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(Communicated by J. Jakšetić)

Abstract. Let BX be the unit ball of a complex Banach space X . In this paper, we will general-
ize several results related to the Bohr radius for analytic functions or harmonic functions on the
unit disc U in C to holomorphic mappings or pluriharmonic mappings on BX . We will estab-
lish Bohr’s inequality for the class of holomorphic mappings which are subordinate to convex
mappings on BX . Next, we will establish Bohr’s inequality for pluriharmonic mappings on BX .
We will also obtain the p -Bohr radius for bounded pluriharmonic functions on BX . Finally, we
will determine the Bohr radius for a class of holomorphic functions on BX which contains odd
holomorphic functions on BX .

1. Introduction

Bohr’s inequality says that if

f (z) =
∞

∑
k=0

akz
k

is analytic in the unit disc U in C and | f (z)|< 1 holds for all z∈U , then the inequality

∞

∑
k=0

|akz
k| � 1 for |z| � 1

3

holds. Bohr [5] originally obtained the above inequality for |z| � 1/6. In fact, the
inequality is actually true for |z| � 1/3. The constant 1/3 is best possible and it is
called the Bohr radius (e.g. [13], [14]).

A class of analytic or harmonic functions f in the unit disc U is said to have
Bohr’s phenomenon if an inequality of this type holds in the disc {z : |z|< ρ0} for some
ρ0 ∈ (0,1] and all such functions with ‖ f‖ � 1. Since not every class of functions has
Bohr’s phenomenon [4], it is of interest to know when a class does have it, and it is also
natural to consider an extension of Bohr’s inequality to more general domains or higher
dimensional spaces.

Mathematics subject classification (2010): 32A05, 32A10, 32K05.
Keywords and phrases: Bohr radius, bounded pluriharmonic mapping, homogeneous polynomial ex-

pansion, odd holomorphic functions, subordination.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-23-98

1325

http://dx.doi.org/10.7153/mia-2020-23-98


1326 H. HAMADA, T. HONDA AND Y. MIZOTA

Using homogeneous polynomial expansions of holomorphic functions, Aizenberg
[3, Theorem 8] obtained a generalization of Bohr’s inequality to holomorphic functions
on bounded balanced domains in Cn . Liu and Wang [12] gave a generalization of
Bohr’s inequality to holomorphic mappings of B into itself, where B is one of the four
classical domains in Cn . Hamada, Honda and Kohr [7] generalized the above results to
holomorphic mappings from a bounded balanced domain in a complex Banach space
to a homogeneous unit ball of a complex Banach space.

Recently, Abu Muhanna [1] established Bohr’s inequality for the class of analytic
functions which are subordinate to univalent functions on the unit disc U in C . He
[1] also established two types of Bohr’s inequality for harmonic functions from U into
U . Abu Muhanna, Ali, Ng and Hansi [2] generalized the above results for harmonic
functions to harmonic functions from U to a general bounded domain in C . Kayumov
and Ponnusamy [11] determined the Bohr radius for a class of analytic functions in
the unit disc U which contains odd analytic functions on U . They also obtained the
p -Bohr radius for bounded harmonic functions on U . As a corollary, they improve one
of the results on harmonic functions obtained in [1].

In this paper, we will generalize several results related to the Bohr radius for an-
alytic functions or harmonic functions on U in [1], [2] and [11] to holomorphic map-
pings or pluriharmonic mappings on the unit ball BX of a complex Banach space X .
In section 2, we will establish Bohr’s inequality for the class of holomorphic map-
pings which are subordinate to convex mappings on BX . In section 3, we will establish
Bohr’s inequalities for pluriharmonic mappings on BX . We also obtain the p -Bohr
radius for bounded pluriharmonic mappings from BX to the Euclidean unit ball of Cn .
As a corollary, we obtain that the holomorphic part and the anti-holomorphic part of
bounded pluriharmonic mappings on BX with values in Cn have the homogeneous
polynomial expansions which converge uniformly on each ball rBX with r ∈ (0,1) .
Further, we show that a generalization of [2, Theorem 4.4] can be obtained as a corol-
lary of a generalization of [1, Theorem 2]. In section 4, we will determine the Bohr
radius for a class of holomorphic functions on BX which contains odd holomorphic
functions on BX . To prove the main result in this section, we first prove a lemma which
was used in [11] without proof.

