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PROPERTIES OF SOME SUBSEQUENCES OF
THE WALSH-KACZMARZ-DIRICHLET KERNELS

NACIMA MEMIC

(Communicated by I. Peric)

Abstract. We study some properties of a family of subsequences of the Walsh-Kaczmarz-Dirichlet
kernels. We prove properties related to the L' norm of the weighted maximal function and to the
Fejér means of partial sums of Fourier series obtained by convolution with integrable functions.

1. Introduction

Let Z; denote the discrete cyclic group Z, = {0,1}, where the group operation is
addition modulo 2. If u(E) denotes the measure of the subset E C Z;, then u({0}) =

u({1h) =35
The dyadic group G is obtained by G = [ Z, (see [3]), where topology and

i=0
measure are obtained from the product. The notation y(E) is used for the probability
measure for subsets E of the dyadic group G.

Let x = (xy)n>0 € G. The sets I,(x) :=={y € G : yo =X0,...,Yn—1 = Xp—_1}, n =1
and Iy(x) := G are dyadic intervals of G. Let I, = 1,(0), and ¢, := (8n);. It is easily
seen that (I,), is a decreasing sequence of subgroups. Moreover, for every x € G and
every nonnegative integer 7, it can be seen that t(I,(x)) = 5 .

Since every nonnegative integer i can be written in the form i =3 ix2%, where
ir €{0,1}, we define the sequence (z;);>o of elements from G by

2= Z ixe.
k=0

It is easily seen that for each positive integer n, the set {z;,i < 2"} is a set of represen-
tatives of I, -cosets.
The Walsh-Paley system is defined as the set of Walsh-Paley functions:

oo

wn(x) = [[(re(x))™, n €N, x € G,
k=0
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where n =Y m2F, n; € {0,1} and r(x) = (—1)%. The n-th Walsh-Kaczmarz func-
k=0
tion is
In|—1

() 1= 71 () TT (-1 ()™,
k=0

where |n| = max{k:n; #0}.
For every positive integer A, define the transformation 74 : G — G by the formula

TA()C) = (.XA_l,)CA_Q, ey X1, X0, XA, XA 1 - - .), Vx = (x,,)n>0.

It is clear that 7 satisfies the property 74 (74(x)) = x, for every x € G. Moreover, it can
be easily seen that x;, and @, are tied by the relation

K (x) = 7 (X) 0 (1) (X)), Vn €N,

The Dirichlet kernel functions with respect to the Walsh and Kaczmarz systems are
respectively defined by the formulae

n—1
Z(Dk R DK EKk(x), VneN, xeG.
k=0

We use the notation S, f, n > 1, for partial sums of any function f € L'(G) relative to
the Kaczmarz system. Namely,

Suf(v) = DX £() /DKy X)f(x)dx, Vy € G.
It is known that for every nonnegative integer n

2" x € I

D2n(x>ng,,(x>:{0 iy (1)

Hence, it can be seen that for every nonnegative integer n,
S f(y) = /1 s G
(v

Namely, S»»f, n € N represent the mean values of f. In [7] it was noticed that the
Dirichlet kernel function with respect to the Kaczmarz system can be written in the
form

D}y (x) = Dyjuf (x) + 7)) (X) D,y (T () - 2)

In the first part of this paper Proposition 1 describes the weighted maximal func-
tion of the subsequence of Dirichlet kernels with respect to the Kaczmarz system,
generated by the sequence (f(n)), of positive integers. This subsequence keeps the
properties of the whole sequence of Dirichlet kernels concerning the L! norm of the
weighted maximal function proved in [6, Proposition 3]. Its specificity is the fact that
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the sequence (f3(2n)+ B (2n+ 1)), generates a bounded maximal function of Dirichlet
kernels, which is a contrast considering the fact that the integrability of the welghted

maximal function su Dy ()] depends on the convergence of the serles
P o) 9°P & -
n

[4, Theorem 1] provides sufficient conditions on subsequences of D1r1chlet kernels
whose convolution with any integrable function converges almost everywhere. The
second part of this work deals with the same question in Theorem 1, with respect to
the Kaczmarz system. Our additional condition concerning the Kaczmarz system is
that the sequence of positive numbers (¢¢(n)), generating the subsequence of Dirichlet
kernels (Dg(n))n, does not grow too fast. Both of Proposition 1 and Theorem 1 are
based on Lemma 1. Formula (3) is given in Lemma 1 and provides a new expression of
the Dirichlet kernel with respect to the Kaczmarz system.

