constant C such that for all | € BMOf;(v)

(Il ()= Il O < CI g, ) W s (5 =3 + W saso-2 = 3D)
(1.15)

if [x— | < p(x) and

1
w(B(x,p(x)))

forall x e RY and r > 0.

fo | Faf I < Cll PP (L16)

In the case v=w and 6 — A = 0 in Theorem 1.2 we recover Theorem 2 in [2].

Notice that the function W (x,7) defined in (1.14) is finite for all » > 0 for almost
every x € R?. Italso is increasing as a function of 7 for any fixed x and if w is doubling
(see (1.6)) then Wp is also doubling in the same sense.

The function Wp was first considered in [17] and later also used in [2] to define a

Lipschitz-Holder-type space associated to .. That is, A?/(w) is the set of functions
f such that

@) = 10)] < € (Wl lx—y)+ Wp(onlx—D)) (1.17)

and
If(x)| < CWg(x,p(x)). (1.18)

for almost all x and y in RY. A (quasi) norm is defined on Af;(w) by taking the
maximum of the two infima of the constants satisfying (1.17) and (1.18) respectively.

PROPOSITION 1.1. ([2]) If 0 < B < 1 and w satisfies the doubling condition
(1.6) then Af; (w) =BM OEZ (w) and their norms are equivalent.

REMARK 1.1. When proving Proposition 1.1, the authors showed that (1.13) jointly
with (1.17) imply (1.18). That is if f satisfy (1.13) and (1.17) simultaneously then

fe A@ (w). The fact that w is doubling is essential to obtain the identification between
Lipschitz-Holder and Campanato type spaces in Proposition 1.1. Hence Theorem 1.2
can be rephrased by saying that

I : BMOP, (v) — AEFOT072 () — BMOP 02 ()

is continuous, under the hypothesis of that theorem. In the one-weight situation, we
obtain

I : BMOP,(v) — AP (1) = BMOP @ (v).
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This article is organized as follows. In Section 2 we give the preliminary defi-
nitions and results. In Section 3 we study properties of the class of weights given in
Definition 1.1 and show some examples. Section 4 and Section 5 are devoted to the
main lemmas and the proofs of Theorems 1.1 and 1.2 respectively.

Throughout this work, we denote by C a constant that may change from one oc-
currence to other.

2. Preliminaries

Some important properties of the critical ratii p given in (1.5) are shown in the
following propositions.

PROPOSITION 2.1. ([36]) There exist C and jo > 1 such that

o (1+ 22 < po) < cpiw 1+ ');(‘5')"5%

forall x,y € RY.

PROPOSITION 2.2. ([11]) There exists a sequence of points {x;}y_, in R?, so
that the family By = B(x;,p(xx)), k > 1, satisfies
1. UBy =R
2. There exists N such that forall k € N, card{j: 4BjN4B; #0} <N.
The doubling condition on w is a crucial point in the proof given by the authors in

[2] of the following proposition.

PROPOSITION 2.3. ([2]) Given B >0, w € D (see (1.6)) and {x;}7_, a se-

quence as in Proposition 2.2, a function f belongs to BMOI;Z(W) if, and only if, f
satisfies (1.12) for any ball B, and

/ 171 < Cw(Blx p (i) p ()P forall k> 1. @.1)
B(xg.p(xx))

The previous result allows us to provide the following characterization of the space
BM OQ(W) that in the sequel will be used as it definition.

COROLLARY 2.1. ([2]) Let B >0 and w € D (see (1.6)). A function f belongs
to BM Of; (w) if, and only if, for some constant C

ﬁ/}}\f—fﬂ <CRPif B=B(x,r)and r < p(x) (2.2)
and
1

w(Blx o) x)B. )
w(B(x,p(x))) /B(x,p(x)) < Cp) (2.3)
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If w=1 the atomic decomposition given in [11] and [13] shows that BMO@,
B > 0, is the dual space of the H? -space defined in those works. In this setting, the
BMO & space, f =0, was defined in [10] as a natural substitute of L™ in the context
of the semigroup generated by the operator £ .

In the case that w is not doubling then inequality (2.1) implies the condition

| I<cuieB) BT itr= p). 2.4)

for the geometric constant ¢ = ¢¢ in Proposition 2.1 and some C > 0. Therefore, if w

is not doubling a different space should be defined, BM OE_ (W), ¢ apositive number,
as the one satisfying (2.4) and /

/B F = f5| <Cw(cB)[B|7, ifr<p(), 2.5)

for some constant C. Clearly, BM Olf (W) =BM Of;(w) . Thus, a different version of
Corollary 2.1 can be obtained as follows,

COROLLARY 2.2. Let B >0 and w a weight. If f belongs to BMO?H(/(W) then
for some constant C it satisfies '

/|f—f3\<Cw(cB)Rﬁ if B=B(x,r) and r < p(x), (2.6)
B

and

/ £ < Cw(B(x,cp(x)) p(x)P for all x € R @.7)
Bxp ()

Reciprocally, if f satisfies inequalities (2.6) and (2.7) then f belongs to BMO? o(w)
where ¢ > c. '

Hence, by Corollary 2.2 if w is not doubling it is still possible to obtain a weaker

—dys_2
version of Theorem 1.1 and Corollary 1.1, with BM Oz f”+ (w) as arrival space.

In the remaining part of this section some useful lemmas related to the kernel K,
of .7, will be stated and given the references to their proofs. That kernel is given by
the formula

= dt
Ka(xvy):/ kt(x7y)ta/2?7
0
where k; is the kernel of the operator e '% (¢ >0).

LEMMA 2.1. ([23]) Given N > O there exists a constant C = Cy such that for
all x and y in R?,

ol (1 Ly VY
k(x,y) <Ct Ze <1+p(x)+P(y)>
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As consequence of the above inequality it follows that

C
Ko(x,y) < W

(2.8)
forall x and y in R?.

LEMMA 2.2. ([13]) Given N >0 and 0 < v < &), there exists a constant C = Cy
such that

I RN I A
) e (o)

forall x, y and xy in R? with |x—xo| < /1.

ke (x,y) — ke (x0, )] <C<

We recall that a function v is said to be rapidly decaying (see [12]) if for each
N > 0 there exists a constant Cy such that |y(x)| < Cy(1 + |x|)~V. Its dilation is

_ 1 X
defined by v, (x) = t—%w(ﬁ) for r > 0.