2. Subordination classes

Let BX be the unit ball of a complex Banach space X . For a holomorphic map-
ping f : BX → X , let Dk f (z) denote the k -th Fréchet derivative of f at z ∈ BX . A
holomorphic mapping f : BX → X is said to be normalized if f (0) = 0 and Df (0) = I ,
where I is the identity operator on X . A holomorphic mapping f : BX → X is said to
be convex if f maps BX onto a convex domain in X biholomorphically.

Let f : BX → X and g : BX → X be two holomorphic mappings. We say that g is
subordinate to f if there exists a Schwarz mapping v on BX (i.e. v is a holomorphic
mapping from BX to BX and ‖v(z)‖� ‖z‖ , z∈ BX ) such that g = f ◦v . Consequently,
when g is subordinate to f , we have ‖Dg(0)‖ � ‖Df (0)‖ . Let S( f ) denote the class
of all mappings g : BX → X which are subordinate to f .
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Let X∗ be the dual space of X . For each a ∈ X \ {0} , we define

T (a) = {la ∈ X∗ : ‖la‖ = 1, la(a) = ‖a‖}.
By the Hahn-Banach theorem, T (a) is nonempty.

DEFINITION 2.1. Let X and Y be complex Banach spaces. Let k be a positive
integer. A mapping P : X →Y is called a homogeneous polynomial of degree k if there
exists a k -linear mapping u from Xk into Y such that

P(x) = u(x, . . . ,x)

for every x ∈ X .

Throughout of this paper, the degree of a homogeneous polynomial is denoted by
a subscript. Namely, if Pm is a homogeneous polynomial, then the degree of Pm is m .
We note that if Pm is an m-homogeneous polynomial from X into Y , there uniquely
exists a symmetric m-linear mapping u with Pm(x) = u(x, . . . ,x) .

The following theorem is a generalization of [1, Lemma 3 and Theorem 1] to
convex mappings f on BX (see also [1, Remark 1]).

THEOREM 2.2. Let f : BX → X be a convex mapping on BX and g : BX → X be
a holomorphic mapping with

g(z) =
∞

∑
k=0

Qk(z), near the origin,

where Qk is a homogeneous polynomial mapping of degree k . If g ∈ S( f ) , then we
have

(i) ‖Qk(w)‖ � ‖Df (0)‖ for k � 1 , ‖w‖ = 1 ,

(ii)
∞

∑
k=1

‖Qk(z)‖ � 1
2
‖Df (0)‖ (2.1)

for ‖z‖� 1/3 . When BX is the Hilbert ball, 1/3 is sharp for the convex mapping
f (z) = z/(1− la(z)) , where la ∈ T (a) , a �= 0 .

Proof. (i) For a fixed positive integer k , let

gk(z) =
k

∑
j=1

g(ei2π j/kz)
k

, z ∈ BX .

From the homogeneous expansion of g , we have

gk(z) = g(0)+
1
k

(
k

∑
j=1

(
∞

∑
l=1

ei2π jl/kQl(z)

))



1328 H. HAMADA, T. HONDA AND Y. MIZOTA

for z sufficiently close to the origin. Since

1
k

k

∑
j=1

ei2π jl/k =
{

1 if l ≡ 0 (mod k),
0 otherwise,

we have

gk(z) = g(0)+
∞

∑
l=1

Qlk(z)

for z sufficiently close to the origin. Since f is convex, gk ∈ S( f ) . Let h(z) =
f−1(gk(z)) for z ∈ BX . Then h : BX → X is holomorphic, h(0) = 0 and h(BX) ⊂ BX .
Since

f−1(z) = [Df (0)]−1(z− f (0))+O(‖z− f (0)‖2)

in a neighbourhood of f (0) , we have

h(z) = f−1(gk(z)) = [Df (0)]−1Qk(z)+O(‖z‖k+1) (2.2)

in a neighbourhood of 0. By the well-known Cauchy estimates for Schwarz mapping,
we have ∥∥∥∥ 1

m!
Dmh(0)(wm)