Throughout the paper the notation C denotes an absolute positive constant which
may vary in different contexts. It is used to express the boundedness of some estimated
quantities.

2. On the integrability of some weighted maximal functions

The first lemma gives a new representation of the Dirichlet kernel with respect to
the Kaczmarz system. Namely, DX can be written as a linear combination of character-
istic functions of the form given in formula (1). This property will enable us to estimate
in an easy way the operators defined in Theorem 1, which is the main result in this

paper.

LEMMA 1. Let n be a positive integer having the dyadic representation n = 2N 4
+ 2Nt where t > 2, N <Ny < ... < N; and N; = |n|. Then, DX(x) can be written
in the form

2N |
D (x) =Dyv, (x) + Y, Anj (D1 (x+2j) — Dywi (x+25)) (3)
j=0
where for every 1 < j < 2NN
=1 287Ny 1 (2) -1 (29), iefl,... .1 =2}
Apji= 4 T2 Ny oy (@) N 1 () 2NN =1, 2 3;
2NI=Na i=t—1,1=2.

“)
Where i € {1,...,t — 1} is the unique integer satisfying j € {2Nf Nivr 2NN 1},
For j =0, then An.,O = Z’v:l 2NN and for 2NN L j < 2N Anj= 0. Moreover, it
can be easily seen that

<> 5)

Ap,j
| j+1
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Proof. First notice that for all 0 < m < s, we have

25-m_]
(Dynot)(x) =2"7" 3, Dos(x+2). 6)
j=0
Besides, it was proved in [8] that
D, v = ErN/ |- TN Do - (7

Hence, combining (2), (7) then (6) we get

t—1

Dy (x) = Do, (x) 1, (x) D (rn, g 0 T ) (x) .. (Pvyy © TN, ) (X) - (D 0 Ty ) ()
i=1
i—1 2NN 1
= Dy, (X) +ry, (x) 2 oNi=N: TN, —N,_{—1 (x) o PN =Ny —1 (x) 2 Dy, (x+ Zj)
i=1 j=0

—1
= Dy, (X) + 2 ZN"erN,_Ntfl_l(x) o PN =Ny —1 (x)
i=1

2N —Ni 1
Y, (Dywi(x+z;) = Dyn (x+25))
j=0
1—1 2NN, i

= Dy, (x +Z Z Z2NY NN =1(2) - NNy —1(25)

1 j=pNi=Nit1 5=

t—1
(D (x+2j) = Doywi (x+27)) + 3, 287 Dy (x) = Dy ()

s=1

where the second equality holds because ry,(z;) = 1, for all j <2V — 1, and the third
equality is obtained since for all j <2 —1 and 5 < N;, ry(x) = ry(z;) if Don, (x+2;)
does not vanish. The result follows by applying the definition of A, ;, j < oM 1.

The following example gives an illustration of formula (3). It expresses the Dirich-
let kernel DY as a linear combination of locally constant functions having mutually
disjoint supports.

EXAMPLE 1. Let n =2+23+24. Following the notations of Lemma 1, we can
see that Ny =1, Ny =3 and N, = N3 =4, where t = 3.

For i=2=1—1,theset {1,...,2" —=2"' — 1} only contains j = 1. Therefore,
(4) has the expression

1
Ay =2 2% Ny v 1(zg) N -1 (2) 20
s=1

2N1 37N3 Ny 1(21) 2N2 N3_2 (Zl)+2 1
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Similarly, for i = 1, we have j € {2,...,2% — 1}, because
Ni—=Niz1=N3—N,=1, N;,—N; =N; —N; = 3.

Therefore, for every j € {2,... 23— 1}, (4) takes the form

1
Anj= 220Ny N () v —1(z) = 2NNy, 1 (2) =270 (z)).
s=1
Besides,
Apo=2M"N 4 oMo Ny —p=3 4 o=1

Since, zg = 0, it follows that

D} (x) = Dy (x) + (277 +27") (Dys (x) = Dya (x)) + (2 ro(z1) +271)
231
“(Dys(x+z1) —Dya(x+21)) + 242 2’3r0(z,-) (Dys (x-l—Zj) —D24(x+Zj)).

Notice that the locally constant functions Daa(x) + (272 +271) (D,s (x) — Dys(x)),
Dys(x+2;) — Dys(x+25), j € {1,...,2% — 1}, have mutually disjoint supports.