Some estimates on the function ¢, (x,y) = k; (x,y) — k;(x,y), where k; is the kernel
of the classical heat operator e will be useful later.

LEMMA 2.3. ([12]) There exist a rapidly decaying no negative function y, 0 <
Y <2—(;i0 and C > 0 such that for x,y € R? and t >0

o] <€ (25) s,

LEMMA 2.4. ([12]) Forall 0 < v < & there exists a rapidly decaying function
v
v and a constant C > 0 such that |q;(x,y+h) — q:(x,y)| < <M> yi(x—y) forx, y

p(x)
in RY, t >0 and |h| < min(Cp(y), M;—y‘)
3. Properties and examples of the class of weights
LEMMA 3.1. The classes % (p,8,A) are increasing in p for 1 < p < oo and o

and A real numbers. That is, .7 (p,8,A) C .7 (tp,0,A) C S (e, 8,A) forall T> 1
and 1 < p < oo,

Proof. Let B = B(x,t). By Holder’s inequality and Definition 1.1 there exists
C >0 and Ny > 0 such that, if p > 1,

(77 (6B) oy v (0B)\ & 0r \MNo w(B)
-~ 7 T < P < o A .
( |OB‘ ) = ( ‘GB| ) \C<l p(x)) 9 ‘B‘l—‘sg—x
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For p =1 the proof follows in the same way by replacing the second term above by
supgp V. Thatis,

VI (0B)\ ¥ 0r \Mo _, w(B)
<Csupy < C(14+—=) 6 *—=—.
< 0B ) o5 < P(X)> B|'- %7

for 1 < p <eo. Analogously, .7 (p,8,4) C .7 (e0,8,4). O

In order to show a more precise relationship between the class of weights defined
in Definition 1.1 and the classes introduced in [17] and [34] we prove the next lemma.

LEMMA 3.2. Given 1 < p <o, A, & real numbers and Ny = 0, if (v,w) €
S (p,6,A,Ny) and & + % + A > 0 then there exists a constant C > 0 such that

s v (y) x—y[\ NP\ w(B)
B / 1 "< 1
B e |x—y|<d+~%>z"( o) @) ‘O
and
1 1
/ 7 |B|d —N W(B)
v'(B))" (1+ <C : 3.2)

where Yy =0 — A, and N > Ny and both inequalities hold for any ball B = B(x,R).
Reciprocally, if (3.1) and (3.2) hold for some & and 7y real numbers and N > O then
(V7W) € <y(p7’)/_ % _57_% _éaN)-

Proof. Inequality (3.2) is a direct application of Definition 1.1 when 8 = 1. On
the other hand, given a ball B of radius ¢, by a dyadic decomposition and Definition

1.1 we get
v (y) =[N\
(/Rd,B x|+ <1+ o(x) ) dy)
hnd 1 / t \—Np
< R k i
\C(g}(zk,)wmﬂv (Blx,2 t>)(1+p(x )
1 hnd / / L/ w
<C Zz—k(d+5)l) ok(d=Ap)\r" _T\P)
IB|!+a (k:O ) 1B]
w(B Sy kE+ AP\ P
<c— W2 (§ ket
g5t <k§6 )
w(B)
|B|1+%+§_¥

<C

if §+9+2>0.
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Reciprocally, (3.1) and (3.2) jointly are equivalent to the inequality

B]'+ (/Rd v (3) o=y @ (14 %)W + |30+ (14 %)W} _1dy> 7

w(B)

<
Bl

Moreover, we easily get that

IB|!*+5 (/Rd v (3) [l =31 @ (14 ";(:3 )Np, +|B|(+ @ (1+ %)W] _1dy) ’

oD
pii 7 (0B)7

> . -
05| (14 95)
Then / 1
B+ (v (6B))” _<c W(IB)Y.
08|+ <1+%) |B|» 4

, 1 N
That is, (v (0B))7 < CO4+E (1 + %) »(B)_ Now setting 4 —A=d+& and
1BI7

6 — A =y, we obtain that (v,w) € .”(p,8,A,N) with 6 = y— % —&and A = —% -
& O

The above lemma allows us to compare the family of weights defined in this work
with other known classes. For example, taking No =0, a =8 — 4, —(% +A)<l—-ao
and p fixed in our class we obtain the set of weights H(p,o,20 — % —d) in [34] and

if, in addition, we set 6 — A = 0 and consider the family of one weights v =w then we
obtain the class in [17].

7 -
d

3.1. Thecase 6 = A

This special case of classes of weights displays significant features that will be
described in this section. Let us first define an extension of the class A,’;’e introduced
in [4] to a family of pair of weights in the following way. The pair (w,v) belongs to
Ag’N, N > 0, if there exists a constant C such that

(w(B))? (v—ﬁ(g)) v < C|B| (1 n p(rx)>N

for every ball B = B(x,r) and 1 < p < . In the case p = | the pair (w,v) satisfies
inequality

w(B) < C|Binfv (1 + ﬁ)N.
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! ! .N
PROPOSITION 3.1. Let 1 < g <eo. If (W 1) €A™ then (w,v) € #(¢,0,0, ).

Proof. Given 6 > 1 and B = B(x,r), statement (w? ,14) € AR N implies that

N
/ 1 7
(w?(6B))7 <1+%> ! C|OB\4 1nfv CGq |B|q 1nfv
4 1 yB 4 y(B
<C6ql ‘B‘qlﬂ <C9</ V( 1)7
|B] 1B|4

which is the desired inequality. [J

PROPOSITION 3.2, Let 1 < g <oo. If we Dy and (v ,w¥) € AP

1 then (vow) €

. 7 7 p.N
Proof. The hypothesis (v ,w?) €A

implies that
or ) N(q'+1)
p(xep) '

Then Holder’s inequality, the doubling condition and the fact |6 B| > |B| show that

) n —N(1+4) N
(v (6B))7 <1+ or ) " < clopr 198

v/ (6B) (W*I(GB))ql < CloBJH! (1 +

p(xeB) w1(6B)
L w(6B)
<clos? s
\B\ g

which proves that (v,w) € . (¢q,—1n,—1n,N(1 + %)) O

The one weight case v € .(p, A, 1) satisfies special properties. The case Ny =0
was defined in [2] in connection with the Schrodinger operator and in [17] related to the
Laplacian operator. One of the features of this class of weights is a Reverse-Holder-type
inequality. Thereafter, we will be able to recover the results in [2] for Ny = 0.

