
Mathematical
Inequalities

& Applications

Volume 23, Number 4 (2020), 1343–1360 doi:10.7153/mia-2020-23-99

n–DERIVATIONS AND FUNCTIONAL

INEQUALITIES WITH APPLICATIONS

AHMAD ALINEJAD, HAMID KHODAEI AND MEHDI ROSTAMI

(Communicated by S. Varošanec)

Abstract. We prove that every bounded n -derivation of a commutative factorizable Banach alge-
bra maps into its radical. Also, the nilpotency of eigenvectors of any bounded n -derivation corre-
sponding to its eigenvalues is derived. We introduce the notion of approximate n -derivations on
a Banach algebra A and show that the separating space of an approximate n -derivation (n > 2)
is not necessarily an ideal, unless the Banach algebra A is factorizable. From this and some
results on bounded n -derivations, we prove that every approximate n -derivation of a semisimple
factorizable Banach algebra is automatically continuous and every approximate n -derivation of
a commutative semisimple factorizable Banach algebra is identically zero. Some applications of
our results are also provided.

1. Introduction

Let A be an algebra and n � 2 be a fixed integer. A linear mapping f : A −→A
is called an n -derivation provided

f

(
n

∏
i=1

xi

)
=

n

∑
i=1

i−1

∏
ı=1

xı f (xi)
n

∏
ı=i+1

xı (1)

for all x1,x2, . . . ,xn ∈ A , where ∏l
ı=l+1 xı = 1 ∈ C with l ∈ {0,n} .

Letting xi = x (i = 1, . . . ,n) in (1), we see that f satisfies the n th power property
(see [5, 18]); that is,

f (xn) =
n

∑
i=1

xi−1 f (x)xn−i

for all x in A . For more details of the n th power property and other applications, see,
e.g., [4, 9, 13, 19, 32, 33].

Note that a 2-derivation is a derivation, in the usual sense, on an algebra. It is
easy to show that if f is a derivation, then it has the n th power property and is an
n -derivation for all n > 2, but the converse is not true, in general. For instance, let
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us consider the algebra of 3×3 matrices A =

⎧⎨
⎩
⎡
⎣ 0 α β

0 0 γ
0 0 0

⎤
⎦ : α,β ,γ ∈ C

⎫⎬
⎭ . Then the

mapping f : A −→ A , defined by

f

⎛
⎝
⎡
⎣ 0 α β

0 0 γ
0 0 0

⎤
⎦
⎞
⎠=

⎡
⎣ 0 α 0

0 0 0
0 0 0

⎤
⎦

(or the identity map on A ) is a 3-derivation, while is not a derivation. Also, in unital
algebras, it is easy to see that each n -derivation is a derivation. Some properties of the
n -derivations were investigated in [12, 14, 27].

Singer and Wermer [30] obtained a fundamental result which initiated investiga-
tion into the ranges of derivations on Banach algebras. The result, which is called the
Singer-Wermer theorem, states that every continuous linear derivation of a commuta-
tive Banach algebra maps into its radical. In particular, there is no nonzero continuous
derivation on a commutative semisimple Banach algebra. Thomas in [31] has shown
that the assumption of continuity is unnecessary in the Singer-Wermer theorem.

Chang et al. [15, 16, 26] and Park and Rassias [21]–[24] examined the func-
tional inequalities related to derivations and multipliers and their stability. The topic
of approximate homomorphisms and approximate derivations in the field of functional
equations and inequalities was taken up by several mathematicians, see [1]–[3], [6]–[8],
[20, 25] and references therein.

The remainder of this article is organized as follows. In Section 2, using the Ka-
plansky’s trick, we extend Singer and Wermer’s result [30] to n -derivations. Also, the
nilpotency of eigenvectors of any bounded n -derivation corresponding to its eigenval-
ues is derived.

The separating space of every approximate derivation on a Banach algebra is a
separating ideal; see [15]. In Section 3, we introduce the notion of approximate n -
derivations and show that this result is not necessarily true for approximate n -derivations
(n > 2) , unless the Banach algebra is factorizable. From this and some results on
bounded n -derivations, we prove that every approximate n -derivation of a semisim-
ple factorizable Banach algebra is automatically continuous, and also prove that, if the
Banach algebra is commutative, then the approximate n -derivation is identically zero.
Our results in this section generalize the main results of Kim, Chang and Roh [15, 26].

Finally, in Section 4, from the above results and a result of Brzdȩk and Fos̆ner
[7], we present some applications of approximate n -derivations related to the stability
theory and functional inequalities.

From now on, A stands for a complex Banach algebra with radical rad(A ) and n
is a fixed integer greater than 2, unless explicitly stated otherwise. We write Q(A ) for
the set of all quasinilpotent elements in A , that is, Q(A ) = {a∈A : σ(a)= 0}, where
σ(a) is the spectrum of a ∈ A . It is known that rad(A ) = {a ∈ A : aA ⊆ Q(A )}
and in the commutative case rad(A ) = Q(A ).
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2. Bounded n -derivations

In this section, we discuss and extend some important results of bounded deriva-
tions to bounded n -derivations.

LEMMA 1. Let A be an algebra, D : A −→A be an n-derivation and D2(a) =
0 . Then Dk(an) = k!(D(a))k holds for each k � n.

Proof. Since D2(a) = 0, D3(a) = D(D2(a)) = 0 and by the same way D4(a) =
D5(a) = · · · = 0. By Leibnitz rule for n -derivations,

Dk(an) = ∑
k1+k2+···+kn=k

k!
k1!k2! . . .!kn!

Dk1(a)Dk2(a) · · ·Dkn(a).

