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PROOFS OF CONJECTURES OF ELEZOVIĆ AND VUKŠIĆ

CONCERNING THE INEQUALITIES FOR MEANS

XUE-FENG HAN ∗ AND CHAO-PING CHEN

(Communicated by N. Elezović)

Abstract. By using the asymptotic expansion method, Elezović and Vukšić conjectured certain
inequalities related to Neuman-Sándor mean. The aim of this paper is to offer a proof of these
inequalities.

1. Introduction

For x,y > 0 with x �= y , the Neuman-Sándor mean M(x,y) was introduced in
[12, 13] by

M(x,y) =
x− y

2arcsinh( x−y
x+y )

.

Let

H =
2xy
x+ y

, G =
√

xy, L =
x− y

lnx− lny
, A =

x+ y
2

,

C =
2
3
· x2 + xy+ y2

x+ y
, Q =

√
x2 + y2

2
, N =

x2 + y2

x+ y

be the harmonic, geometric, logarithmic, arithmetic, centroidal, root-square, and con-
traharmonic means of two unequal and positive numbers x and y , respectively. It is
known that

H < G < L < A < M <C < Q < N.

There is a large number of papers studying inequalities between Neuman-Sándor
mean and convex combinations of other means. For example, Neuman [11] proved that
the double inequalities

ξ1Q+(1− ξ1)A < M < η1Q+(1−η1)A (1.1)

and
ξ2N +(1− ξ2)A < M < η2N +(1−η2)A (1.2)

Mathematics subject classification (2010): 26E60.
Keywords and phrases: Neuman-Sándor mean, inequality, optimal convex combination.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-24-01

1

http://dx.doi.org/10.7153/mia-2021-24-01


2 X.-F. HAN AND C.-P. CHEN

hold if and only if

ξ1 � 1− ln(1+
√

2)
(
√

2−1) ln(1+
√

2)
, η1 � 1

3
, ξ2 � 1− ln(1+

√
2)

ln(1+
√

2)
, η2 � 1

6
.

Zhao et al. [21] proved that the double inequalities

μ1H +(1− μ1)Q < M < ν1H +(1−ν1)Q, (1.3)

μ2G+(1− μ2)Q < M < ν2G+(1−ν2)Q, (1.4)

μ3H +(1− μ3)N < M < ν3H +(1−ν3)N (1.5)

hold if and only if

μ1 � 2
9
, ν1 � 1− 1√

2ln(1+
√

2)
,

μ2 � 1
3
, ν2 � 1− 1√

2ln(1+
√

2)
,

μ3 � 1− 1

2ln(1+
√

2)
, ν3 � 5

12
.

Xia and Chu [18] proved that the double inequality

α1C+(1−α1)H < M < β1C+(1−β1)H (1.6)

holds if and only if

α1 � 3

4ln(1+
√

5)
and β1 � 7

8
.

Qian and Chu [15] proved that the double inequality

α2C+(1−α2)A < M < β2C+(1−β2)A (1.7)

holds if and only if

α2 � 3−3ln(1+
√

2)
ln(1+

√
2)

and β2 � 1
2
.

For other similar results see [4, 5, 10, 14, 16, 19, 20, 22].
Recently, Elezović and Vukšić [7], by using the asymptotic expansion method,

gave a systematic study of inequalities of the form

(1− μ)M1 + μM3 < M2 < (1−ν)M1 + νM3

which apart from Neuman-Sándor mean also contains two classical means from the list
given at the beginnig of this section. For example, Elezović and Vukšić [7] proved the
double inequality

(1− μ)M+ μN < C < (1−ν)M + νN (1.8)
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holds if and only if

μ � 1
5

and ν � 4σ −3
6σ −3

,

where

σ = arcsinh(1) = ln(1+
√

2). (1.9)

In what follows, σ denotes the constant given in (1.9). See [2, 6, 8, 9, 17] for more
details about comparison of means using asymptotic methods.

The following inequalities related to Neuman-Sándor mean M(x,y) , with the best
possible constants, have been conjectured by Elezović and Vukšić [7]:

H < G <
4
7
H +

3
7
M, (1.10)

H < L <
3
7
H +

4
7
M, (1.11)

1
4
G+

3
4
M < A < (1−σ)G+ σM, (1.12)

1
3
L+

2
3
M < A < (1−σ)L+ σM, (1.13)

2
5
L+

3
5
Q < M <

√
2σ −1√

2σ
L+

1√
2σ

Q, (1.14)

5
8
L+

3
8
N < M <

2σ −1
2σ

L+
1

2σ
N, (1.15)

1
2
M +

1
2
Q < C <

(3
√

2−4)σ
3
√

2σ −3
M +

3−4σ
3−3

√
2σ

Q. (1.16)

In fact, (1.14) and (1.15) have been proved in [3]. The aim of this paper is to offer
a proof of inequalities (1.10)–(1.13), and (1.16).