As said in the introduction, the following proposition discusses integrability of
DB o) )| DB a1y @I DB o)+ pant ) X
an) sgp o(2n+1) ~o(2n+)

integrability of the two first functions, which are generated from the sequences f3(2n)

the functions sup , and sup . It proves that the
and B(2n+ 1), depend on the convergence of the series 2 ) The third function,

which is generated from the sum of the two previous sequences B (2n) + B (2n+1),i

always bounded and its integrability does not depend on the series 2 a TR
A=0

PROPOSITION 1. Define the sequence ((n)), by B(2n) = i 2% and B(2n+
k=0

1) = Z 22K+ for all n > 0. Let (a(n)), be any increasing sequence of positive
k=0
integers. Then, we have

IDE 2y )| 1D 5,1y ()] . . .3
1. sgpmax{ /;((2237) , g((zz;lr)l) } € LY(G) if and only if the series Aéoﬁ con-

verges.

‘ B(2n)+B(2n+1) ()]

an i) is bounded.

2. The function sup
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Proof. It was proved in [6, Proposition 3] that sup D (‘(‘ L e L'(G) if and only if

the series 2 m converges. More precisely, according to formula (2), the sequence
A=0

of functionsi(LOC?N) n introduced in the proof of [6, Proposition 3] can be expressed by

[D3r43t () — Dor| | D] }

Ly Ny = max < sup ma ,
o= s ()

n<NO<t<n (X(n)
Therefore, applying [6, Proposition 1], we can see from the proof of [6, Proposition 3]

: . DE, Do
that the L! norm of the maximal function sup max D3y () ~Dan|
n 0<t<n (n)

is finite if and only
if the series 2 j converges.

Followmg the same techniques, in order to prove assertion (1), it suffices to prove
that forall xe G and n > 1

K
onax D52, 50 (%) = Doan ()| < 2|Djg ) (%) — Daa ®)
and
M D () D (9] < 21D 30~ Dy ©)

According to formula (3), where we can see that D} (x) — D, (x) is expressed as a
linear combination of characteristic functions of mutually disjoint dyadic intervals, it
suffices to prove that

Apn iy |2 ] Ag Vj <2,
Og}i"é\ 2240t <2 B(2n),j |,V
and
2+l

o<§23§+ |A22n+1+2t <2 Ap@nyin),; |, Vi <2™
Let x € G and j < 2% be such that x € I,(z;). First assume that 22"~ %*~1 < j <
2272k for some k: 1 <k <n— 1. Applying formula (4) we can see that for all ¢ < 2n
such that 2"~" > j, Ay, x ; = 2'"*". Besides, according to the definition of A, ;
introduced in Lemma 1, Ay ; =0, for all 7 <2n such that j > > 227" Hence,
H2k=2n

max |A- o,y ;i |=
0<t<2n‘ 2 +2,j|

Using the notations of Lemma 1 we can see that §(2n) =Y’ _, 2V, where N, = 2(s —1)
and t = n+ 1. In this case, the unique integer i satisfying 2V ~Nit1 < j < 2M—Ni jg
i=k+1. Hence, (4) takes the form

k+1 A1)
22 o ri(zj)r3(z;) - ran—25-1(2)-
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For s < k itis clear that ry,_2¢41(zj) = ... = rap—2s—1(zj) = 1, hence
|A[3 2n),j |
22 T (2)r3(2) - a2k (25) + 2221 (2)73(2)) - Panak-3(25)

ran—2k—1(25) Z 22(s=1)=2n 4 »2k=2n
s=1

_ i 220s=1)=2n | p2k=2n o _32k=1-2n_ »2k-2n
s=1
= p%=1=om ! max | Ay o ;|
2o<i<on 2 "2
In this way we have proved inequality (8) for 22"~%~1 < j < 22"=2k Tn a similar way
we can see that for all 7 < 2n+ 1 such that 22"~ > j, Aput o = 21=2n—1 Hence,

2%k—2n
max | Ayt o i |=2 .
0<t<2n+1 | At |
Proceeding as in the estimation of | Ag(y,) ; | we can see that B(2n+ 1) = ¥, 2™,

where Ny =2s— 1 and t =n+ 1. In this case, the unique integer i satisfying 2V ~Nit1
j<2MNiisi=k+1. We get

k
| Ag2nt1),j| = ’ 2223‘7172"71?1 (zj)r3(zj) - ran-2k-1(z))
s=1
225720 (2)r3(25) - - ran-2k-3(25) | =] Apany ;| -