In each summand, Dki(a) = 0, except when k1 = k2 = · · · = kn = 1. So Dk(an) =
k!(D(a))k for each k � n .

THEOREM 1. Let D : A −→A be a bounded n-derivation and D2(a) = 0 . Then
D(a) is quasinilpotent.

Proof. By Lemma 1, for each k � n we have Dk(an) = k!(D(a))k . So∥∥∥k!(D(a))k
∥∥∥=

∥∥∥Dk(an)
∥∥∥� ‖D‖k‖a‖n. (2)

Thus ∥∥∥(D(a))k
∥∥∥� 1

k!
‖D‖k‖a‖n (k � n). (3)

So

lim
k→∞

∥∥∥(D(a))k
∥∥∥ 1

k � lim
k→∞

1
k
√

k!
‖D‖‖a‖ n

k = 0.

Hence r(D(a)) = 0. Therefore D(a) is quasinilpotent.
In the sequel, the bracket [a,b] stands for the commutator ab−ba for all a,b∈A .
In [30], Singer and Wermer proved that for a commutative Banach algebra A ,

the range of a bounded derivation D : A −→ A is contained in its radical. Using the
Kaplansky’s trick, we extend this result to n -derivations.

THEOREM 2. Let A be a commutative Banach algebra and D : A −→ A be a
bounded n-derivation. Then D(A n) ⊆ rad(A ) , where A n = linA ·A · · ·A︸ ︷︷ ︸

n-times

.

Proof. Since A is commutative, so for all a∈A we have
[
an−1,(n−1)an−2D(a)

]
= 0 and then [

Lan−1 ,L(n−1)an−2D(a)

]
= 0.
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So for each x ∈ A , we obtain

[Lan−1 ,−D] (x) = [D,Lan−1 ] (x)
= D◦Lan−1(x)−Lan−1 ◦D(x)

= D(an−1x)−an−1D(x)

= (n−1)an−2D(a)x = L(n−1)an−2D(a)(x).

Hence we get
[Lan−1 ,−D] = L(n−1)an−2D(a). (4)

Thus [Lan−1 , [Lan−1 ,−D]] = 0 and by the Kleinecke-Shirikov Theorem [17, 28], the
commutator [Lan−1 ,−D] is quasinilpotent and so L(n−1)an−2D(a) is quasinilpotent (i.e.,
r(L(n−1)an−2D(a)) = 0 in B(A ) , where B(A ) is the space of all bounded linear maps

on A ). That is, r((n−1)an−2D(a)) = 0. By [11, Proposition 1.5.32], we get

an−1D(a) = a(an−2)D(a) ∈ Q(A ) = rad(A ). (5)

Also by [11, Corollary 2.6.32] we obtain that nan−1D(a)∈ rad(A ) . On the other hand,
by the commutativity of A , we have D(an) = nan−1D(a) and so D(an) ∈ rad(A ) .
According to this fact that every element of A n could be written as a linear combination
of the n th power of elements of A ; that is,

n

∏
i=1

ai =
1

n!2n−1

n−1

∑
i1=1

· · ·
n−1

∑
in−1=1

(−1)∑n−1
k=1 ik

(
a1 +

n−1

∑
k=1

(−1)ikak+1

)n

,

hence D(A n) ⊆ rad(A ) .
We remark that a Banach algebra A is called factorizable if for each a in A there

are b and c in A such that a = bc . For a factorizable Banach algebra A , we have
A = A n . As a prompt result, we obtain the following.

COROLLARY 1. Let A be a commutative factorizable Banach algebra and
D : A −→ A be a bounded n-derivation. Then D(A ) ⊆ rad(A ) . Moreover, if A is
semisimple, then D is identically zero.

By a classical theorem due to Cohen [10], every Banach algebra with a bounded
approximate identity is factorizable. Every C∗ -algebra and the group algebra L1(G) ,
for a locally compact group G with a unique left Haar measure, are relevant examples
of this algebras. In the following, we characterize bounded n -derivations on L1(G) and
also on C∗ -algebras.

COROLLARY 2. Suppose that (i) G is an abelian locally compact group and
D : L1(G) −→ L1(G) is a bounded n-derivation or (ii) A is a commutative C∗ -
algebra and D : A −→ A is a bounded n-derivation. Then D is identically zero.

THEOREM 3. Let D be a bounded n-derivation on a Banach algebra A and let
a ∈ A . If a commutes with D(a) , then D(an) is quasinilpotent.
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Proof. Since aD(a) = D(a)a , we can conclude that

[Lan−1 , [Lan−1 ,−D]] =
[
Lan−1 ,L(n−1)an−2D(a)

]
= L[an−1,(n−1)an−2D(a)] = 0. (6)

So by a similar argument as in the proof of Theorem 2 we get

r((n−1)an−2D(a)) = r(L(n−1)an−2D(a)) = 0.

Moreover, for each k ∈ N we have∥∥∥(an−1D(a)
)k
∥∥∥=

∥∥∥ak (an−2D(a)
)k
∥∥∥�

∥∥∥ak
∥∥∥∥∥∥(an−2D(a)

)k
∥∥∥ .

Hence ∥∥∥(an−1D(a)
)k∥∥∥ 1

k � ‖a‖
∥∥∥(an−2D(a)

)k
∥∥∥ 1

k

holds for all positive integers k . Thus,
∥∥∥(an−1D(a)

)k
∥∥∥ 1

k → 0, as k → ∞ . Hence, we

have D(an) is quasinilpotent.
Finally, in this section, we give a result concerning n -derivations where nilpotency

is implied.