DEFINITION 3.1. Given 1 < p < e a weight v satisfies the Reverse-Holder type
inequality of order p, and say v € RH,(p) if there exist C > 0 and Np > 0 such that
for any ball B = B(x,R),

P(B)\ 7 R \Mv(B

(V ( >)”<c<1+—> ov(B) 3.3)

|B| px)/  |B|

We say that v € RH..(p), if there exist C > 0 and Ny > 0 such that for any ball B =

B(x,R),

R \Mv(B
) V() (3.4)

supy < C( 14+ — —.
B < p(x) |B|
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LEMMA 3.3. Let 1 < p < oo and A be a real number. If v e S (p,A,A) then
1. vERH,(p).

2. v is £ -doubling, that is, there exist 111 >0, C > 0 and Ny big enough, such
that

(14 R e
v(6B) < COM (1+p(x)) (B)

for any ball B= B(x,R).

3. 07 (if pl <o) or supv (if p' =oo) are L -doubling, that is, there exist 1, > 0,
C > 0 and Ny big enough, such that

/ R NOP, ’
P(OB) <CO™ (1 4+ — P (B if p' < oo 3.5
w(em) < com (145 ) B) i p (3.5)
or
R \M
supy <CO™(1+——) supv if p=oo
o (1 5m)

for any ball B= B(x,R).

Reciprocally, if v € RHyy(p) and it is £ -doubling then there exists a real number A
suchthat v e . (p,A,A).

Proof. The first item is an immediate consequence of Definition 1.1 in the case
0 =A and 6 = 1. For the second and third item we apply first Holder’s inequality, the
Definition 1.1 for some Ny > 0 and 6 = A and, again, Holder’s inequality, to get

v(6B) _ (v (6B) 7 AN R \Mov(B)
0B] << 05| ) <co (14 5) s

A R \No vp/(B) v
<co <1+p(x)) <|B> .

Hence, taking on one side the first and third term and, on the other, the second and
fourth term, we obtain

v(6B) < COIA+N (1 + i)N(’V(B) (3.6)

p(x)

and

/ d / R Nop'

v (0B) < coly AP (1+m) T B)ifp < oo
X

On the other hand taking supv in (3.6) it follows the case p’ = oo.
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Reciprocally, if v € RH ,y(p) and it is .Z’-doubling then there exists a constant C
and a real number 1 such that

L
»

( (98)) <C<1+£>NOV(OB)

|OB| p(x) |6B|
OR R \N (B
<c<1+p—x)> 0" (1+ (x)> %
OR \ No+Np %
<+ gmg) e

That is,

; L4 No+N
(v'(6m))7 <cor ™™ "(1+9—R) e vB)
p(x) |B|7

which implies that v € .¥(p,d —n,d —1). Analogously, if v € RH.(p) and v is
Z-doubling then v € .7 (e0,d —1m,d—1). O

The next lemma is the fundamental key for proving in the one—weight setting that
the class . (p,A,A) is open to the left in p.

LEMMA 3.4. Let 1 < g < e and A be a real number. If v € S (q,A, 1) then
there exist 19 > 1 and Ky > 0 such that
s
|B| p(x) |B|
Sfor 1 <t < 1 and any ball B= B(x,r).

vq'(3)>  _ oV(B)
——= for any ball

o B / 18]

B = B(x,R) such that R < p(x). In this situation, the proof in [16], page 268, shows

that there is 7y > 1 and a constant C; such that if 1 < 7 < 79 then
yed (B)) & v (B)\ ¥
< C1< )q . (3.7)
< |B| |B|

On the other hand, in the case R > p(x) let us denote .# = {j: B;NB # 0} with
B; =B(xj,p(x;)) and {x;} jen the sequence in Proposition 2.2. Using Proposition 2.1,
if j€.% and R > p(x) then

Proof. By Lemma 3.3 and Definition 3.3 we get (

R \ 7% R R
N <C 1—’0 <C 1+ —) <CR(1+——
plx) <Cp@(1+75) P (14 505) < <R ( p(x>)
and, thus, U;c # B C ¢B, with c—4C< %) By Proposition 2.1, if j € .# then

Cp(x) > p() (142 50) " >

p(x)
p(x)(l—k%) ’°<1+%) JO}%p(x)(l—Fix>72jo. (3.8)

1+—)

1
> =
c
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Hence, by (3.7), (3.8) and (3.5), we obtain

1 ‘L" L/ 1 / L/ 1 Vql(B')T L/
_ qB>f‘l g(_ Tq B-)w <C<— J )fq
(7 ® B 2 B B 2B

jEF < (B
Jod(z— / .
\C<B”(xl>‘“”>( ) l)gw (B)°)"
h C< BRI (1 + pfx)>(2m+l)d(r)> g <J€2}Vq/ (BJ>T> o
gc(”%fhj(ﬁjéﬂ’(gj))i
gc(”%fjoj’ (ﬁ/CBSEEfxB])w')%
<C<1+%>3Jb;’/(ﬁvq’(63> 7
gC<1+%)3/0%%@2(_‘)4,(3))%
K SIRY
\c<1+%> °(ﬁvq(3))q,

with Ky = 3j0% + No+ 12, and Ny and 1, the exponentsin (3.5). [

We are now able to prove the openness result we mentioned before. This result is
central in the proof of lemmas and theorems in the one-weight situation.

LEMMA 3.5. Let 1 < p < oo and A be a real number. If v e % (p,A, L) then
there exists 1 < py < p suchthat v € #(q,A, L) for po < q < p.