∥∥∥∥� 1, ‖w‖ = 1,m � 1. (2.3)

By (2.2) and (2.3), we have

‖[Df (0)]−1Qk(w)‖ � 1 (2.4)

for ‖w‖ = 1. Therefore, we have ‖Qk(w)‖ � ‖Df (0)‖ for ‖w‖ = 1.
(ii) For fixed z ∈ BX \ {0} with ‖z‖ � 1/3, let w = z/‖z‖ . Then, by (i), we have

∞

∑
k=1

‖Qk(z)‖ =
∞

∑
k=1

‖Qk (‖z‖w)‖

�
∞

∑
k=1

(
1
3

)k

‖Qk(w)‖

� ‖Df (0)‖
∞

∑
k=1

(
1
3

)k

=
1
2
‖Df (0)‖.

This implies (2.1) as desired.
Finally, we prove the sharpness of the constant 1/3 in the case BX is the Hilbert

ball. Indeed, for any fixed a ∈ X \ {0} , let

f (z) =
z

1− la(z)
=

z
1−〈z,u〉 , z ∈ BX ,

where 〈·, ·〉 is the inner product on X and u = a/‖a‖ . Then f is a normalized convex
mapping on the Hilbert ball BX by [8, Remark 2.2]. Let g(z) = f (z) . Since ‖Qk(ru)‖=
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rk for k � 1 and r ∈ (0,1) and ‖Df (0)‖ = 1, (2.1) holds if and only if r � 1/3. This
completes the proof. �

As a corollary of the above theorem, we obtain that every holomorphicmapping on
BX which is subordinate to a convex mapping on BX has the homogeneous polynomial
expansion which converges uniformly on each ball rBX with r ∈ (0,1) .

COROLLARY 2.3. Let f : BX → X be a convex mapping on BX and g : BX → X
be a holomorphic mapping such that g ∈ S( f ) . Then g has the homogeneous polyno-
mial expansion

g(z) =
∞

∑
k=0

Qk(z), z ∈ BX ,

which converges uniformly on each ball rBX with r ∈ (0,1) .

For a point z ∈ X and a subset E in X , let d(z,E) denote the distance between z
and E . The following theorem is another version.

THEOREM 2.4. Let f : BX → X be a convex mapping on BX and g : BX → X be
a holomorphic mapping with

g(z) =
∞

∑
k=0

Qk(z), near the origin,

where Qk is a homogeneous polynomial mapping of degree k . If g ∈ S( f ) , then we
have

(i) ‖[Df (0)]−1Qk(w)‖ � 1 for k � 1 , ‖w‖ = 1 ,

(ii)
∞

∑
k=1

‖[Df (0)]−1Qk(z)‖ � 1
2

� d([Df (0)]−1 f (0),∂Ω∗) (2.5)

for ‖z‖ � 1/3 , where Ω∗ = [Df (0)]−1Ω and Ω = f (BX ) . When BX is the
Hilbert ball, 1/3 is sharp for the convex mapping f (z) = z/(1− la(z)) , where
la ∈ T (a) , a �= 0 .

Proof. (i) We have already obtained in (2.4).
(ii) For fixed z ∈ BX \ {0} with ‖z‖ � 1/3, let w = z/‖z‖ . Using (i), we have

∞

∑
k=1

‖[Df (0)]−1Qk(z)‖ =
∞

∑
k=1

∥∥[Df (0)]−1Qk (‖z‖w)
∥∥

�
∞

∑
k=1

(
1
3

)k

‖[Df (0)]−1Qk(w)‖

�
∞

∑
k=1

(
1
3

)k
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=
1
2
.

This implies the first inequality in (2.5) as desired.
About the second inequality in (2.5), we set

F(z) = [Df (0)]−1( f (z)− f (0)).

Then, F is a (normalized) convex mapping from BX to X .

By [8, Theorem 2.1] (cf.[6]), F(BX ) contains the ball with center 0 and radius
1
2

.