THEOREM 4. Let D : A −→A be a bounded n-derivation on a Banach algebra
A . The eigenvectors of D corresponding to nonzero eigenvalues are nilpotent.

Proof. If λ ∈ C \ {0} and D(a) = λa , then

D(akn−(k−1)) = (kn− (k−1))λakn−(k−1), for all k ∈ N .

To prove this, we proceed by induction as follows:
For k = 1, D(an) = nλan . So we prove the condition for k = 2.

D(a2n−1) = D(anan−1) = D(an)an−1 +anD(a)an−2 + . . .+anan−2D(a)

= nλa2n−1 + λa2n−1 + . . .+ λa2n−1︸ ︷︷ ︸
(n−1)-times

(by k = 1)

= λ (2n−1)a2n−1.

Therefore the assertion is true for k = 2. Suppose the assertion is true for k−1. Then

D(akn−(k−1)) = D(a(k−1)(n−1)+1an−1)

= D(a(k−1)(n−1)+1)an−1 +a(k−1)(n−1)+1D(a)an−2

+ . . .+a(k−1)(n−1)+1an−2D(a)

= ((k−1)(n−1)+1)λakn−(k−1)+ λakn−(k−1) + . . .+ λakn−(k−1)︸ ︷︷ ︸
(n−1)-times

(by hypothesis)

= λ (kn− (k−1))λakn−(k−1).
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Thus we conclude that D(akn−(k−1)) = (kn− (k−1))λakn−(k−1) , for all k ∈ N . Since
the spectrum is a compact set, we can choose k ∈ N such that k = k′n− (k′ − 1) for

some k′ ∈ N , and also k > r(D)
|λ | in which case | λ | k > r(D) . Therefore λk /∈ σ(D) ,

so that D− (λk)I is an invertible linear operator. Thus D(ak) = (λk)ak = λkI(ak) , I
as identity operator. We can deduce

D(ak)−λkI(ak) = (D−λkI)(ak) = 0.

Hence we have (D−λkI)−1(D−λkI)(ak) = 0, which yields ak = 0. Therefore, a is
nilpotent.

3. Automatic continuity of approximate n -derivations

In this section, we introduce the notion of approximate n -derivations that extends
the notion of approximate derivations, which was investigated in [15]. Now we deal
with automatic continuity of approximate n -derivations.

DEFINITION 1. We say that a mapping f : A −→A is an approximate n -derivation
if f is linear and satisfying∥∥∥∥∥ f

(
n

∏
i=1

xi

)
−

n

∑
i=1

i−1

∏
ı=1

xı f (xi)
n

∏
ı=i+1

xı

∥∥∥∥∥� ε (7)

for all x1,x2, . . . ,xn ∈A and for some ε > 0, where ∏l
ı=l+1 xı = 1∈C with l ∈ {0,n} .

Let A , B be normed linear spaces and f : A −→ B be a linear mapping. The
separating space of f is defined by

S( f ) = {b ∈ B : ∃sequence (an) in A such that an → 0 and f (an) → b}.

The separating space S( f ) is a closed linear subspace of B ; moreover, if A and
B are F -spaces, then, by the closed graph theorem, f is continuous if and only if
S( f ) = {0} [11, Proposition 5.1.2].

DEFINITION 2. Let A be a Banach algebra and I is a closed ideal in A . We say
I is a separating ideal if for every sequence {an} in A , there exists N ∈ N such that
(Ian · · ·a1) = (IaN · · ·a1) for all n � N.

It is known that the separating space of every derivation on a Banach algebra is
a separating ideal; see [29]. This result has been extended in [15] for approximate
derivations. In the sequel, we show that the above result is not necessarily true for
approximate n -derivations (n > 2) unless the Banach algebra is factorizable.

THEOREM 5. Let A be a factorizable Banach algebra and f : A −→ A be an
approximate n-derivation. Then S( f ) is a separating ideal.
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Proof. Let a ∈ A and y ∈ S( f ) . Then there exists a sequence {xn} ∈ A with
xn → 0 and f (xn) → y . Since A is factorizable, there exist a1,a2, . . . ,an−1 ∈ A such
that a = ∏n−1

i=1 ai . As axn → 0 we have

‖ f (naxn)−nay‖=

∥∥∥∥∥ f

(
n−1

∏
i=1

naixn

)
−n

n−1

∏
i=1

aiy

∥∥∥∥∥
�
∥∥∥∥∥ f

(
n−1

∏
i=1

naixn

)
−n

n−1

∑
i=1

i−1

∏
ı=1

aı f (ai)
n−1

∏
ı=i+1

aıxn −n
n−1

∏
i=1

ai f (xn)

∥∥∥∥∥
+n

∥∥∥∥∥
n−1

∑
i=1

i−1

∏
ı=1

aı f (ai)
n−1

∏
ı=i+1

aı

∥∥∥∥∥‖xn‖+n

∥∥∥∥∥
n−1

∏
i=1

ai

∥∥∥∥∥‖ f (xn)− y‖ .

for all natural numbers n . Hence

‖ f (axn)−ay‖ � ε
n

+

(
n−1

∑
i=1

i−1

∏
ı=1

‖aı‖‖ f (ai)‖
n−1

∏
ı=i+1

‖aı‖
)
‖xn‖

+

(
n−1

∏
i=1

‖ai‖
)
‖ f (xn)− y‖ −→ 0

as n → ∞ . Therefore, f (axn)→ ay and we get ay∈ S( f ) . Similarly ya∈ S( f ) . Next
for an arbitrary sequence {bn} ∈A , we define Rn = Tn by Rn (y) = Tn (y) = ybn . By
the factorizability of A we obtain that bn = ∏m−1

i=1 cn
i for some cn

1,c
n
2, . . . ,c

n
m−1 ∈ A .