Proof. Let us choose Ty is as in Lemma 3.4 and set pg = (Top’)’ < p. Note that
if po < g < p then g = (tp’) for some 1 < 7 < 7. Now using Lemma 3.4 and that
ve . Z(p,A,A) it follows that

vI (0B)\ > OR \Ko /v (0B)\ > OR \Ko+No _; v(B)

< —_ [ < —_ —~7
( 08] ) \C<l+p(x)> ( 08] ) \C<l+p(x)> T
forevery 6 >1. O

In the remaining part of this section we show some examples of pairs of weights
which belong to the classes defined in this work.

EXAMPLE 3.1. Let us consider the pairs of potential weights (|x|~¢,|x|~#) and
let us analize the values of € and 3 that allow this pair to belongs to the class of weights
defined in this work. Assuming, for example, that p = 1 then the pair v(x) = |x| ¢ and
w(x) = |x| P belongs to the class . (p, 8,4,Np), 1 < p < oo, ifand onlyif B <& < %,
6 <min(0,B) and Ng=>A—-6+B—€>0.



1242 R. CRESCIMBENI, S. HARTZSTEIN AND O. SALINAS

In fact, condition & < % is equivalent to the local integrability of v(x) = |x|7%.
Moreover,
v (Bx,))\w [ if x> 2r
(7> ~ { 4! (3.9)
|B(x,r)] r if x| < 2r.

We want to prove inequality

M v —No _w(B(x1)
(e ) (1) S (3.10)

forall 6 > 1 but, by (3.9), it is equivalent to the following three inequalities

N
P <cordH (10r) it 6 < %
N
x| < coetAetot (1 + 9t> ’ it 1< % < 61
N
1 <ce€+lz8*ﬂ+H(1 +ez> Cf %gt.

However, a careful analysis of the behavior of 6, ¢ and |x| on each region leads to the
above inequalities only if 6 —A < —e<0, § <min(0,3) and Ny > —e—5+A.
Reciprocally, these conditions are sufficient to prove the above inequalities.

4. Technical Lemmas and proof of Theorem 1.1

The next lemma gives an estimate for the mean value of order g < p on any ball for
functions in L”*°(v) and it is a fundamental inequality used in the remaining lemmas
of this section.

LEMMA 4.1. Given 1 < g < p < o and a weight v, there exists a constant C

such that \
(5 @) <cmi+[Z]

Sforany ball B and f € LP=(v).

!
Proof. If g < p then for a = ["Lf we get the statement as follow

|B|?

/B({((;Cy)qu:q</o“+/a°°>ﬂ130{% >t }]di
f

P o[ P
< \B\aq—l—q{i] / 19777 dr < |Bla? + 4 [—] al”?. O
VipJa p—qltvip




TWO-WEIGHTED INEQUALITIES 1243

REMARK 4.1. Condition g < p is crucial to get the statement in Lemma 4.1 since
it ensures integrability of the distribution function. Therefore in the foregoing lemmas
it will be required that (v,w) € #(¢,0,A) for some ¢ < p when v#w or 0 # 1.
Nevertheless, in the case v=w and 6 = A by Lemma 3.5 it will be enough to require
that v € . (p,A,A) since in this case it follows that v € .(g,A,4) forall ¢ < p close
enough to p. Hence, in the one-weight situation Lemma 4.1 will still apply.

LEMMA 4.2. Given 1 <g< p <eoand A and d real numbersif (v,w) € . (q,0,A)
then there exist a positive constant C and Ny > 0 such that for all f € LP=(v)

o <cot ™ (14 05)" B (1],

forall © > 1 and every ball B=B(xg,R). If v=w € ./ (p,A,A), i.e. 6 =A, then the
above inequality also holds.

Proof. By Holder’s inequality and Lemma 4.1, if (v,w) € .#(¢q,8,A4) for some

g<porv=we .¥(p,A,A) and g < p, close enough to p then, for some C > 0 and
No >0,

p(xs) |B|$“ST
<cor B (1+ OR )NO [q 0
|B|T% p(xp) vip

To prove Theorem 1.1 we need estimates for the fractional integral of the local

and global parts of a function f € L?*(v). The following two lemmas give us those
estimates.

LEMMA 4.3. Given 1 <g<p<woo, A and 0 real numbers and o. >0, if (v,w) €
7 (q,0,A) then there exists No > 0 and C such that for all f € LP>(v)
1 No o 1 f
— |~ )dx < C(14+——) " |Bi 7T L]
B o Zef ) 7)1 ]

forany ball B=B(xg,R). If v=w € % (p,A,A), i.e. § =A, then the above inequality
also holds.

R s

A
d
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Proof. By (2.8), Fubini’s Theorem, o > 0 and Lemma 4.2 applied to 8 =2 there
exists Ny > 0 such that

7 o sl war= s [ ] Kateo)lrla as
“ﬁ//m e a"ydx
%/ o ‘/yzR e — yld e

B/If

<c(1+ ﬁ)% s HF 0

LEMMA 4.4. Given 1 < qg<p <o and A and & real numbers, if (v,w) €
7 (q,8,M) then there exist positive constants C and Ny > 0 such that for all f €

LP=(v)
SO [ —y[\N w(B) f
faaa s (14 5 ) dy“mh]p

for any constant m such that m+ A + % >0, N> Ny and any ball B = B(xp,R).
Moreover, if v=w € .#(p,A, L), i.e. 6 =A, then the above inequality also holds.

Proof. Using a dyadic decomposition and Lemma 4.2 there exist Ny > 0 such that
if N > Ny and, also, m+l+% > 0 then

f)] |x—y|\—N
/Rd\zB ey () @

2kR \-N
<C Y (2FR)~UHm (14 =2 /
]{2‘1 ( p(x)) ok+1p (v)dy
2R \-(N-No) k(2 _3) w(B) [f
C sz d+m) 1_|__ 2 » _P\F) L
C‘B‘,(H_m Esz (mtA+4 ») Mi(Bgf)L []_C}
k=0 |Blp— @ VP
<c— VB [J—C] 0
= ‘B‘H'%JFW v 17.