That is,
1
2

� d([Df (0)]−1 f (0),∂ [Df (0)]−1( f (BX ))).

The proof of the sharpness of the constant 1/3 is similar to those in the proof of Theo-
rem 2.2. This completes the proof. �

REMARK 2.5. When dimX = 1, then BX = U and d( f (0),∂Ω) � 1
2 | f ′(0)| by [1,

Lemma 2]. Therefore, Theorem 2.2 reduces [1, Theorem 1] in the case f is a convex
function on U .

3. Bounded pluriharmonic mappings

Let BX be the unit ball of a complex Banach space X . A continuous mapping
f : BX → Cn is said to be pluriharmonic if there exist holomorphic mappings h,g from
BX to Cn such that f = h+g . We may assume that g(0) = 0. Let Bn be the unit ball
of Cn with respect to an arbitrary norm on Cn .

The following lemma is a generalization of [1, Lemma 4] (see also [9, Theorem
4.2] in the case k = 1).

LEMMA 3.1. Let f = h+g : BX → Bn be a pluriharmonic mapping and let

h(z) =
∞

∑
k=0

Pk(z),

and

g(z) =
∞

∑
k=1

Qk(z),

be the homogeneous polynomial expansions near 0 ∈ BX . Then, we have

‖Pk(w)+Qk(w)‖ � 4
π

, k � 1,‖w‖X = 1. (3.1)

Proof. For a fixed positive integer k and a fixed w ∈ ∂BX , let a = Pk(w)+Qk(w) .
If a = 0, then (3.1) holds. So, we may assume that a �= 0. In this case, let

fk(z) =
k

∑
j=1

f (ei2π j/kz)
k

, z ∈ BX .



BOHR PHENOMENON 1331

Then, we have fk(BX ) ⊂ Bn and

fk(ζw) = f (0)+
∞

∑
l=1

(Pkl(ζw)+Qkl(ζw)), ζ ∈ U. (3.2)

Let

φw(ζ ) = la

(
f (0)+

∞

∑
l=1

(Pkl(w)ζ l +Qkl(w)ζ l)

)
, ζ ∈ U,

where la ∈ T (a) . Using (3.2), it follows that φw is a harmonic mapping from U into
U . By applying the harmonic Schwarz-Pick lemma to φw , we have

‖a‖ = la(a) =
∣∣∣∣∂φw

∂ζ
(0)+

∂φw

∂ζ
(0)
∣∣∣∣� 4

π
.

This completes the proof. �
Using the above lemma, we obtain the following theorem. The following theorem

is a generalization of [1, Theorem 2].

THEOREM 3.2. Let f = h+g : BX → Bn be a pluriharmonic mapping and let

h(z) =
∞

∑
k=0

Pk(z),

and

g(z) =
∞

∑
k=1

Qk(z),

be the homogeneous polynomial expansions near 0 ∈ BX . Then, for ‖z‖ � 1/3 , we
have

∞

∑
k=1

‖Pk(z)+Qk(z)‖ � 2
π

. (3.3)

Proof. For fixed z ∈ BX \ {0} with ‖z‖ � 1/3, let w = z/‖z‖ . Then, by Lemma
3.1, we have

∞

∑
k=1

‖Pk(z)+Qk(z)‖ =
∞

∑
k=1

∥∥∥Pk (‖z‖w)+Qk (‖z‖w)
∥∥∥

�
∞

∑
k=1

(
1
3

)k

‖Pk(w)+Qk(w)‖

� 4
π

∞

∑
k=1

(
1
3

)k

=
2
π

.

This implies (3.3) as desired. This completes the proof. �
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Next, we consider the p -Bohr radius for bounded pluriharmonic mappings from
BX to Bn , where Bn is the Euclidean unit ball of Cn . First, we obtain the following
generalization of [11, Theorem 3].