So, for each natural number k ,

‖( f ◦Tn−Rn ◦ f )(ky)‖ = ‖ f (kybn)− f (ky)bn‖

=

∥∥∥∥∥ f

(
ky

m−1

∏
i=1

cn
i

)
− f (ky)

m−1

∏
i=1

cn
i

∥∥∥∥∥
�
∥∥∥∥∥ f

(
ky

m−1

∏
i=1

cn
i

)
− f (ky)

m−1

∏
i=1

cn
i − ky

n−1

∑
i=1

i−1

∏
ı=1

cn
ı f (cn

i )
n−1

∏
ı=i+1

cn
ı

∥∥∥∥∥
+‖ky‖

∥∥∥∥∥
n−1

∑
i=1

i−1

∏
ı=1

cn
ı f (cn

i )
n−1

∏
ı=i+1

cn
ı

∥∥∥∥∥
� ε +‖ky‖

(
n−1

∑
i=1

i−1

∏
ı=1

‖cn
ı ‖‖ f (cn

i )‖
n−1

∏
ı=i+1

‖cn
ı ‖
)

,

which implies that

‖( f ◦Tn−Rn ◦ f )(y)‖ � ε
k

+‖y‖
(

n−1

∑
i=1

i−1

∏
ı=1

‖cn
ı ‖‖ f (cn

i )‖
n−1

∏
ı=i+1

‖cn
ı ‖
)

.

Then we have f ◦Tn−Rn ◦ f is continuous for each n ∈ N . Consequently S( f ) is a
separating ideal by [29, Lemma 1.6].

The next example indicates that Theorem 5 is not true without the assumption that
A ia a factorizable Banach algebra.
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EXAMPLE 1. Let A =

⎧⎨
⎩
⎡
⎣ 0 α β

0 0 γ
0 0 0

⎤
⎦ : α,β ,γ ∈ C

⎫⎬
⎭ be a subalgebra of M3(C)

with the operator norm. Then A is not a factorizable Banach algebra. Define the
mapping f : A −→ A by

f

⎛
⎝
⎡
⎣ 0 α β

0 0 γ
0 0 0

⎤
⎦
⎞
⎠=

⎡
⎣0 α 0

0 0 0
0 0 0

⎤
⎦ .

From the fact that, for all X ∈ A , we have X3 = 0, it is easy to show that f is an
approximate 3-derivation. We want to show that S( f ) is not an ideal in A . To this
end, suppose that A ∈ A and Y ∈ S( f ) . Then

A =

⎡
⎣ 0 a b

0 0 c
0 0 0

⎤
⎦ and Y =

⎡
⎣ 0 α β

0 0 γ
0 0 0

⎤
⎦ ,

for some a,b,c,α,β ,γ ∈ C , and

AY =

⎡
⎣ 0 0 aγ

0 0 0
0 0 0

⎤
⎦ .

Given a sequence {Xn} ∈A such that Xn → 0 and f (Xn)→ AY . The following equal-
ities

‖ f (Xn)−AY‖ =

∥∥∥∥∥∥
⎡
⎣ 0 xn 0

0 0 0
0 0 0

⎤
⎦−

⎡
⎣0 0 aγ

0 0 0
0 0 0

⎤
⎦
∥∥∥∥∥∥=

∥∥∥∥∥∥
⎡
⎣ 0 xn −aγ

0 0 0
0 0 0

⎤
⎦
∥∥∥∥∥∥

= sup

⎧⎨
⎩
∥∥∥∥∥∥
⎡
⎣ 0 xn −aγ

0 0 0
0 0 0

⎤
⎦
⎡
⎣ t1

t2
t3

⎤
⎦
∥∥∥∥∥∥ :

∥∥∥∥∥∥
⎡
⎣ t1

t2
t3

⎤
⎦
∥∥∥∥∥∥� 1

⎫⎬
⎭

= sup

⎧⎨
⎩
∥∥∥∥∥∥
⎡
⎣ xnt2−aγt3

0
0

⎤
⎦
∥∥∥∥∥∥ :| t1 |2 + | t2 |2 + | t3 |2� 1

⎫⎬
⎭

= sup
{| xnt2−aγt3 |:| t1 |2 + | t2 |2 + | t3 |2� 1

}
,

hold. Letting t1 = t2 = 0 and t3 = 1 in the above equality, we have

‖ f (Xn)−AY‖ �| aγ |> 0. (8)

We obtain by (8) that AY /∈ S( f ) . Therefore S( f ) is not a separating ideal.

THEOREM 6. Let A be a semisimple factorizable Banach algebra. Then every
approximate n-derivation f : A −→ A is automatically continuous.
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Proof. By virtue of Theorem 5, S( f ) is a separating ideal. Since A is semisim-
ple, we have S( f ) is finite-dimensional [11, Corollary 5.2.28]. Also, by [11, Theorem
1.5.4], we deduce that

rad(S( f )) = S( f )∩ rad(A ) = {0} .