The next auxiliary lemma is a key tool to prove Theorem 1.1.
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LEMMA 4.5. 1. Given s,p and B positive numbers and N > O there exists a
constant C such that

N"'

2 dt 1
o sﬁ(l—i—%)N

2. Given s > o, p >0, B areal number, N >0 and M > B+ N there is a constant C
such that
/"2 t 5 _2dr C((f)M—N—ﬁ 1
—_ ¢ T — \ - - @
0 (1+§)N t s sﬁ(l—I—%)N

Proof. (1) By the change of variable u = St—z we get

/w Y / W du
——e T — = 7e —.
0 (1+§)N r sB (1+ \/E) u
B B
u2 B N Uz
If £ < 1 then 1+ < 2 and hence T <uz L2 5 On the other
(I+-=2-) (I+2)
pVu p
B BN BN
hand, if £ > 1 then 1+ 2 <22 and thus u <L <oV M ’ There-
M P S (55 S Y <7 T+
pVu p
fore
/°° Y 3 2N /°°( n M) —udu 1
el TS Eqaw [ Wwrtu et — SOy gy
0 (l_i_?t)zv t sﬁ(l—f—;)N 0 u sﬁ(l+;)N

(2) By the same change of variable as above, the fact that sup,. M/2e=1 < Cyy for any
M > 0 and some Cy > 0, and following the steps in the above proof, it follows that

/62 [*% eféﬂ— 1 e u% 7[4@
0 (1+%)N t B (,)z(1+pfﬁ)N u
1 /°° ( ﬁ—M+ B+N-M  du
X u u
P+ 5N g u
1 S
S\B-M B+N—M
S USRI+ )N<(G) & )
1 5 \BN-M
sP(1+3) (E)
M—N—B
c- 2 0
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4.1. Proof of Theorem 1.1

Let (v,w) € #(q,8,A) forsome and g < p or v=w e .(p,A,A),ie. § =2
and split ' = f1 + f2, with f] = fx2p and first assume that R = p(xp). Thus

ﬁ [ 1 Farlar < — / Fa(ldrt —s / |\ Iufa(x)ldx < 1+ 5.

By Lemma 4.3

1 §-heih [f
A= iy J Pl <clp T[] @

To estimate .#, we display

Fafsl = [ pi% L < [, et o)ldyet L

Notice that if x € B and y € R?\ 2B then 2R < |x —y| < 2|xg —y|. Moreover, by
Lemma 2.1,
|x — xp|

p(x) < Cplap) (14 521 )

Hence, by Lemmas 2.1 and 4.5 given N >0 and M > 0, to be chosen later, there is a
constant C such that

a7 (10 25 e Lty
o[, ol (1+|x oy

(2B) |x —y|[d— p(x)
f)] [xp — y|\ ~(V+M)
<C 1+
(2B)¢ |xp—yld— ( p(xs) )

70 ks — 3] -
<C M 1 dy.
Pl [ e (1 o) @

By Lemma 4.4, taking R = p(xg), N > Ny and choosing M such that M — o+ A + % >
0 we get

Fub2()] < Cplxp) ——eD) [i}p <o [’—1-

|B|1+M—a;l—5+% ‘B‘l oc+5 k+%

) Wi < Cp(xp). 4.2)

dy

Then
1,62

2= s [ |l < i3+ (L] (43)

Estimates (4.1) and (4.3) give the proof of (1.9).
To prove (1.8), we consider R < p(xp), define cg = [m3 e fo(xp)t % 4 and split

1 1 1
M/B|faf(x)—CB\dx< m/B\fafl(x)\dHm/B\yafz(x)_cB\dx,
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As in (4.1) for ¢ > 0 it follows that

/\fafl (ol < clfi T[]

y
On the other hand, for x € B, we have

R2 P ad b P . od
Fafalx) = csl < /o e e 7t +/Rz e fo(x) — e_tjfz(xB)WTt
=J1(x) + 2 (x).

If |x—xp| <R < p(xp) then, as in (4.2), p(x) < Cp(xp). Hence we apply Lemma
2.1, Lemma 4.5 with § =d —a, s=|x—y|, 6 =R, M+d in place of M, and N
positive such that M > N +d — o, and use that if |x—xp| <R and |y —xp| > 2R then
[y —x| >R, to get

R2 d X—y. a
<2 e o) £

<C (23)6(/0R21“2”’(1+%)Ne s ‘”) £ )|y
<CRWWN/ lf )l <1+ Ix—y|>—Ndy.

(2B)¢ Jx — y|dtM=N p(x)

By Lemma4.4if M— N+ A+ % >0 and N > N, for some Ny big enough then

g M-N w(B) f w(B) /
hx) S ClBfeT = +;%{C]pgcw[‘}p (44)

where we chose M > max(N+d — o,N — A — %) and N > Ny.

On the other hand, we use Lemma 2.2 and Lemma 4.5 to get for any v < & a
constant C such that if x € B then

e G G a dl

9= [T pe) - o) 5%

R? t
° adt
=[] ) = Kl 1f0)lay
R2 J(2B) t

o—d—

2 lx—y[? dt
< v — e 1 —
Clx—xg| /R2 (/(2B)C R )Ne ()’)\d)’> p

d

<

p(x)

o—

car [, (g 7 o

<CRV/2 lfO)l <1+ IxB—y\>—Ndy.

(2B)c |xp — y[d+V— p(xs)

-V
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Proceeding as in (4.4), since we can choose v such that oo — A — % <V < & and apply
Lemma 4.4, we get
B B
J(x) <CR" w(B) [f w(B) J—C] . (4.5)
P

d+v—a—06+A | 1 ] d—o—86+A | 1
B d Ty Lvip B @ p-V

By integrating (4.4) and (4.5) on B we get (1.8).
The proof in the case v =w € . (p,A,A) follows from Lemma 3.5, Remark 4.1
and the above reasoning. [

5. Technical lemmas and proof of Theorem 1.2

In BM 0?/ (v) the average control is only on balls with radii greater than p at their
centers (Corollary 2.1). However, for lower radii some kind of estimate can be proved.
The following is a variation of Lemma 6 in [2].

LEMMA 5.1. Let B,A,0 and Ny real numbers such that B > A and B,Ny > 0.