THEOREM 3.3. Let f = h+g : BX → Bn be a pluriharmonic mapping and let

h(z) =
∞

∑
k=0

Pk(z),

and

g(z) =
∞

∑
k=1

Qk(z),

be the homogeneous polynomial expansions near 0 ∈ BX . Then, for any p � 1 and
‖z‖ = r ∈ (0,1) , we have

∞

∑
k=1

(‖Pk(z)‖p +‖Qk(z)‖p)1/p � max{2(1/p)−1/2,1}
√

1−‖P0‖2 r√
1− r2

. (3.4)

Proof. For fixed w ∈ ∂BX , we set z = reiθ w . Then, for any r ∈ (0,1) , we have

h(reiθ w) =
∞

∑
k=0

Pk(reiθ w), 0 � θ � 2π

g(reiθ w) =
∞

∑
k=1

Qk(reiθ w), 0 � θ � 2π

and

1
2π

∫ 2π

0
‖ f (reiθ w)‖2dθ =

1
2π

∫ 2π

0
‖h(reiθw)+g(reiθw)‖2dθ

=
1
2π

∫ 2π

0

(
‖h(reiθ w)‖2 +‖g(reiθw)‖2

)
dθ

= ‖P0‖2 +
∞

∑
k=1

(‖Pk(w)‖2 +‖Qk(w)‖2) r2k.

Since f (BX ) ⊂ Bn , we have

‖P0‖2 +
∞

∑
k=1

(‖Pk(w)‖2 +‖Qk(w)‖2)r2k � 1.

Letting r → 1, we obtain

‖P0‖2 +
∞

∑
k=1

(‖Pk(w)‖2 +‖Qk(w)‖2)� 1.
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It follows from this, the Cauchy-Hölder-Schwarz inequality and the inequality ap/2 +
bp/2 � (a+b)p/2 for a,b � 0 and p > 2 that

∞

∑
k=1

(‖Pk(z)‖p +‖Qk(z)‖p)1/p

�
√

∞

∑
k=1

(‖Pk(w)‖p +‖Qk(w)‖p)2/p

√
∞

∑
k=1

r2k

�
√

max(2
2
p−1,1)

∞

∑
k=1

(‖Pk(w)‖2 +‖Qk(w)‖2)
r√

1− r2

� max(2(1/p)−1/2,1)
√

1−‖P0‖2 r√
1− r2

This completes the proof. �
It is well known that every bounded holomorphic mapping on BX has the ho-

mogeneous polynomial expansion which converges uniformly on each ball rBX with
r ∈ (0,1) . As a corollary of the above theorem, it can be extended to bounded plurihar-
monic mappings with values in Cn .

COROLLARY 3.4. Let f = h + g : BX → Cn be a bounded pluriharmonic map-
ping. Then f and g have the homogeneous polynomial expansions

h(z) =
∞

∑
k=0

Pk(z), z ∈ BX

and

g(z) =
∞

∑
k=1

Qk(z), z ∈ BX ,

which converge uniformly on each ball rBX with r ∈ (0,1) .

Putting p = 1 and r � 1/3 in Theorem 3.3, we obtain the following result (cf.
[11, p.867]).

COROLLARY 3.5. Let f = h+g : BX → Bn be a pluriharmonic mapping and let

h(z) =
∞

∑
k=0

Pk(z), z ∈ BX

and

g(z) =
∞

∑
k=1

Qk(z), z ∈ BX

be the homogeneous polynomial expansions on BX . Then, for ‖z‖ � 1/3 , we have

∞

∑
k=1

(‖Pk(z)‖+‖Qk(z)‖) �
√

1−‖P0‖2

2
. (3.5)
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We also have the following generalizations of [11, Corollaries 2, 3 and 4].

COROLLARY 3.6. Let f = h + g : BX → Bn be a pluriharmonic mapping with
f (0) = 0 and let

h(z) =
∞

∑
k=1

Pk(z), z ∈ BX

and

g(z) =
∞

∑
k=1

Qk(z), z ∈ BX

be the homogeneous polynomial expansions on BX . If p � 2 , then we have

∞

∑
k=1

(‖Pk(z)‖p +‖Qk(z)‖p)1/p � 1, ‖z‖ � 1√
2
. (3.6)

The number 1/
√

2 is sharp.