Then S( f ) is a semisimple finite-dimensional algebra. From the Wedderburn Structure
Theorem [11, Theorem 1.5.9], S( f ) has an identity element e . Then there exists a
sequence {xm} in A such that xm → 0 and f (xm) → e . Hence we get

lim
m→∞

f (xm)e = e. (9)

Moreover, since S( f ) is finite-dimensional and xme→ 0 in S( f ) , we have f (xme)→
0. On the other hand,

‖ f (xm) ·me‖ =
∥∥ f (xm) ·men−1

∥∥
�
∥∥∥∥∥ f

(
xm ·men−1)− f (xm) ·men−1− xm ·m

n−1

∑
i=1

ei−1 f (e)en−i−1

∥∥∥∥∥
+
∥∥ f

(
xm ·men−1)∥∥+m‖xm‖

n−1

∑
i=1

‖ f (e)e‖

� ε +‖ f (xm ·me)‖+m(n−1)‖xm‖‖ f (e)‖‖e‖ ,

which implies that

‖ f (xm)e‖ � ε
m

+‖ f (xme)‖+(n−1)‖xm‖(‖ f (e)e‖) .

By letting m→ ∞ , it follows that f (xm)e→ 0. Thus, by equation (9), we obtain e = 0;
that is, x = xe = 0 for all x ∈ S( f ) . Therefore, S( f ) = {0} and so f is continuous.

COROLLARY 3. Suppose that (i) A is a semisimple Banach algebra with a
bounded left (right) approximate identity and f : A −→ A is an approximate n-
derivation, (ii) A is a C∗ -algebra and f : A −→ A is an approximate n-derivation
or (iii) G is a locally compact group and f : L1(G) −→ L1(G) is an approximate
n-derivation. Then f is automatically continuous.

From Corollary 1 and Theorem 6, we prove the following theorem.

THEOREM 7. Let A be a commutative semisimple factorizable Banach algebra.
Then every approximate n-derivation on A is an n-derivation and so vanishes.

Proof. Suppose that f : A → A is an approximate n -derivation satisfying in-
equality (7). Let c,x1, . . . ,xn be arbitrary elements of A . Since A is factorizable thus
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we can write c = ∏n−1
i=1 ci for some c1,c2, . . . ,cn−1 ∈A . For every character ϕ ∈ Δ(A )

(Δ(A ) denotes the set of all nonzero multiplicative linear functionals on A ), we have

∣∣∣ϕ(c) ϕ

(
f (

n

∏
i=1

xi)−
n

∑
i=1

i−1

∏
ı=1

xı f (xi)
n

∏
ı=i+1

xı

)∣∣∣
=
∣∣∣ϕ
(

n−1

∏
i=1

ci

[
f (

n

∏
i=1

xi)−
n

∑
i=1

i−1

∏
ı=1

xı f (xi)
n

∏
ı=i+1

xı

])∣∣∣
�
∣∣∣ϕ
(

n

∏
i=1

ci f (
n

∏
i=1

xi)+
n−1

∑
i=1

i−1

∏
ı=1

cı f (ci)
n−1

∏
ı=i+1

cı

n

∏
j=1

x j − f
(n−1

∏
i=1

ci

n

∏
i=1

xi

))∣∣∣
+
∣∣∣ϕ
(

n−1

∑
i=1

i−1

∏
ı=1

xı f (xi)
n

∏
ı=i+1

xı

n−1

∏
j=1

c j − f
(
xn

n−1

∏
i=1

ci

) n−1

∏
i=1

xi + f
( n−1

∏
i=1

ci

n

∏
i=1

xi

))∣∣∣
+
∣∣∣ϕ
(

f (xn)
n−1

∏
i=1

ci

n−1

∏
i=1

xi−
n−1

∑
i=1

i−1

∏
ı=1

cı f (ci)
n

∏
ı=i+1

cı

n

∏
j=1

x j + f
(
xn

n−1

∏
i=1

ci

) n−1

∏
i=1

xi

)∣∣∣
� 2ε + ε

(n−1

∏
i=1

‖xi‖
)
.

Since ϕ is a character so we can choose a sequence cn ∈ A such that limn �→∞ ϕ(cn) =
∞. Dividing the above inequality by |ϕ(cn)| , we conclude that

f (
n

∏
i=1

xi)−
n

∑
i=1

i−1

∏
ı=1

xı f (xi)
n

∏
ı=i+1

xı ∈
⋂

ϕ∈Δ(A )

kerϕ = rad(A ) = {0},

and so f is an n -derivation. On the other hand, from Theorem 6, f is continuous.
Therefore, by Corollary 1, the proof of this theorem is complete.

Recall that the above theorem applied to commutative C∗ -algebras and the group
algebras associated with abelian locally compact groups.

4. Applications in stability theory and functional inequalities

In this section, we present some applications of the results, presented in the previ-
ous sections, to the stability theory and functional inequalities.

We introduce a useful result that can be easily derived from Brzdȩk and Fos̆ner [7,
Lemma 1].

LEMMA 2. Let A be a Banach algebra and S ⊂ U := {z ∈ C : |z| = 1} be a
connected set containing at least two points. Let f : A → A be an additive mapping
such that f (μx) = μ f (x) for all x ∈ A and μ ∈ S . Then f is C-linear.

In the rest of this section, S stands for a connected subset of U such that 1 ∈ S
and S \ {1} �= /0 .
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LEMMA 3. Suppose A is a vector space and B is a Banach space. Let f : A →
B and T : A n → [0,∞) be mappings such that∥∥∥∥∥

n

∑
i=1

f

(
xi +

∑n
j=1, j �=i x j

n−1

)∥∥∥∥∥�
∥∥∥∥∥2 f

(
n

∑
i=1

xi

)∥∥∥∥∥+T (x1,x2, . . . ,xn) , (10)

lim
m→∞

2−κmT (2κmx1,2
κmx2, . . . ,2

κmxn) = 0, (11)

∃κ ∈ {−1,1},
∞

∑
l= 1−κ

2

2−lκ
[
2T

(
2κ l(n−1)

n−2
x,

2κ l(1−n)
n−2

x,0, . . . ,0

)

+T

(
2lκ+1(n−1)

n−2
x,

2κ l(1−n)
n−2

x,
2κ l(1−n)

n−2
x,0, . . . ,0

)]
< ∞

(12)

for all x,x1,x2, . . . ,xn ∈ A . Then there exists a unique additive mapping D : A → B
with

‖ f (x)−D(x)‖ �
∞

∑
l= 1−κ

2

2−κ l−1
[
2T

(
2κ l(n−1)

n−2
x,

2κ l(1−n)
n−2

x,0, . . . ,0

)

+T

(
2κ l+1(n−1)

n−2
x,

2κ l(1−n)
n−2

x,
2κ l(1−n)

n−2
x,0, . . . ,0

)

+
(3n−1)(1+ κ)

2n−4
T (0,0, . . . ,0)

]
, x ∈ A .