If (v,w) € S (o0,0,A,Ny) then there exist C > 0 such that for any f € BMOf;(v) and
ke NU{0}

B—A+d
L V< o, B ()

No
k(d+B—A+Ny) R : .
2/«1(9(;3)) if k<jo

for any ball B = B(xp,R) with R < p(xg) and jo € NU{0} such that 2/°R < p(xp) <
2/00t1R,

Proof. Using Definitions 1.13 and 1.1 we consider two cases. If k > jo+ 1, then
for some C >0, Ny >0 and any f € BMO?K(V),

B
Lo <Ol ) [2*BI21B)

B-rtd 2R \No w(B)
<CU gy, 2B (142 )

p(xs)/ |p|1-4

R No  B—a+s
< kK(B—A+d+No) (% == )
<l gy, 02 (5o) 1B w®)

If k< jop and B — A > 0 by a dyadic decomposition and the previous inequality, then
there exists a constant C such that for f € BM O@(v)
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+
N 1
28B| 2,{B|f| 2 ZJB| 2/3 )—fz_/BIdz+7|2j0+lB| 2jOHB\f(z)\dz

</

18]

2iB) . R \M  p1:5w(B
i 2;3|”V )+210(l3—7L+N0)<_> °|B|”T*W(>}

12/B| p(xp)

o’ p(xa) R |B|
Jotl _
p(xg)\P=*\ B2+ w(B)
< i wis)
<o { 20+ (52) HBT g

j=k

</

{x

<C||fHBMOB {JOHZ’ (1+ 2'R >N°+<P(XB)>ﬁ*’l}|B|ﬁfdﬂ@
A
(

J
p(xB) ) 82 w(B)

ok, \ "R

(B

that is,

xg)\B-A  _ p-i+s
<Ol 2 (P 135 i), O

LEMMA 5.2. Given 3 >0, B> A with A, 0 and o real numbers and Ny > 0,
let us assume that (v,w) € (0, 6,A,Np).

1. If M > Ny+ B — A+ o then for some constant C = Cy and any ball B= B(xp,R)
with R < p(xp),

/ Ldy S gyg08 R w(B). (5.2)
g—y[>2p(xp) [XB — y|dHM— BMO,(v) p (xg) BHA+M—a
2. If M > o then for some constant C = Cy; and any ball B = B(xp,R) with R <
p(xg),
f ) RO-d-M+a
o sC ————w(B) (53
/2R<|xB y|<2p(xp) ‘XB y|d+M a4 HfHBMo»B )p(xB),ﬁJr;L ( ) (5.3)

forall f € BMO?/(V).

Proof. Let jo € NU{0} such that 20R < p(xp) < 2/0*!R. By a dyadic decom-
posing and the first item in Lemma 5.1, if M > 8 — A + o + Ny then there exists a
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constant C such that

£l S 1 /
A . - d
/|XB V32 (x5) |xB y‘d+M o kg;o (ZkR)dJera 2k+1Bf(y) y

R No
< (=B—a+A+M—Ny) B—-A+6—d—M+a
< Cllfll gyt 22 (—p<x3>> R w(B)
. R No
< —jo(=B—a+A+M—Ny) B—A+6—d—M+a
CllF N gpgot, )2 Gog) B w(B)

R ) —B-a+A+M

< — RP-AHo-d-Mtey,(p).
CHfHBMo@(v) <p(XB) W( )

On the other hand, if M > o we get

Jjo 1
/ ‘f(iy”dy < kg() FRYTTI f()dy

2R< xp—y|<2p(xp) |XB — y|TM—& 2wk+1p

& 1 pla)\PH e aisoaoms
<y 2 () * “w(B)

pP(xXB B2 _ —d—
TN -8 e

In the following two lemmas we study certain kind of integrability for the oscilla-
tions of f.

LEMMA 5.3. Let B>0, A and § R, « >0 and > A.

1. If (v,w) € F(e0,6,A,Np), and M > B+ ot — A + Ny then, for some C >0,

6—d

C
vs—y|>2p(xp) |xB — y|dTM- Hj“BMOQOOPCWQ‘ﬁ+A+M‘“

for any ball B := B(xp,R) with R < p(xg) and f € BMOf;(v).

2. If (v,w) € F(0,0,A), and M > 3 — A+ 0. then, for some C >0

f(v) — /3l w(B)
/ e <Clf gyt ) wpmas a6

R<|xg—y|<2p(xp) |y — xp|TtM—@ (v) R-BHA—8+M—o+d
for any ball B := B(xp,R) with R < p(xg) and f € BMOf;(v).

Proof. Let jo € NU{0} such that 2/0R < p(xp) < 2/07!R. Using a dyadic de-
composition, Lemma 5.1 and Definition 1.1, and choosing M such that M > Ny + f3 —
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A+ o> o we get

Ol e § )
/‘XB*Y‘>2P(XB) \xB—y|d+M7a 124 (2/R) d+M o /2j+13|f(y) fBldy
oo | N
gcjz%ﬂm{/wl}lf(y)dy+fB(2fR) }
w(B)

< Cl g8 (o) garir—ap o7
X i 2—j(d+M—a){21<d+B—k+No)< R )NO+2jd(P(xB)>B_A}

Fiot p(xs) R
w(B)
< CUA pysoh, ) gami—a o577
R \M .
o J(B—A—M+o0+Ny) (M—a
{Gm) 22 V(PR S ey

J=Jo+1 J=jo+1
R —ﬁ+2’+M—OC W(B)
< C”fHBMog(v)(m) RATH o B TA

On the other hand, by Definition 1.1 and (2.2) if M > 8 — A 4+ o > o it follows that for
some C >0,

1F() — J8] & 1
/2 — <C121W/_ |f(v) — f8ldy

d M o
R<|xg—y|<2p(xp) |xB )’\ + 2j+1p

_ Jo 1 1 J J
\FZI (2/R)M-« { (27+1R)d /2_/+1B‘f(y) — fair1p] y+}{§)|f2k+13—f2k3|}