Proof. Considering the case P0 = 0, r � 1/
√

2 and p � 2 in Theorem 3.3, we
obtain (3.6). Sharpness is given by the holomorphic mapping

f (z) =

⎛
⎝ lu(z)

(
1√
2
− lu(z)

)
1− 1√

2
lu(z)

,0, . . . ,0

⎞
⎠ ,

where lu ∈ T (u) and u ∈ X \ {0} are arbitrary. �

COROLLARY 3.7. Let f = h+g : BX → Bn be a pluriharmonic mapping and let

h(z) =
∞

∑
k=0

Pk(z), z ∈ BX

and

g(z) =
∞

∑
k=1

Qk(z), z ∈ BX

be the homogeneous polynomial expansions on BX .
(i) If p ∈ [1,2] , then we have

‖P0‖+
∞

∑
k=1

(‖Pk(z)‖p +‖Qk(z)‖p)1/p � 1, ‖z‖ � rp(‖P0‖), (3.7)

where

rp(‖P0‖) =

√
1−‖P0‖

2(2/p)−1 +1+(2(2/p)−1−1)‖P0‖
.

(ii) If p � 2 , then

‖P0‖+
∞

∑
k=1

(‖Pk(z)‖p +‖Qk(z)‖p)1/p � 1, ‖z‖ �
√

1−‖P0‖
2

.
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COROLLARY 3.8. Let f = h+g : BX → Bn be a pluriharmonic mapping and let

h(z) =
∞

∑
k=0

Pk(z), z ∈ BX

and

g(z) =
∞

∑
k=1

Qk(z), z ∈ BX

be the homogeneous polynomial expansions on BX . If p ∈ [1,2] and

‖P0‖ � A(p) =
8−2(2/p)−1

8+2(2/p)−1
,

then we have

‖P0‖+
∞

∑
k=1

(‖Pk(z)‖p +‖Qk(z)‖p)1/p � 1, ‖z‖ � 1
3
. (3.8)

Let U be the unit disc in C . For pluriharmonic functions from BX to U , we have
the following results.

The following lemma is a generalization of [1, Lemma 4].

LEMMA 3.9. Let f = h+g : BX → U be a pluriharmonic function and let

h(z) =
∞

∑
k=0

Pk(z), z ∈ BX

and

g(z) =
∞

∑
k=1

Qk(z), z ∈ BX

be the homogeneous polynomial expansions on BX . Then, we have

|eiμPk(w)+ e−iμQk(w)| � 2(1−|ℜ(eiμP0)|),
for any μ ∈ R , k � 1 , ‖w‖X = 1 .

Proof. Let
φμ(z) = eiμh(z)+ e−iμg(z), μ ∈ R.

Then, φμ(0) = eiμP0 and |ℜ(φμ(z))| = |ℜ(eiμ f (z))| < 1 for z ∈ BX .
Let Γ = {ζ ∈ C; |ℜ(ζ )| < 1} , and let

ψ(ζ ) =
2i
π

log
1+ ζ
1− ζ

.

Since φμ(0) ∈ Γ and ψ conformally maps U onto Γ , there exists η0 ∈ U such that
ψ(η0) = φμ(0) . We set the function

ϕ(ζ ) =
ζ + η0

1+ η0ζ
: U → U.
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Then ψ ◦ϕ(0) = φμ(0) and for each fixed w ∈ X with ‖w‖ = 1, the mapping : ζ �→
φμ(ζw) is subordinate to ψ ◦ϕ . Since ψ ◦ϕ is convex, by [1, Lemma 3], we have

|eiμPk(w)+ e−iμQk(w)| � 2d(ψ ◦ϕ(0),∂Γ) = 2(1−|ℜ(eiμP0)|).
This completes the proof. �

Using the above lemma, we obtain the following theorem, which is a generaliza-
tion of [1, Theorem 2].

THEOREM 3.10. Let f = h+g : BX → U be a pluriharmonic function and let

h(z) =
∞

∑
k=0

Pk(z), z ∈ BX

and

g(z) =
∞

∑
k=1

Qk(z), z ∈ BX

be the homogeneous polynomial expansions on BX . Then, for ‖z‖ � 1/3 , we have

∞

∑
k=1

|eiμPk(z)+ e−iμQk(z)|+ |ℜ(eiμP0)| � 1 (3.9)

for any μ ∈ R . The bound 1/3 is sharp. The sharpness is shown by the functions ϕw ,
w ∈ ∂BX , where

ϕw(z) =
lw(z)+a
1+alw(z)

for some a ∈ (0,1) .

