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BOHR PHENOMENON ON THE UNIT
BALL OF A COMPLEX BANACH SPACE

HIDETAKA HAMADA, TATSUHIRO HONDA* AND YUSUKE MIZOTA

(Communicated by J. Jakseti¢)

Abstract. Let By be the unit ball of a complex Banach space X . In this paper, we will general-
ize several results related to the Bohr radius for analytic functions or harmonic functions on the
unit disc U in C to holomorphic mappings or pluriharmonic mappings on By . We will estab-
lish Bohr’s inequality for the class of holomorphic mappings which are subordinate to convex
mappings on By . Next, we will establish Bohr’s inequality for pluriharmonic mappings on By .
We will also obtain the p-Bohr radius for bounded pluriharmonic functions on By . Finally, we
will determine the Bohr radius for a class of holomorphic functions on By which contains odd
holomorphic functions on By .

1. Introduction

Bohr’s inequality says that if
@)=Y a
k=0

is analytic in the unit disc U in C and |f(z)| < 1 holds for all z € U, then the inequality

W =

N lad| <1 forlz| <
k=0

holds. Bohr [5] originally obtained the above inequality for |z| < 1/6. In fact, the
inequality is actually true for |z] < 1/3. The constant 1/3 is best possible and it is
called the Bohr radius (e.g. [13], [14]).

A class of analytic or harmonic functions f in the unit disc U is said to have
Bohr’s phenomenon if an inequality of this type holds in the disc {z: |z] < po} for some
po € (0,1] and all such functions with || f]| < 1. Since not every class of functions has
Bohr’s phenomenon [4], it is of interest to know when a class does have it, and it is also
natural to consider an extension of Bohr’s inequality to more general domains or higher
dimensional spaces.
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Using homogeneous polynomial expansions of holomorphic functions, Aizenberg
[3, Theorem 8] obtained a generalization of Bohr’s inequality to holomorphic functions
on bounded balanced domains in C". Liu and Wang [12] gave a generalization of
Bohr’s inequality to holomorphic mappings of B into itself, where B is one of the four
classical domains in C". Hamada, Honda and Kohr [7] generalized the above results to
holomorphic mappings from a bounded balanced domain in a complex Banach space
to a homogeneous unit ball of a complex Banach space.

Recently, Abu Muhanna [ 1] established Bohr’s inequality for the class of analytic
functions which are subordinate to univalent functions on the unit disc U in C. He
[1] also established two types of Bohr’s inequality for harmonic functions from U into
U. Abu Muhanna, Ali, Ng and Hansi [2] generalized the above results for harmonic
functions to harmonic functions from U to a general bounded domain in C. Kayumov
and Ponnusamy [11] determined the Bohr radius for a class of analytic functions in
the unit disc U which contains odd analytic functions on U. They also obtained the
p-Bohr radius for bounded harmonic functions on U. As a corollary, they improve one
of the results on harmonic functions obtained in [1].

In this paper, we will generalize several results related to the Bohr radius for an-
alytic functions or harmonic functions on U in [1], [2] and [1 1] to holomorphic map-
pings or pluriharmonic mappings on the unit ball By of a complex Banach space X .
In section 2, we will establish Bohr’s inequality for the class of holomorphic map-
pings which are subordinate to convex mappings on By . In section 3, we will establish
Bohr’s inequalities for pluriharmonic mappings on By . We also obtain the p-Bohr
radius for bounded pluriharmonic mappings from By to the Euclidean unit ball of C".
As a corollary, we obtain that the holomorphic part and the anti-holomorphic part of
bounded pluriharmonic mappings on By with values in C" have the homogeneous
polynomial expansions which converge uniformly on each ball rBy with r € (0,1).
Further, we show that a generalization of [2, Theorem 4.4] can be obtained as a corol-
lary of a generalization of [1, Theorem 2]. In section 4, we will determine the Bohr
radius for a class of holomorphic functions on By which contains odd holomorphic
functions on By . To prove the main result in this section, we first prove a lemma which
was used in [1 1] without proof.

2. Subordination classes

Let By be the unit ball of a complex Banach space X . For a holomorphic map-
ping f: By — X, let D¥f(z) denote the k-th Fréchet derivative of f at z € By. A
holomorphic mapping f : Bx — X is said to be normalized if f(0) =0 and Df(0) =1,
where [ is the identity operator on X . A holomorphic mapping f : By — X is said to
be convex if f maps By onto a convex domain in X biholomorphically.