(13)

Proof. Letting x1 = x2 = · · · = xn = 0 in (10), we obtain

‖ f (0)‖ � 1
n−2

T (0,0, . . . ,0) . (14)

If κ = −1, since T (0,0, . . . ,0) = 0, f (0) = 0. Setting x1 = n−1
n−2 x , x2 = 1−n

n−2 x and
x3 = · · · = xn = 0 in (10), we see that

‖ f (x)+ f (−x)+ (n−2) f (0)‖� T

(
n−1
n−2

x,
1−n
n−2

x,0, . . . ,0

)
+‖2 f (0)‖ (15)

for all x ∈ A . It follows from (14) and (15) that

‖ f (x)+ f (−x)‖ � T

(
n−1
n−2

x,
1−n
n−2

x,0, . . . ,0

)
+

n(1+ κ)
2n−4

T (0,0, . . . ,0) (16)

for all x ∈ A . Putting x1 = 2n−2
n−2 x , x2 = x3 = 1−n

n−2 x and x4 = · · · = xn = 0 in (10), we
get

‖ f (2x)+2 f (−x)+ (n−3) f (0)‖�T

(
2n−2
n−2

x,
1−n
n−2

x,
1−n
n−2

x,0, . . . ,0

)
+‖2 f (0)‖

(17)
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for all x ∈ A . It follows from (16) and (17) that

‖ f (2x)+2 f (−x)‖ �T

(
2n−2
n−2

x,
1−n
n−2

x,
1−n
n−2

x,0, . . . ,0

)

+
(n−1)(1+ κ)

2n−4
T (0,0, . . . ,0)

(18)

for all x ∈ A . We deduce from (16) and (18) that

‖ f (2x)−2 f (x)‖ �2T

(
n−1
n−2

x,
1−n
n−2

x,0, . . . ,0

)

+T

(
2n−2
n−2

x,
1−n
n−2

x,
1−n
n−2

x,0, . . . ,0

)

+
(3n−1)(1+ κ)

2n−4
T (0,0, . . . ,0)

(19)

for all x ∈ A . Hence∥∥∥2−κ(m+1) f
(
2κ(m+1)x

)
−2−κk f

(
2κkx

)∥∥∥
�

m

∑
l=k

∥∥∥2−κ(l+1) f
(
2κ(l+1)x

)
−2−κ l f

(
2κ lx

)∥∥∥
�

m

∑
l=k+ 1−κ

2

2−κ l−1
[
2T

(
2κ l(n−1)

n−2
x,

2κ l(1−n)
n−2

x,0, . . . ,0

)

+T

(
2lκ+1(n−1)

n−2
x,

2κ l(1−n)
n−2

x,
2κ l(1−n)

n−2
x,0, . . . ,0

)

+
(3n−1)(1+ κ)

2n−4
T (0,0, . . . ,0)

]

(20)

for all k,m ∈ N with m > k and all x ∈ A .Thus the sequence {2−κm f (2κmx)} is
Cauchy and, since B is a Banach space, there exists a limit mapping D : A → B by
D(x) := limm→∞ 2−κm f (2κmx) for all x ∈ A such that (13) holds.

The next step is to show that D is additive. Letting (2κmx1,2κmx2, . . . ,2κmxn) for
(x1,x2, . . . ,xn) in (10), we obtain∥∥∥∥∥

n

∑
i=1

2−κm f

(
2κmxi +

∑n
j=1, j �=i 2

κmx j

n−1

)∥∥∥∥∥�
∥∥∥∥∥2−κm+1 f

(
n

∑
i=1

2κmxi

)∥∥∥∥∥
+2−κmT (2κmx1,2

κmx2, . . . ,2
κmxn)

(21)

for all m ∈ N and all x1,x2, . . . ,xn ∈ A . Letting m → ∞ and using (11), we observe
that ∥∥∥∥∥

n

∑
i=1

D

(
xi +

∑n
j=1, j �=i x j

n−1

)∥∥∥∥∥�
∥∥∥∥∥2D

(
n

∑
i=1

xi

)∥∥∥∥∥ (22)
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for all x1,x2, . . . ,xn ∈ A . Setting x1 = x2 = · · · = xn = 0 in (22), we have

‖nD(0)‖ � ‖2D(0)‖ .

Since n � 3, D(0) = 0. Putting x1 = n−1
n−2 x , x2 = 1−n

n−2 x and x3 = · · · = xn = 0 in (22),
we obtain

‖D(x)+D(−x)+ (n−2)D(0)‖= ‖D(x)+D(−x)‖
� ‖2D(0)‖ = 0

for all x ∈ A . Hence D(−x) = −D(x) for all x ∈ A . Letting x1 = n−1
n−2 (x + y) ,

x2 = 1−n
n−2 x , x3 = 1−n

n−2 y and x4 = · · · = xn = 0 in (22), we get

‖D(x+ y)+D(−x)+D(−y)+ (n−3)D(0)‖= ‖D(x+ y)−D(x)−D(y)‖
� ‖2D(0)‖ = 0

for all x,y ∈ A . Thus we have D(x+ y) = D(x)+D(y) for all x,y ∈ A ; that is, D is
additive.