REMARK 1.1. Let (x− y)/(x+ y) = z , and suppose x > y . Then z ∈ (0,1) , and
the following identities hold true:

H(x,y)
A(x,y)

= 1− z2,
G(x,y)
A(x,y)

=
√

1− z2,
L(x,y)
A(x,y)

=
2z

ln 1+z
1−z

,
M(x,y)
A(x,y)

=
z

arcsinhz
,

C(x,y)
A(x,y)

= 1+
1
3
z2,

Q(x,y)
A(x,y)

=
√

1+ z2,
N(x,y)
A(x,y)

= 1+ z2.

The following inequalities are required in our present investigation.

ln
1+ z
1− z

> 2
n

∑
j=1

z2 j−1

2 j−1
(1.17)
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and
2m−1

∑
j=0

(−1) j (2 j−1)!!
(2 j)!!

z2 j

2 j +1
<

arcsinhz
z

<
2m

∑
j=0

(−1) j (2 j−1)!!
(2 j)!!

z2 j

2 j +1
(1.18)

for 0 < z < 1 and m ∈ N := {1,2, . . .} . Here, we employ the special double factorial
notation as follows:

(2n)!! = 2 ·4 ·6 · · · (2n) = 2nn! = 2nΓ(n+1),

(2n−1)!! = 1 ·3 ·5 · · · (2n−1) = π−1/22nΓ
(

n+
1
2

)
,

0!! = 1, (−1)!! = 1

(see [1, p. 258]).
The numerical values given in this paper have been calculated via the computer

program MAPLE 13.

2. Proofs of inequalities (1.10)–(1.13), and (1.16)

First of all, we give a proof of (1.18). It is known (see [1, p. 88]) that

arcsinhz
z

=
∞

∑
n=0

(−1)nun(z), 0 < z < 1,

where

un(z) =
(2n−1)!!

(2n)!!
z2n

2n+1
=

Γ(n+ 1
2 )√

πΓ(n+1)
z2n

2n+1
.

Elementary calculations reveal that for 0 < z < 1 and n � 1,

un+1(z)
un(z)

=
(2n+1)2z2

(2n+2)(2n+3)
<

(2n+1)2

(2n+2)(2n+3)
< 1.

Hence, for every z ∈ (0,1) , the sequence (un(z))n�1 is strictly decreasing. We then
obtain

2m−1

∑
j=0

(−1) ju j(z) <
arcsinhz

z
<

2m

∑
j=0

(−1) ju j(z)

for 0 < z < 1 and m ∈ N := {1,2, . . .} . This proves (1.18).
We now prove inequalities (1.10)–(1.13), and (1.16).

THEOREM 2.1. The inequalities

(1−λ1)H + λ1M < G < (1−ω1)H + ω1M (2.1)

hold if and only if

λ1 � 0 and ω1 � 3
7
. (2.2)
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Proof. Clearly, the left-hand inequality of (2.1) holds for λ1 = 0. We now prove
the right-hand inequality of (2.1) with ω1 = 3

7 ,

G <
4
7
H +

3
7
M, (2.3)

which may be rewritten by Remark 1.1 as

√
1− z2 <

4
7
(1− z2)+

3
7

z
arcsinhz

, 0 < z < 1.

Using the right-hand inequality of (1.18) with m = 1 and

√
1− z2 < 1− 1

2
z2 − 1

8
z4, 0 < z < 1,

we find that for 0 < z < 1,

4(1− z2)+
3z

arcsinhz
−7

√
1− z2 > 4(1− z2)+

3

1− 1
6 z2 + 3

40z4
−7

(
1− 1

2
z2 − 1

8
z4

)

=
z4(704−176z2+63z4)
8(120−20z2 +9z4)

> 0.

Hence, (2.3) holds.
Conversely, if (2.1) is valid for some λ1 and ω1 , then

λ1 <

√
1− z2− (1− z2)

z
arcsinhz − (1− z2)

< ω1.

The limit relations

lim
z→0+

√
1− z2− (1− z2)

z
arcsinh z − (1− z2)

=
3
7

and lim
z→1−

√
1− z2− (1− z2)

z
arcsinhz − (1− z2)

= 0

yield

λ1 � 0 and ω1 � 3
7
.