Let f:Bx — X and g: Bx — X be two holomorphic mappings. We say that g is
subordinate to f if there exists a Schwarz mapping v on By (i.e. v is a holomorphic
mapping from By to By and ||v(z)|| < |z]|, z € Bx) such that g = fov. Consequently,
when g is subordinate to f, we have ||Dg(0)|| < ||[Df(0)]|. Let S(f) denote the class
of all mappings g : By — X which are subordinate to f.
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Let X* be the dual space of X . For each a € X \ {0}, we define

T(a) ={la € X" ||lall = 1,la(a) = [|a[}-

By the Hahn-Banach theorem, T'(a) is nonempty.

DEFINITION 2.1. Let X and Y be complex Banach spaces. Let k be a positive
integer. A mapping P: X — Y is called a homogeneous polynomial of degree £ if there
exists a k-linear mapping u from X* into ¥ such that

forevery x € X.

Throughout of this paper, the degree of a homogeneous polynomial is denoted by
a subscript. Namely, if P, is a homogeneous polynomial, then the degree of P, is m.
We note that if P, is an m-homogeneous polynomial from X into Y, there uniquely
exists a symmetric m-linear mapping u with P,(x) = u(x,...,x).

The following theorem is a generalization of [I, Lemma 3 and Theorem 1] to
convex mappings f on By (see also [1, Remark 1]).

THEOREM 2.2. Let f:Bx — X be a convex mapping on By and g:Bx — X be
a holomorphic mapping with

=Y 0k(z), nearthe origin,

where Qi is a homogeneous polynomial mapping of degree k. If g € S(f), then we
have

(@) W)l < IDFO) for k=1, |w] =1,

(ii)
- 1
2 o) < S IDF )] @1
k=1

for ||z|]| < 1/3. When By is the Hilbert ball, 1/3 is sharp for the convex mapping
f(2) =2z/(1 —14(2)), where I, € T(a), a #0.

Proof. (i) For a fixed positive integer k, let

i z27rj/k) 5
, Z€Dby.

From the homogeneous expansion of g, we have

k oo
g(z) = g(0) + % (Z (Z o) (Z)>>
=1 \i=1
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for z sufficiently close to the origin. Since

1 ieﬂnﬂ/k _J1ifi=0 (modk),
= 0 otherwise,

=

we have

g(z) = g(0) + i Ou(z)
=1

for z sufficiently close to the origin. Since f is convex, g; € S(f). Let h(z) =
f'(gx(z)) for z € By. Then h: By — X is holomorphic, 2(0) = 0 and i(Byx) C By.
Since

@) = [DFO)] ™ (2= £(0) +Ollz— F(O)II?)

in a neighbourhood of f(0), we have

h(z) = £~ (gx(2)) = [DF(0)] "' Q(2) + O(l|[**1) (2.2)

in a neighbourhood of 0. By the well-known Cauchy estimates for Schwarz mapping,
we have

H—Dmh whll <1, wll=1,m>1. (2.3)

By (2.2) and (2.3), we have

IIDf0)) 7 Qe(w)]| <1 24)
for ||w|| = 1. Therefore, we have ||Qx(w)|| < [|Df(0)|| for ||jw|| =1.
(i) For fixed z € By \ {0} with ||z]| < 1/3,let w=z/||z||. Then, by (i), we have

ki 10 = i 10 (lellw)]
—1 k=1

<3 (3 ) leso
< |Df(0) Z( )k

= 21DFO)]]

This implies (2.1) as desired.
Finally, we prove the sharpness of the constant 1/3 in the case By is the Hilbert
ball. Indeed, for any fixed a € X \ {0}, let

Z

oz
1—1,(z)  1—{(zu)’

where (-,-) is the inner product on X and u = a/||a||. Then f is a normalized convex
mapping on the Hilbert ball By by [8, Remark 2.2]. Let g(z) = f(z). Since ||Qx(ru)|| =

f(2) =

z € By,
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* for k> 1 and r € (0,1) and ||Df(0)|| = 1, (2.1) holds if and only if » < 1/3. This
completes the proof. [

As a corollary of the above theorem, we obtain that every holomorphic mapping on
By which is subordinate to a convex mapping on By has the homogeneous polynomial
expansion which converges uniformly on each ball rByx with r € (0,1).