Our next goal is to show that D is unique. Suppose D′ : A → B is another
additive mapping satisfying the inequality (13). Then, for every m ∈ N and all x ∈ A ,
we get

‖D(x)−D′(x)‖ = 2−κm
∥∥D(2κmx)− f (2κmx)+ f (2κmx)−D′ (2κmx)

∥∥
� 2−κm{‖ f (2κmx)−D(2κmx)‖+

∥∥ f (2κmx)−D′ (2κmx)
∥∥}

�
∞

∑
l=m+ 1−κ

2

2−κ l
[
2T

(
2κ l(n−1)

n−2
x,

2κ l(1−n)
n−2

x,0, . . . ,0

)

+T

(
2κ l+1(n−1)

n−2
x,

2κ l(1−n)
n−2

x,
2κ l(1−n)

n−2
x,0, . . . ,0

)

+
(3n−1)(1+ κ)

2n−4
T (0,0, . . . ,0)

]
,

whence, letting m → ∞ and using (12), we have D(x)−D′(x) = 0. Since this is true
for all x ∈ A , we obtain D = D′ , as desired.

THEOREM 8. Let A be a Banach algebra. Suppose a mapping T : A n → [0,∞)
satisfies (12) and

lim
m→∞

2
−m
2 (1−n+κ+κn)T (2κmx1,2

κmx2, . . . ,2
κmxn) = 0 (23)

for all x1,x2, . . . ,xn ∈ A . If a mapping f : A → A satisfies the inequalities∥∥∥∥∥μ f

(
x1 +

∑n
j=2 x j

n−1

)
+

n

∑
i=2

f

(
μxi +

∑n
j=1, j �=i μx j

n−1

)∥∥∥∥∥
�
∥∥∥∥∥2 f

(
n

∑
i=1

μxi

)∥∥∥∥∥+T (x1,x2, . . . ,xn) , (24)
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(
n

∏
i=1

xi

)
−

n

∑
i=1

i−1

∏
ı=1

xı f (xi)
n

∏
ı=i+1

xı

∥∥∥∥∥� T (x1,x2, . . . ,xn) (25)

for all x1,x2, . . . ,xn ∈A and all μ ∈ S , then there exists a unique n-derivation D : A →
A satisfying (13). Moreover, if limm→∞ 2−κmT (2κmx1,x2, . . . ,xn) = 0 , then

n

∑
i=2

i−1

∏
ı=1

xı (D(xi)− f (xi))
n

∏
ı=i+1

xı = 0 (26)

for all x1,x2, . . . ,xn ∈A . Moreover, if A is semisimple factorizable, then D is contin-
uous.

Proof. Letting μ = 1 in (8), we observe that f satisfies (10) with

‖ f (0)‖ � 1+ κ
2n−4

T (0,0, . . . ,0) . (27)

From Lemma 3, it follows that there exists a unique additive mapping D : A → A
satisfying (13), where D(x) := limm→∞ 2−κm f (2κmx) for all x ∈ A .

Setting x1 = n−1
n−2 x , x2 = 1−n

n−2 x and x3 = · · · = xn = 0 in (8), we obtain

‖μ f (x)+ f (−μx)+ (n−2) f (0)‖� ‖2 f (0)‖+T

(
n−1
n−2

x,
1−n
n−2

x,0, . . . ,0

)
,

which by setting x = 2κmx and using (27) yields∥∥μ2−κm f (2κmx)+2−κm f (−2κmμx)
∥∥

� 2−κm
[
T

(
2κm(n−1)

n−2
x,

2κm(1−n)
n−2

x,0, . . . ,0

)
+

n(1+ κ)
2n−4

T (0,0, . . . ,0)
]

for all m ∈ N , all x ∈ A and all μ ∈ S . Allowing m tending to infinity and using the
fact that D is additive, it is easy to see that

μD(x)−D(μx) = μD(x)+D(−μx) = 0

for all x ∈ A and all μ ∈ S . Hence, μD(x) = D(μx) for all x ∈ A and all μ ∈ S . So
by Lemma 2, the mapping D : A → A is C-linear.

Also, we see from the inequality (25) that

2−κnm

∥∥∥∥∥ f

(
n

∏
i=1

2κnmxi

)
−

n

∑
i=1

i−1

∏
ı=1

2κmxı f (2κmxi)
n

∏
ı=i+1

2κmxı

∥∥∥∥∥
� 2−κnmT (2κmx1,2

κmx2, . . . ,2
κmxn)

whence, letting m → ∞ and using (23), we observe that D satisfies (1). Therefore,
D : A → A is a unique n -derivation satisfying (13).
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Now, replacing x1 = 2κmx1 in (25), one finds∥∥∥∥∥2−κm f

(
2κm

n

∏
i=1

xi

)
−2−κm f (2κmx1)

n

∏
i=2

xi −
n

∑
i=2

i−1

∏
ı=1

xı f (xi)
n

∏
ı=i+1

xı

∥∥∥∥∥
� 2−κmT (2κmx1,x2, . . . ,xn) ,

and since 2−κmT (2κmx1,x2, . . . ,xn) → 0 as m → ∞ , we have

D

(
n

∏
i=1

xi

)
−D(x1)

n

∏
i=2

xi−
n

∑
i=2

i−1

∏
ı=1

xı f (xi)
n

∏
ı=i+1

xı = 0 (28)

for all x1,x2, . . . ,xn ∈ A . Since D is a n -derivation, we get (26) from (28).
Furthermore, if A is semisimple factorizable, then Theorem 6 guarantees that D

is continuous.