Proof. For fixed z ∈ BX \ {0} with ‖z‖ � 1/3, let w = z/‖z‖ . Then, by Lemma
3.9, we have

∞

∑
k=1

|eiμPk(z)+ e−iμQk(z)| =
∞

∑
k=1

∣∣eiμPk (‖z‖w)+ e−iμQk (‖z‖w)
∣∣

�
∞

∑
k=1

(
1
3

)k

|eiμPk(w)+ e−iμQk(w)|

� 2(1−|ℜ(eiμP0)|)
∞

∑
k=1

(
1
3

)k

= 1−|ℜ(eiμP0)|.
Thus, we obtain (3.9) as desired.

Finally, we prove the sharpness of the bound 1/3. For fixed w ∈ ∂BX , let

f (z) = ϕw(z) =
lw(z)+a
1+alw(z)

,
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where a∈ (0,1) . Then for r ∈ (0,1) , we have Pk(rw) = (1−a2)(−a)k−1rk , Qk(rw) =
0 for k � 1 and P0 = a . Therefore

∞

∑
k=1

|Pk(rw)|+ |P0(rw)| > 1

if and only if a+(1−2a2)r > 1−ar . This is equivalent to a > (1/2)(1/r−1) . There-
fore, for any r with r > 1/3, there exists a such that 1 > a > (1/2)(1/r− 1) . Thus,
the bound 1/3 is sharp. This completes the proof. �

Let D be a bounded set in C and denote by D the closure of D . Let Dmin be
the smallest closed disk containing D . As a corollary of Theorem 3.10, we obtain the
following generalization of [2, Theorem 4.4] by using a simple proof.

THEOREM 3.11. Let f = h+g : BX → C be a pluriharmonic function and let

h(z) =
∞

∑
k=0

Pk(z), z ∈ BX

and

g(z) =
∞

∑
k=1

Qk(z), z ∈ BX

be the homogeneous polynomial expansions on BX . If f (BX ) ⊂ D for some bounded
domain D in C , then, for ‖z‖ � 1/3 , we have

∞

∑
k=1

|eiμPk(z)+ e−iμQk(z)|+ |ℜeiμ(P0−w0)| � ρ (3.10)

for any μ ∈ R , where ρ and w0 are respectively the radius and center of Dmin . If D
is a disc in C , then the bound 1/3 is sharp.

Proof. Let F = ρ−1( f −w0) . Then F = H+G : BX →C satisfies the assumptions
of Theorem 3.10, where

H(z) = ρ−1(P0(z)−w0)+
∞

∑
k=1

ρ−1Pk(z), z ∈ BX

and

G(z) =
∞

∑
k=1

ρ−1Qk(z), z ∈ BX .

By applying Theorem 3.10, we obtain (3.10) as desired. Sharpness also follows from
Theorem 3.10. This completes the proof. �
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4. Special family of holomorphic mappings

First, we give a lemma which will be used in the proof of Theorem 4.2. The
following result was used in [11, p.861] without proof and (ii) is noted in [11, p.862].
However, for the proof of it, they use an increasing property of the Bohr radius before
proving that rp,m is the (sharp) Bohr radius. So, we give a direct and elementary proof
here.

LEMMA 4.1. Let p ∈ N , m ∈ Z with 0 � m � p, and let rp,m be the maximal
positive root of the equation

−6rp−m + r2(p−m) +8r2p +1 = 0

in (0,1) .

(i) If m = 0 , then rp,0 = 1/ p
√

3 ;

(ii) if m � 1 , then 1/3 < rp
p,m holds.

Proof. (i) By direct computation, we obtain the unique solution rp,0 = 1/ p
√

3.
(ii) Let

ϕ(r) = −6rp−m + r2(p−m) +8r2p +1.