1 VAl |

)M—a ]ZZ) (ZkR)d /sz ‘f(y) _f2kB|dy

Jjo
<C .
21 (2/R
j=

Jo L sv(2B)
<Cl ot )kagz R Gy

Jo 1
SClA M ppr08, )2 5701

_ 2KR \ Mo w(B)
kB A—kA
Z 272 (l + P(XB)> RA—B+A—86+M~o

Jo+1 1 B
K(B—1) w(B)
gC”fHBMOﬁ Z 2 Z | 2J(=a) RA-P+7-5+M-a

Jo+ o w(B
<C||fH 2 Zk(ﬁ A—M+a) ( )

BMOP, (v) RA—BA—8+M—0

w(B)

S prsot ) gipra—ssmi=a U

Since by Proposition 1.1 the pointwise regularity conditions (1.17) and (2.3) char-
acterize a Campanato-type space then the proof of Theorem 1.2 will follow from the
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verification of those two conditions and using Remark 1.1.
LEMMA 5.4. Let B >0, B> A and § e R. If (v,w) € S (0,8,4) and o0 >0

then there exists a constant C such that for all f € BM 0@( ),

1 B—A+6+a
I I /B oy eSS C gy, (35) (5.6)

for any xp € R?.

Proof. Let us denote p := p(xp),B := B(xg,p) and split, f = fi + f» with f; =
fx2p. Hence by inequality (2.8), Lemma 5.1 and the fact that o > 0 it follows that

1 y o 1
M/B\fafl(xnm //23 <o o | 170)

<Cpﬁ Arote £

BMOP, (v) (.7

On the other hand, if x € B and y € (2B) then |x—y| > |xg —y|/2 > p and, by (4.2),
p(x) < Cp. Hence, by Lemma 2.1, given N > O there is a constant C such that

e T it
ke (x, )| < Cﬁ <cp” e (5.8)
12 <1 + m)
2
Thus, if N > o —d, using the change of variable s = P e get
dt

ah@l< [ kG T

br—y?

dt
< N/ /—
oY | O], e T)

< ay-a _ds f)]
<cpV / e s 08 / _ WO,
P A s e s Jos) |x_y|d+N7a y
fO) dy.

(2B)c |xp —y|+N-@

<cpV

Since (v,w) € S (e0,0,A,Ny) for some Ny > 0, using (5.2) and taking N > Ny + 8 —
A+ o, we obtain

w(B w
Fafslo)] € OV~ W iy < P O
Hence
/ [ Fafs(0ldx < COP AT g (5.9)

With (5.7) and (5.9) we get the proof of the lemma. [
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LEMMA 5.5. Let 20, >0, A<B, a+f—-A<&and oo+ —-A+6<d.

If w is a doubling weight and (v,w) € #(e0,0,A), then there exists a constant C such
that

e f (%) = Taf )] < Cll Nl gyy08 ) (Wa-2-+as8(3 [ =) + Wp-2-sar50 ¥ = ¥]))
for |x—y| < p(x), f € BMOE,(v) and W defined as in (1.14).
Proof. Set R = |x—y| < p(x) and denote B = B(x,R). Then
I 0) = Saf O < [ [t k(28 5 150
([ 7 [ ko0l = 1
By splitting J we get

© dt
J:/ ﬁ/ +/ ko (x.2) — ko (v, 22—
P ( —2l<4p(o) |xfz|>4p<x>)‘ (D) Ol @z 5 =N

Let jo € NU{0} such that 2/0R < p(x) < 2/07!R. Since v/ > p(x) > R =|x—y| then
by Lemma 2.2 and arguments similar to those used to obtain (5.8), given N >0, v < &
and L > 0 there exists a constant C = Cy y,;, such that

R\V _u4 N/ ez
ke (x,2) — ke (0,2)] < C( = ff(l —)
e (,2) — ki (32)| (ﬁ) o) e
_d+\2'+N i M < 16
SCRVPp(xX)N x { _arvin-s ! (5.10)
p t 2 o lx—z?
=T if = >16.

In the case 2= ZI < 16 choosing v such that ¢+ — A < v < § and N > 0 such that
N>d—o+ v using (5.10) and Lemma 5.1, since o+ 3 — A + 8 < d we can obtain

bt a—d—v-N dt
B<CRpEY [ £(2)]dz

p(x)? 1 Jix—z<2/0+3R

. R \M
RV a—d—V2j0(d+ﬁ—)L+N0) Rﬁ—k-‘ré B
P GGo) w(B)
R \ —B+Ai+v—o
B—A+o+6—d
BMOB( )<p(x)) R w(B)

<CHf”BMoﬁ )Rﬁ—l+a+5—d w(B )<c||fHBM0ﬁ )Wﬁ,,1+a+5(x7R)

<l lgpgot

< £l

for some constants C > 0 and Ny > 0.

In the case tz‘ > 16 setting Ny > 0 such that (v,w) € .%(s0,8,A,Ny), v such

that B — A + o < v, choosing M| > No+ 3 — A+ o« — v, defining M = M; + Vv in
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(5.2), choosing N > M;+v and L =d — oo+ M| + v in (5.10) and finally assuming
that B — A + or 4+ 6 < d there exists a constant C such that

© gmd_v-N d-otviMy dt 17 (2)|
L <CRY xN/ st doeiv, df @l
2 p(x) p(x)? —z[>4p(x) X — z[d- VM z
v N [~ —NtMy dt R \ -B+A—o+v+M; RB— 7L+6W(B)

< M luiot, ) P C) Lo _(@> T

p(x)? 4
R >_ﬁ+l+v_aRﬁ*“°‘+5*dw(B)

< CUF N gyret, ) <@
<CHf||BMOﬁ Wﬁfl+a+6(x7R).

To deal with I we split

P 4 5 N dt
1< [T 0f [ (a0 = a0+ R =R 02 ) F@1deT = DI
0 R4 t

tA

where & is the kernel of the classical heat operator e~ "> and g, = k; — k, . For the first

term above we get that

P
n< [ [ (e aamlan) - 0020

dt
+ X{|xfz|<4R} ‘qt (x7 Z)' + X{\xfzK‘lR} ‘qt (y7 Z)') |f(Z) | dZT
=h1+ha2+13.
By Lemma 2.4, in the case # < p(x)? and any N > 0 there exists C (independent of 7)

R \V 1 R \V 12
a9 =0, < €5 5) té(1+*—f>d+fv<c<p<x>> FEeEg
t

where R = |x —y| < Cp(x) and |x—z| > 4R.