The proof is complete.

THEOREM 2.2. The inequalities

(1−λ2)H + λ2M < L < (1−ω2)H + ω2M (2.4)

hold if and only if

λ2 � 0 and ω2 � 4
7
. (2.5)
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Proof. Clearly, the left-hand inequality of (2.4) holds for λ2 = 0. We now prove
the right-hand inequality of (2.4) with ω2 = 4

7 ,

L <
3
7
H +

4
7
M, (2.6)

which may be rewritten by Remark 1.1 as

2z

ln 1+z
1−z

<
3
7
(1− z2)+

4
7

z
arcsinhz

, 0 < z < 1.

Using the right-hand inequality of (1.18) with m = 1 and inequality (1.17) with n = 4,
we find that for 0 < z < 1,

3(1− z2)+
4z

arcsinhz
− 14z

ln( 1+z
1−z)

> 3(1− z2)+
4

1− 1
6z2 + 3

40z4
− 14z

2z+ 2
3 z3 + 2

5z5 + 2
7 z7

=
3z4

(
(1820−1806z4)+1330z2 + x6(246−135z2)

)
(120−20z2 +9z4)(105+35z2 +21z4 +15z6)

> 0.

Hence, (2.6) holds.
Conversely, if (2.4) is valid for some λ2 and ω2 , then

λ2 <

2z
ln 1+z

1−z
− (1− z2)

z
arcsinhz − (1− z2)

< ω2.

The limit relations

lim
z→0+

2z
ln 1+z

1−z
− (1− z2)

z
arcsinhz − (1− z2)

=
4
7

and lim
z→1−

2z
ln 1+z

1−z
− (1− z2)

z
arcsinhz − (1− z2)

= 0

yield

λ2 � 0 and ω2 � 4
7
.

The proof is complete.

THEOREM 2.3. The inequalities

(1−λ3)G+ λ3M < A < (1−ω3)G+ ω3M (2.7)

hold if and only if

λ3 � 3
4

and ω3 � σ . (2.8)
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Proof. By Remark 1.1, (2.7) may be rewritten for 0 < z < 1 as

λ3 < J1(z) < ω3,

where

J1(z) =
1−√

1− z2

z
arcsinhz −

√
1− z2

.

Elementary calculations reveal that

lim
z→0+

J1(z) =
3
4

and J1(1) = σ .

In order to prove Theorem 2.3, it suffices to show that J1(z) is strictly increasing for
0 < z < 1.

Differentiation yields

(z−
√

1− z2 arcsinhz)2
√

1− z4J′1(z) = U1(z), (2.9)

where

U1(z) = arcsinhz ·
√

1+ z2(1−
√

1− z2)− (arcsinhz)2z
√

1+ z2

+ z
(√

1− z2− (1− z2)
)
.

We now prove U1(z) > 0 for 0 < z < 1. By an elementary change of variable
z = sinhx (0 < x < σ) , it suffices to show that

U2(x) > 0, 0 < x < σ ,

where

U2(x) = xcoshx(1−
√

1− sinh2 x)− x2 sinhxcoshx

+ sinhx
(√

1− sinh2 x− (1− sinh2 x)
)
.

We find, for 0 < x < σ ,

U2(x) = xcoshx− (xcoshx− sinhx)
√

1− sinh2 x− 1
2
x2 sinh(2x)− sinhx+ sinh3 x

> xcoshx− (xcoshx− sinhx)
(

1− 1
2

sinh2 x

)
− 1

2
x2 sinh(2x)− sinhx+ sinh3 x

=
1
2

sinhx
(
sinh2 x−2x2 coshx+

x
2

sinh(2x)
)

=
1
2

sinhx
∞

∑
n=3

(n+1)4n−8n(2n−1)
2 · (2n)!

x2n > 0.

We then obtain that for 0 < z < 1,

U1(z) > 0 and J′1(z) > 0.

Hence, J1(z) is strictly increasing for 0 < z < 1. The proof is complete.
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THEOREM 2.4. The inequalities

(1−λ4)L+ λ4M < A < (1−ω4)L+ ω4M. (2.10)

hold if and only if

λ4 � 2
3

and ω4 � σ . (2.11)

Proof. We first prove (2.10) with λ4 = 2
3 and ω4 = σ ,

1
3
L+

2
3
M < A < (1−σ)L+ σM. (2.12)

Clearly, the right-hand side of (2.7) (with ω3 = σ ) is sharper than the right-hand side
of (2.12).