COROLLARY 2.3. Let f:Bx — X be a convex mapping on Bx and g:Bx — X
be a holomorphic mapping such that g € S(f). Then g has the homogeneous polyno-
mial expansion

Z):iQk(Z)7 ZEBXa
=0

which converges uniformly on each ball rByx with r € (0,1).

For a point z € X and a subset E in X, let d(z,E) denote the distance between z
and E. The following theorem is another version.

THEOREM 2.4. Let f:Bx — X be a convex mapping on By and g :Bx — X be
a holomorphic mapping with

2) =Y, 0k(z), near the origin,

where Qi is a homogeneous polynomial mapping of degree k. If g € S(f), then we
have

(i) [IDFO) QW) < 1for k=1, [w]=1,
(i)
<d([Df(0)]71£(0),00) (2.5)

NIH

§Hw@wm@\

for ||z|| < 1/3, where Q* = [Df(0)]7'Q and Q = f(Bx). When By is the
Hilbert ball, 1/3 is sharp for the convex mapping f(z) = z/(1 —14(2)), where
l,€T(a), a#0.

Proof. (i) We have already obtained in (2.4).
(ii) For fixed z € By \ {0} with ||z]| < 1/3,let w = z/||z||. Using (i), we have

oo oo

X IPFO)] 7 )l = X DO Qillzlw) |
k=1 k=1

. s

<§(Qmww}mu
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1

5

This implies the first inequality in (2.5) as desired.
About the second inequality in (2.5), we set

F(z) = [DF(0)] 7 (f(z) — £(0)).
Then, F is a (normalized) convex mapping from By to X .

1
By [8, Theorem 2.1] (cf.[6]), F (Bx) contains the ball with center O and radius 7

That is,
1 _ _
5 <d([DF(O)] 7' £(0), DS (0)) ! (f(Bx))).
The proof of the sharpness of the constant 1/3 is similar to those in the proof of Theo-
rem 2.2. This completes the proof. [l

REMARK 2.5. When dimX = 1, then By = U and d(f(0),9Q) > }|'(0)| by [1,
Lemma 2]. Therefore, Theorem 2.2 reduces [, Theorem 1] in the case f is a convex
function on U.

3. Bounded pluriharmonic mappings

Let By be the unit ball of a complex Banach space X. A continuous mapping
f By — C" is said to be pluriharmonic if there exist holomorphic mappings %,g from
Bx to C" such that f = h+g. We may assume that g(0) = 0. Let B" be the unit ball
of C" with respect to an arbitrary norm on C".

The following lemma is a generalization of [1, Lemma 4] (see also [9, Theorem
4.2]in the case k =1).

LEMMA 3.1. Let f =h+g: By — B" be a pluriharmonic mapping and let

o) =Y P2,
k=0

and

s =Y 02,
k=1

be the homogeneous polynomial expansions near O € By . Then, we have

4
1B W) + Okl < —, k=L, [Iwllx = 1. (3.1)

Proof. For a fixed positive integer k and a fixed w € 9By, let a = Py(w) + Ox(w).
If @ =0, then (3.1) holds. So, we may assume that a # 0. In this case, let
k f(ei271'j/kz)

fie) = ¥, F—=, zeBy.
=1
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Then, we have f;(Bx) C B" and
fie(Ew 2 (Pa(Gw)+0Qu(w)), (€U (3.2)

Let
ow(8) = ( Z, Pa(w)¢' + Ou(w )Cl)> ¢el,

where [, € T'(a). Using (3.2), it follows that ¢,, is a harmonic mapping from U into
U. By applying the harmonic Schwarz-Pick lemma to ¢,,, we have

90 ) , I

ol = 1) = | 0+ 20 <

This completes the proof. [l
Using the above lemma, we obtain the following theorem. The following theorem

is a generalization of [1, Theorem 2].

THEOREM 3.2. Let f =h+g:Bx — B" be a pluriharmonic mapping and let

=Y B,
k=0

and =
=Y Ok(z)
k=1

be the homogeneous polynomial expansions near 0 € By. Then, for ||z|| < 1/3, we
have

(3.3)

:a.| o

Z|Pk )+ O0(2)]| <

Proof. For fixed z € By \ {0} with ||z]| < 1/3, let w=z/||z||. Then, by Lemma
3.1, we have

zm )+ 2@ = XA lelh) + 2T |

iMX

This implies (3.3) as desired. This completes the proof. [J
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Next, we consider the p-Bohr radius for bounded pluriharmonic mappings from
By to B", where B” is the Euclidean unit ball of C". First, we obtain the following

generalization of [1 1, Theorem 3].