To estimate 1; | we split {z: |x—z| > 4R} ={z:4R < |x —z| < 4p(x)} U{z:
|x—z| > 4p(x)}, define in the above inequality N =& with 0 <& <v—(a+f—A)
for the first domain and N = N, > Ny + 8 — A for the second and use Lemma 5.2 and
condition az+ 8 — A + & < d to get, for some constant C,

R \V/ [PO)? aiedr If(2)]
I <C(— / [T_/ ———d
b (p(X)> <o t Jureto-d<apy -2 E

+/ e di @ dz)

{le—dl>ap()} [x — 2]4TN
p(x) E+B—A+a—v R \ —B+A+v—ay RB— QH'OH'SW(B)
< — 7 _ A S
Al prson, )(( R ) <p(x)> ) Re
< C|Ifll RP-Arecto=dyy(p)

BMOb, (v)
S ClAgagh, () Wp-2+0t6(0,R). (5.11)
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On the other hand, by Lemma 2.3, for /7 < p we get

wtna <o) (1)

If \/ < R/4 then we set an integer 1, > 2 such that 2"/t <R < 2"*+1\/¢, use a dyadic
decomposition and the above inequality to get

2

Is <C(/0E (%)Vﬂz”’
N Y
. (~/|xfz|<4\ﬁ f(Z)dZ+jz'2/2.f\ﬁ<|xz|<2./+l\ﬁ (|x——tz\>M|f(Z)|dZ>%

pw?
I VIV aadt
— )t — dz) =H;+H,.
t e () 7T el 0N) =

16

Now, since B — A > 0 then we are able to apply Lemma 5.1, that w is doubling, o +
B—-A+6<d,B—A<B—A+0o<v andchoose M > d to obtain

2

6 (VY e
H, <C||fHBM0ﬂ v)/ (m> T

(4d<p\(/2))ﬁ -4 s (B(x,4v7)) + 22 JM/X Z|<2,+1\/

R2

f@ld) 2

t

1 [ /T \V B-itatdd
<l |, (o) "

(R (e B isnsi

<C g Vi \V-B+A dt R
oot [, (555) 7 W-rearsR)

< CHf”BMO'B )Wﬁ,l+a+3(x7R).

Analogously, since f—A+oa+86<d and f—A<B—-A+a<v<d then

p(x)?
Hy < Clfllgys08 >/’f§ (@) 122 (T) R w(B(x,4R))

p(m)z v+a—d B—A+a—d
<l fo (o) (B R o)

p(x R
p)? —Ata— v
S ClA N aroh >/6 (W\/i))ﬁ h d(W\/j)) ﬁﬂ%

Wg_r+ars(x,R)

" (&)ﬁ A+o—d
R
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pw?
T VI VB dt
<SWlos |, Ggg) 7 Worearsh

S Cl M py08 (1) Wp-2+a+5(5:R)-
Hence
ha <Clflgyyoh, ) Wo-2-+a+5(5R)- (5.12)
Since /; 3 is similar to /> we also obtain
N3 <l g8, ) WB-2-+ar8(XR). (5.13)

Inequalities (5.11), (5.12) and (5.13) give the seek estimate of I; .
On the other hand, since [pa (k(x,2) — k (,2))dz = 0 then

2

px) 4 B ~ p
L </0 12 /]Rd |kz(X,Z)—k,(y,z)||f(z)_f3|d17t
p? B )
</O 2 (/‘X7Z‘>2R|kt(x,z)—kt(y,z)| |f(z) — fsldz

o] ol @-ldet [ RO~ fblds) %
[x—z|<2R t

=L +hsr+D;.

x—z|<

~ ~ X 2
Itis not difficult to see that |k (x,z) —k; (y,2)| < Ce "ot “3-Ux—y|lx—z] for [x—2| >
2Ix—y| and ot < B — A+ < & < 1 then, choosing M > Ny — A + ¢+ — 1 and using
(5.5) and (5.4) in Lemma 5.3, it follows that

et b2 dt
b <CR/‘ - |x Z||f(2) fB|/ e m S
X—2Z

t
<CR/ 1£(2) — £ dya @dz
|

— _ 2
x—z[>2R |x —z]¢H1-@ %

<CR(/ LA z(/ s"”T*"e—sé)
2R<|x—z|<2p(x) |x — z|d 1 0 s
1f=) — /8l d2-a-m s ds
+ 2 z‘_d>
/‘X 4>2p(x) X — Z|d+1 o [z S e 5 z

cp?
|f(z) — /5] |f(z) — /5]
<CR(/R<|x J<2p(x) Jx — 2[4t a etp@" ) |x — z|d-ot1+M dz)

[x—z[>2p(x)
w(B)
< C||fHBM0ﬁ ) RIB—3+7—a S C“f||BM0@(V)Wﬁ—A+a+6(X»R)~
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For I, » we use that (v,w) € #(e,0,4) and that w is doubling to get

PO’ gg a2 dt
ba<c U@-pl[ et T
|x—z|<2R 4

C/‘X_Z‘<2R ||J;(_)Z|df3;| </ﬂs7¢12+d cis) dz

cp(x)?
/@)~ - ,
<C/ (27R)* / z) — fBldz
‘xfz‘ng |x—z|d o Z ‘xfz‘<27/‘+lR |f( ) fB|

=

<Oyt 2 2R h8)
=0

8

<Oyt 3 2RIz )

=

<Ol 2, RP 8\ 27

w(z)
< ————dz = _ ,R).
I gngoh /| oo B 4= Ol ) Wi

The estimate for I 3 is obtained in the same way. [

5.1. Proof of Theorem 1.2

Since B —A+a+ 6 <1 and w is doubling then to prove this Theorem it will

be enough to use the pointwise characterization of the space BM O‘Hﬁ l+5( ) pro-

vided by Proposition 1.1. But then Lemma 5.4 and Lemma 5.5 give the two desired
inequalities for 7, f .

The authors are deeply grateful to the referee for his interesting suggestions to
make this paper more clear and complete.
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