COROLLARY 4. Let A be a Banach algebra. If a mapping f : A → A satisfies
the inequality (7) and∥∥∥∥∥μ f

(
x1 +

∑n
j=2 x j

n−1

)
+

n

∑
i=2

f

(
μxi +

∑n
j=1, j �=i μx j

n−1

)∥∥∥∥∥�
∥∥∥∥∥2 f

(
n

∑
i=1

μxi

)∥∥∥∥∥+ ε

for all x1,x2, . . . ,xn ∈A and all μ ∈ S , then there exists a unique n-derivation D : A →
A satisfying (26) and

‖ f (x)−D(x)‖ � 6n−7
n−2

ε (29)

for all x ∈ A . Moreover, if A is unital semisimple, then f is a continuous derivation.

Proof. It follows from Theorem 8 that there exists a unique n -derivation D : A →
A satisfying (26) and (29), where D(x) := limm→∞ 2−m f (2mx) for all x ∈ A .

By letting x1 = x2 = · · · = xn = e in (26), we get (n−1)(D(e)− f (e)) = 0, and
so f (e) = D(e) . Next, by letting x1 = x2 = · · · = xn−1 = e and xn = x in (26), we
obtain f (x) = D(x) for all x ∈ A . Thus f is an n -derivation. Since A is unital, we
can conclude that f is an derivation, and since A is semisimple, f is a continuous.

THEOREM 9. Let A be a semisimple factorizable Banach algebra. Suppose a
mapping T : A n → [0,∞) satisfies the relations

T

(
n−1
n−2

x,
1−n
n−2

x,0, . . . ,0

)
= T

(
2n−2
n−2

x,
1−n
n−2

x,
1−n
n−2

x,0, . . . ,0

)
= 0

and

∃κ ∈ {−1,1}, lim
m→∞

2−κmT

(
n−1
n−2

2κm(x+ y),
1−n
n−2

2κmx,
1−n
n−2

2κmy,0, . . . ,0

)
= 0

(30)
for all x,y ∈ A . If a mapping f : A → A satisfies (7) and (8), then f is continuous.
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Proof. Setting x1 = x2 = · · · = xn = 0 in (8) gives f (0) = 0. Putting μ = 1 in (8)
yields that f satisfies (10). Letting x1 = n−1

n−2 x , x2 = 1−n
n−2 x and x3 = · · · = xn = 0 in

(10), we see that f (x) = − f (x) for all x ∈ A . Putting x1 = 2n−2
n−2 x , x2 = x3 = 1−n

n−2 x
and x4 = · · · = xn = 0 in (10), we have f (2x) = 2 f (x) for all x ∈ A . Thus f (x) =
2−κ f (2κx) = · · · = 2−κm f (2κmx) for all m ∈ N and all x ∈ A . Therefore, we can
define f (x) := limm→∞ 2−κm f (2κmx) for all x ∈ A . It follows from (10) and (30) that

‖ f (x+ y)− f (x)− f (y)‖
= lim

m→∞
2−κm ‖ f (2κm(x+ y))+ f (−2κmx))+ f (−2κmy)‖

� lim
m→∞

2−κmT

(
n−1
n−2

2κm(x+ y),
1−n
n−2

2κmx,
1−n
n−2

2κmy,0, . . . ,0

)
= 0,

and so f (x+ y) = f (x)+ f (y) for all x,y ∈ A .
Setting x1 = n−1

n−2 x , x2 = 1−n
n−2 x and x3 = · · · = xn = 0 in (8), we obtain μ f (x)+

f (−μx) = μ f (x)− f (μx) = 0, and so μ f (x) = f (μx) for all x ∈ A and all μ ∈ S .
Thus by Lemma 2, the mapping f : A → A is C-linear.

We now consider the cases according to whether κ = 1 or κ = −1. First suppose
κ = 1. Using (7), we can state

lim
m→∞

2−nm

∥∥∥∥∥ f

(
n

∏
i=1

2nmxi

)
−

n

∑
i=1

i−1

∏
ı=1

2mxı f (2mxi)
n

∏
ı=i+1

2mxı

∥∥∥∥∥� lim
m→∞

2−nmε = 0.

Hence, f satisfies (1). Therefore, f : A →A is an n -derivation, and thus f is contin-
uous. Now assume κ = −1. Here, we deduce that f is an approximate n -derivation.
Since A is semisimple factorizable, Theorem 6 guarantees that f is continuous.

As a consequence, we have the following result.

COROLLARY 5. Let A be a semisimple factorizable Banach algebra. If a map-
ping f : A → A satisfies the inequality (7) and∥∥∥∥∥μ f

(
x1 +

∑n
j=2 x j

n−1

)
+

n

∑
i=2

f

(
μxi +

∑n
j=1, j �=i μx j

n−1

)∥∥∥∥∥�
∥∥∥∥∥2 f

(
n

∑
i=1

μxi

)∥∥∥∥∥
for all x1,x2, . . . ,xn ∈ A and all μ ∈ S , then f is continuous.

From Theorem 7, we can deduce the following result.

COROLLARY 6. If, under the conditions of Theorem 9 (or Corollary 5) , we as-
sume in addition A is commutative, then f is identically zero.
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[6] J. BRZDȨK AND K. CIEPLIŃSKI,Hyperstability and superstability, Abstr. Appl. Anal., (2013), Article

ID 401756.
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