THEOREM 3.3. Let f =h+3g:Bx — B" be a pluriharmonic mapping and let

=Y B,
k=0

and _
=Y 0k(z)
k=1

be the homogeneous polynomial expansions near 0 € Bx. Then, for any p > 1 and
||zl = € (0,1), we have

25 (IP@)IIP + Q@) I1P) P < max{20/P=12 1} /1 — || By |2 (3.4)

\/_

Proof. For fixed w € 9By , we set z = re'®w. Then, for any r € (0,1), we have

rew EPkrew 0<06<2n

rew Z rew 0<0<2rn

and
o [T seo s = 5 [ n(re®w) + e a0
27.[0 re-w —277:0 re-w gl\re-w
= o [T (e + e ) a0
2 Jo
= IR+ 3 (1B 2+ o))

k=1

Since f(Byx) C B", we have

1Po[|? + 2 (12w + 11 w) 1)

k=1

Letting » — 1, we obtain

wﬂ+§<mmww@wﬂku
=1
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It follows from this, the Cauchy-Holder-Schwarz inequality and the inequality a?/? +
bPI2 < (a+b)P/? for a,b >0 and p > 2 that

oo

S (1RGP + 10k 7)1 7

k=1

\/Z P17+ Qi) [P)7 | 3 2%
k=1 k=1

= r
max( 2!’ P12 41| Qx(w)[I?)
kgtl V1—1r2

< max(2U/P712 1), /1 || Ry||2

<

g

’
V1—1r2

This completes the proof. [
It is well known that every bounded holomorphic mapping on By has the ho-
mogeneous polynomial expansion which converges uniformly on each ball By with
€ (0,1). As a corollary of the above theorem, it can be extended to bounded plurihar-
monic mappings with values in C".

COROLLARY 3.4. Let f =h+g: By — C" be a bounded pluriharmonic map-
ping. Then f and g have the homogeneous polynomial expansions

7) = iPk(Z)7 z€ Bx

and .
Z):ZQk(Z)7 ZEBXa

k=1

which converge uniformly on each ball rBy with r € (0,1).

Putting p =1 and r < 1/3 in Theorem 3.3, we obtain the following result (cf.
[11, p.867]).

COROLLARY 3.5. Let f =h+g:Bx — B" be a pluriharmonic mapping and let
2)= Y Pz), z€Bx

and

() = iguzx 2 € By

be the homogeneous polynomial expansions on By . Then, for ||z|| < 1/3, we have
> (1P + 12k (2)I) <

k=1

1 [[Ro]l?

> (3.5)
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We also have the following generalizations of [1 1, Corollaries 2, 3 and 4].

COROLLARY 3.6. Let f =h+3:Bx — B" be a pluriharmonic mapping with
f(0) =0 and let

h(z)= ) P(z), z€Byx

Ms

k=1

and

(2) = Z Ok(z), z€By
be the homogeneous polynomial expansions on By . If p > 2, then we have

EI& NP+ @IP)YP <1, |zl < (3.6)

sl-

The number 1//2 is sharp.

Proof. Considering the case Py =0, r < 1/v/2 v2 and p > 2 in Theorem 3.3, we
obtain (3.6). Sharpness is given by the holomorphic mapping

lu(Z) <%_ZM(Z)> 0
EEEyE

where [, € T(u) and u € X \ {0} are arbitrary. [

f(2)= 0],

COROLLARY 3.7. Let f =h+g:Bx — B" be a pluriharmonic mapping and let

h(z) = ZPk(z)7 7€ By
k=0

and

9= 0u), zeBx
k=1

be the homogeneous polynomial expansions on By .
(i) If p € [1,2], then we have

A1+ S (REII0EID? <1, I <R, @)
where
(IRl = \/ ST 1+_( S iR
(ii) If p > 2, then
IR+ 3 (IR + 10177 <1, el < f =12l

k=1
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COROLLARY 3.8. Let f =h+g:Bx — B" be a pluriharmonic mapping and let
h(z) = Z P(z), z€By
k=0

and

8(2) = i Ok(z), z€By
k=1

be the homogeneous polynomial expansions on By . If p € [1,2] and

_ 8 —2(2/p)-1
[ Poll <A(p) = R 2@
then we have
- 1
1Pl + 3 (IB@IP + Q@) I1P)P <1, |zl < 3 (3.8)

k=1

Let U be the unit disc in C. For pluriharmonic functions from By to U, we have
the following results.
The following lemma is a generalization of [1, Lemma 4].