By Remark 1.1, the left-hand inequality of (2.12) may be rewritten as

1
3

2z

ln 1+z
1−z

+
2
3

z
arcsinhz

< 1, 0 < z < 1. (2.13)

Using inequality (1.17) with n = 3 and the left-hand inequality of (1.18) with m = 2,
we find that for 0 < z < 1,

3− 2z

ln 1+z
1−z

− 2z
arcsinhz

> 3− 2z

2z+ 2
3z3 + 2

5 z5
− 2

1− 1
6 z2 + 3

40z4 − 5
112z6

=
3z4(1540−960z2−225z6 +3z4)

(15+5z2 +3z4)(1680−280z2+126z4−75z6)
> 0.

Thus, the inequality (2.13) is true for 0 < z < 1.
We then obtain (2.10) with λ4 = 2

3 and ω4 = σ .
Conversely, if (2.10) is valid for some λ4 and ω4 , then

λ4 <
1− 2z

ln 1+z
1−z

z
arcsinhz − 2z

ln 1+z
1−z

< ω4, 0 < z < 1.

The limit relations

lim
z→0+

1− 2z
ln 1+z

1−z

z
arcsinhz − 2z

ln 1+z
1−z

=
2
3

and lim
z→1−

1− 2z
ln 1+z

1−z

z
arcsinhz − 2z

ln 1+z
1−z

= σ

yield

λ4 � 2
3

and ω4 � σ .

The proof is complete.
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THEOREM 2.5. The inequalities

(1−λ5)M + λ5Q < C < (1−ω5)M + ω5Q (2.14)

hold if and only if

λ5 � 1
2

and ω5 � 4σ −3

3
√

2σ −3
. (2.15)

Proof. By Remark 1.1, (2.14) may be rewritten as

λ5 <
1+ 1

3 z2 − z
arcsinhz√

1+ z2− z
arcsinhz

< ω5, 0 < z < 1. (2.16)

By an elementary change of variable z = sinhx (0 < x < σ) , (2.16) becomes

λ5 < G(x) < ω5, 0 < x < σ ,

where

G(x) =
1+ 1

3 sinh2 x− sinhx
x

coshx− sinhx
x

.

Differentiation yields

3
(
xcoshx− sinhx

)2
G′(x)

=
3
2

sinh(2x)+
1
2

(
x2−1

)
sinh(2x)coshx− (2x2 +2)sinhx+4xcoshx−3x− xcosh3 x

=
1
4
(x2−1)sinh(3x)+

3
2

sinh(2x)− 1
4
(7x2 +9)sinhx− x

4
cosh(3x)+

13x
4

coshx−3x

=
∞

∑
n=3

(n2−n−3)9n+9 ·4n−21n2 +9n+3
3 · (2n+1)!

x2n+1 > 0.

Hence, G(x) is strictly increasing for 0 < x < σ , and we have

1
2

= lim
t→0+

G(t) < G(x) < lim
t→σ− G(t) =

4σ −3

3
√

2σ −3
, 0 < x < σ .

Hence, (2.14) holds if and only if λ5 � 1
2 and ω5 � 4σ−3

3
√

2σ−3
. The proof is complete.

REMARK 2.1. Finally, we provide an alternative proof of (1.8). By Remark 1.1,
(1.8) may be rewritten as

μ <
1+ 1

3 z2 − z
arcsinhz

1+ z2− z
arcsinh z

< ν, 0 < z < 1. (2.17)



10 X.-F. HAN AND C.-P. CHEN

By an elementary change of variable z = sinhx (0 < x < σ) , (2.17) becomes

μ < F(x) < ν, where F(x) =
1+ 1

3 sinh2 x− sinhx
x

cosh2 x− sinhx
x

, 0 < x < σ .

Differentiation yields, for 0 < x < σ ,

3
(
xcoshx− sinhx

)2

2sinhx
F ′(x) = sinh2 x−2x2 coshx+

1
2
xsinh(2x)

=
∞

∑
n=3

(n+1)4n−8n(2n−1)
2 · (2n)!

x2n > 0.

So, F(x) is strictly increasing for 0 < x < σ , and we have

1
5

= lim
t→0+

F(t) < F(x) < lim
t→σ− F(t) =

4σ −3
6σ −3

, 0 < x < σ .

Hence, (1.8) holds if and only if μ � 1
5 and ν � 4σ−3

6σ−3 .
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