Since ϕ(1) = 4 > 0, it suffices to show that ϕ(1/ p
√

3) < 0. We have

ϕ(1/
p
√

3) = −2 ·3m/p +
1
9
(3m/p)2 +

17
9

.

Since the function

ψ(x) = −2x+
1
9
x2 +

17
9

is decreasing on the interval [0,9] and ψ(1) = 0, we obtain ϕ(1/ p
√

3) = ψ(3m/p) < 0.
This completes the proof. �

The following theorem is a generalization of [11, Theorem 1].

THEOREM 4.2. Let p ∈ N , m ∈ Z with 0 � m � p, and f : BX → U be a holo-
morphic function with the homogeneous polynomial expansion

f (z) =
∞

∑
k=0

Ppk+m(z), z ∈ BX .

Then, for ‖z‖ � rp,m , we have

∞

∑
k=0

|Ppk+m(z)| � 1, (4.1)

where rp,m is the maximal positive root of the equation

−6rp−m + r2(p−m) +8r2p +1 = 0 (4.2)

in (0,1) . The number rp,m is sharp.
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Proof. Let z ∈ BX \ {0} with ‖z‖ � rp,m be fixed and let w = z/‖z‖ . Let

F(ζ ) = f (ζw), ζ ∈ U.

Then F : U → U is holomorphic and

F(ζ ) = ζm
∞

∑
k=0

Ppk+m(w)ζ pk, ζ ∈ U.

By [11, Theorem 1], we have

rm
∞

∑
k=0

|Ppk+m(w)|rpk � 1, for r � rp,m.

Taking r = ‖z‖ , we obtain (4.1) as desired.
Next, we prove the sharpness. First, we consider the case m � 1. In this case, let

w ∈ ∂BX be arbitrarily fixed, r = rp,m and let

f (z) = l(z)m
(

l(z)p −a
1−al(z)p

)
with a = r−p

(
1−

√
1− r2p
√

2

)
,

where l ∈ T (w) . Note that 0 < a < 1, since m � 1 implies that 1/3 < rp
p,m < 1 by

Lemma 4.1. We have ∑∞
k=0 |Ppk+m(rw)| = 1 as in the proof of [11, Theorem 1]. This

implies that rp,m is sharp in the case m � 1.
Finally, we consider the case m = 0. In this case rp,0 = 1/ p

√
3. Let z0 ∈ BX with

r = ‖z0‖ > 1/ p
√

3 be fixed. Then there exists λ ∈ (0,1) such that rp > 1
1+2λ . Let

f (z) =
l(z)p −λ
1−λ l(z)p ,

where l ∈ T (w) and w = z0/‖z0‖ . Then f : BX → U is holomorphic and

∞

∑
k=0

|Ppk(z0)| =
∞

∑
k=0

|Ppk(rw)|

= λ +(1−λ 2)
rp

1−λ rp

> λ +(1−λ 2)
1

1+2λ

1−λ 1
1+2λ

= 1.

This implies that the constant 1/ p
√

3 is best possible. This completes the proof. �
As a corollary of the above theorem, we also have the following generalizations of

[10, Corollary 1] and [11, Corollary 1]. We obtain the Bohr radius for odd holomorphic
functions on BX in Corollary 4.3.
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COROLLARY 4.3. Let f : BX → U be a holomorphic function with the homoge-
neous polynomial expansion

f (z) =
∞

∑
k=0

P2k+1(z), z ∈ BX .

Then, for ‖z‖ � r2 = r2,1 , we have

∞

∑
k=0

|P2k+1(z)| � 1, (4.3)

where r2 = 0.789991 · · · is the maximal positive root of the equation

−6r1 + r2 +8r4 +1 = 0 (4.4)

in (0,1) . The number r2 is sharp.

COROLLARY 4.4. Let p � 1 and let f : BX → U be a holomorphic function with
the homogeneous polynomial expansion

f (z) =
∞

∑
k=0

Ppk(z), z ∈ BX .

Then, for ‖z‖ � 1/ p
√

3 , we have

∞

∑
k=0

|Ppk(z)| � 1. (4.5)

The radius 1/ p
√

3 is best possible.
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