LEMMA 3.9. Let f =h+g:Bx — U be a pluriharmonic function and let
h(z) =Y Pz), z€Bx
k=0
and ~
8(x) =Y Ok(z), z€Bx
k=1
be the homogeneous polynomial expansions on By . Then, we have
[ P(w) + e Or(w)| <2(1 = [R(MRy)]),

forany u eR, k> 1,

WHX:L

Proof. Let _ '
Ou(z) = e*h(z) +e Hg(z), meR.

Then, ¢, (0) = e Py and |R(Pu(2))| = |R(e™* f(2))] < 1 for z € By.
Let I'={{ € C;|R({)| < 1}, and let

2i 1+¢

v(g) = EIqu'

Since ¢, (0) € " and y conformally maps U onto T', there exists 1o € U such that
y(no) = ¢u(0). We set the function

(g)= 2t

= —:U—U.
1+7oC
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Then yo ¢(0) = ¢, (0) and for each fixed w € X with ||w|| = 1, the mapping : { —
¢u(Ew) is subordinate to Yo @. Since y o @ is convex, by [1, Lemma 3], we have

€ P(w) + e H O, (w)] < 2d(w 0 9(0),9T) = 2(1  [R(E*y))).

This completes the proof. [
Using the above lemma, we obtain the following theorem, which is a generaliza-

tion of [1, Theorem 2].

THEOREM 3.10. Let f =h+g:Bx — U be a pluriharmonic function and let
= 2 Pk(Z)7 z € By

and

g(2) = i Ok(z), z€By
k=1

be the homogeneous polynomial expansions on By . Then, for ||z|| < 1/3, we have
2 le" P(z) +e M Qr(2)| + | R(eMPy)| < 1 (3.9)

Sforany p € R. The bound 1/3 is sharp. The sharpness is shown by the functions @y,

w € 0By, where
_ L(z)+a

Pulz) = 1+aly(z)
Sfor some a € (0,1).

Proof. For fixed z € By \ {0} with ||z]| < 1/3, let w=z/||z||. Then, by Lemma
3.9, we have

1AL +e M 0u()] = 3 [ Bellhe) + 7 Oc )|
=1 k=1

< z( ) 61 (o) ¢ 04 )
21— R S, (%)k

k=1
= 1—[R(eHPy)|.

Thus, we obtain (3.9) as desired.
Finally, we prove the sharpness of the bound 1/3. For fixed w € dBy, let

76) = 90l = 05
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where a € (0,1). Then for r € (0,1), we have P(rw) = (1 —a*)(—a)* 1%, Qr(rw) =
0 for k > 1 and Py = a. Therefore

3 |B(rw)| + [Bo(rw)| > 1
k=1

if and only if @+ (1 —2a®)r > 1 —ar. This is equivalent to a > (1/2)(1/r—1). There-
fore, for any r with r > 1/3, there exists a such that 1 > a > (1/2)(1/r—1). Thus,
the bound 1/3 is sharp. This completes the proof. [

Let D be a bounded set in C and denote by D the closure of D. Let D,,;, be
the smallest closed disk containing D. Asa corollary of Theorem 3.10, we obtain the
following generalization of [2, Theorem 4.4] by using a simple proof.

THEOREM 3.11. Let f =h+g:Bx — C be a pluriharmonic function and let
h(z) = 2 P(z), z€Byx
k=0

and

g(z)= ) Ok(z), z€Bx

TM:

be the homogeneous polynomial expansions on By . If f(Bx) C D for some bounded
domain D in C, then, for ||z|]| < 1/3, we have

Y " Pi(z) + e M Qr(2)]| + |Re™ (Py — wo)| < p (3.10)
k=1

forany u € R, where p and wy are respectively the radius and center of Dpyin. If D
is a disc in C, then the bound 1/3 is sharp.

Proof. Let F=p~!(f—wp). Then F = H+G: By — C satisfies the assumptions
of Theorem 3.10, where

H(:) = p  (Ro(z)—wo)+ X p ' Pu(2),  z€ B
k=1

and

6= p ' 0ul2). z€By.
k=1

By applying Theorem 3.10, we obtain (3.10) as desired. Sharpness also follows from
Theorem 3.10. This completes the proof. [l
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4. Special family of holomorphic mappings

First, we give a lemma which will be used in the proof of Theorem 4.2. The
following result was used in [11, p.861] without proof and (ii) is noted in [11, p.862].
However, for the proof of it, they use an increasing property of the Bohr radius before
proving that 7, is the (sharp) Bohr radius. So, we give a direct and elementary proof
here.

LEMMA 4.1. Let p €N, m € Z with 0 < m < p, and let rp,,, be the maximal
positive root of the equation

—6rP M 4 2P L 82 4 1 =0
n (0,1).
(i) If m=0, then r,o = l/(/g;
(ii) if m> 1, then 1/3 <}, holds.
Proof. (i) By direct computation, we obtain the unique solution r, g =1/ {/3.

(ii) Let
Q(r) = —6rP" 4+ 2P~ L 870 4 1.

Since (1) =4 > 0, it suffices to show that ¢(1/{/3) < 0. We have

17

(p(l/(’/g) 3’”/”—1—9(3’"/”) + — 5
Since the function | 17
) 24 2
v(x) x+9x + 9

is decreasing on the interval [0,9] and y(1) =0, we obtain @(1/{/3) = w(3"/?) <0
This completes the proof. [
The following theorem is a generalization of [11, Theorem 1].

THEOREM 4.2. Let pe N, me Z with 0 <m < p, and [ :Bx — U be a holo-
morphic function with the homogeneous polynomial expansion

Z wiem(z), 2 €Bx.
Then, for ||z|| < rpm, we have

2 ‘ k+m < “4.1)

where 1y is the maximal positive root of the equation
— G P L 82 1 =0 4.2)

n (0,1). The number r,, is sharp.
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Proof. Let z € By \ {0} with ||z|| < rp,, be fixed and let w = z/||z|| . Let

F(§)=f(Cw), (el

Then F : U — U is holomorphic and

C 2 k+m CEU

By [11, Theorem 1], we have
P | Poem(W) [P <1, for r < .
k=0

Taking r = ||z||, we obtain (4.1) as desired.
Next, we prove the sharpness. First, we consider the case m > 1. In this case, let
w € dBy be arbitrarily fixed, » =rp,,, and let

f@) =1(2)" (%) witha = r~? (1 _ @) ,

where [ € T(w). Note that 0 < a < 1, since m > 1 implies that 1/3 < r5,, <1 by
Lemma 4.1. We have Y2 o |Ppiim(rw )| =1 as in the proof of [11, Theorem 1]. This
implies that 7, ,, is sharp in the case m > 1.

Finally, we consider the case m = 0. In this case r, 0 =1 /3 {3, Let z() € Bx with

r=||z0|| > 1/4/3 be fixed. Then there exists A € (0,1) such that P > 1+2/1 Let

1P -2
fz) = T2

where [ € T(w) and w = z0/||z||. Then f : By — U is holomorphic and

2| k20|—2\

— 2+ (1-22)

rP
1—Arr

1

1
>A4(1-A%)—122
l=Am

=1

This implies that the constant 1/{/3 is best possible. This completes the proof. [

As a corollary of the above theorem, we also have the following generalizations of
[10, Corollary 1] and [1 1, Corollary 1]. We obtain the Bohr radius for odd holomorphic
functions on By in Corollary 4.3.
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COROLLARY 4.3. Let f:Bx — U be a holomorphic function with the homoge-
neous polynomial expansion

f(z) = Puysi(z), z€Bx.
=0
Then, for ||z|| < ry =r21, we have
> Py (2)] <1, 4.3)
=0

where ry = 0.789991 - - - is the maximal positive root of the equation
—6r' 4+ 8+ 1=0 (4.4)
in (0,1). The number ry is sharp.

COROLLARY 4.4. Let p > 1 andlet f:Bx — U be a holomorphic function with
the homogeneous polynomial expansion

f(Z):ZPpk(Z)a z€ By.
k=0
Then, for ||z|| < 1//3, we have
> 1P(2) < 1. (4.5)
k=0
The radius 1/ {/3 is best possible.
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