Hence, (9) is obtained for 22"~ 2~1 < j < 2212k,
Now, we estimate |Aﬁ(2n)7j | for 22—k < j< 22=2k+1 forsome ki1 <k<n—1.
First we have
max | A, = p2k=1-2n
0<t<2n | 242, |
As seen above, since j < 2217 2k+1 < 22n=2(k=1) "we have that 2N —Niv1 < j < 2NN

for i = k. Therefore,

|Aﬁ 2n),j |
222 U2 (2)r3(2) - Pane ks 1(27) F 2257272 (2) 73 (25) - ook (25)
k-1 S
I A 2 D2(s=1)=2n | p2k=2n-2| _ 2 92(s=1)=2n 4 52k—2n-2
s=1 S:l
1
> 92k=2-2n _ _ hax |A22"+2’~,j -

2 0<t<2n
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Hence, (8) is proved for 22772k < j < 227=2k+1 " The verification of (9) for 22"~ <
j < 22772+ s Jeft to the reader.

In order to prove assertion (2), notice that 3(2n) + B(2n+1) = ¥'_, 2™, where
Ny =s—1 and t =2n+ 2. Hence, (4) takes the form

AB(2n)+B(2n+1), 225 2l r0(zj)r1(zj) - rans1-5-1(2)s

if 220171 j < 22012071 Forall s <i—1,wehave ry,_(2)(2j) = ... =ran—s(zj) =
1. It follows

| Ag(2n)+B(2n+1). |

i—1
= | X 2" 20 (g)ri () - ran1—i(z) + 272 P02 ()) - raneilz))
s=1

i—1
r2n+17i(zj) Z 25—2n—2 + 21—2n—2

s=1

i—1
— 2 2s72n72 + 2i72n72 _ 272}171
s=1

Therefore,
D5 ) panen) ()] < 1,Vx € G,¥n >0

3. Fejér means of some subsequences of partial sums of Fourier series

We recall the Calderén-Zygmund decomposition lemma proved in [8], [5, Theo-
rem 1] and [5, Lemma 2]. It is used in the proof of Theorem 1.

LEMMA 2. ([8], [5, Lemma 2]) Let f € L'(G) be such that ||f||, < A. Then,
there exist a decomposition f =37 f; and mutually disjoint intervals (Ix;(u;)); such
that the function f; is supported on Iy, (u;) for every j =1, u(Fy) < CM, where

T _ ; 1
Fy i=W7, I, (uj), f,kjw_,.)f,- =0,Vj>1, A< Wf’k. Vil <CAL Vj= 1, and

[ limsup S| fo||| < CA.

REMARK 1. It can be seen in the proof of [5, Lemma 2] that the constant C,
mentioned in Lemma 2, does not depend on the positive number A . Indeed, using the

notations of Lemma 2, it can be seen that ((F;) < w, m I (w)) |fj] <4A and
(2 j
|| imsup San| fo |- < 32
n
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REMARK 2. Itcan be seen in the proof of [5, Lemma 2] that the mutually disjoint
intervals (I, (u;));, introduced in Lemma 2, are such that

1
/1<7/ Fl <22
ey ) i )

The following remark provides an additional estimate of the mean values of the
function |f| on the set F . It will be used in the proof of Lemma 3.

REMARK 3. Using the notations of Lemma 2, it can be easily seen that
182211+ 1pg [lo < CA, Vn 20, (10)

where 1), denotes the characteristic function of the subset M C G, and M® = G\M
denotes its complement set in G. Indeed, let n be some fixed arbitrary nonnegative in-
tegerand x € Fy . If j € N is such that I, (x) and I, (u;) are disjoint, then we obviously
have that

Sulfl =2" [ 1fl=0

On the other hand if 7,(x) and Iy, (u;) intersect, then we must have that Iy, (u;) C I,(x)
because x € Fy C (Ii; (u;))". Hence we have

selfl) =2 [ 151=2" [ 135 wz/ 1
<z 3 [ muﬂﬁmm|

j=1
B (6 ()

<2 ¥ [ ilselale
izt )
B () )
<2'CA Y, ul(u)) + Sl fol(x)
~
ij (ui-)CI,, (x)

< 2”C/lu< U ij(uj)> + 821 fol (x)

=1
ij (uj)Cl(x)
< 2"CAp(Iy(x)) + San | fol (x) < CA,

for some conveniently chosen constant C independent on the choice of n and A as seen
in Remark 1.

In the following lemma, for every k > 1, we form a collection Fy ; of mutually
disjoint intervals analogue to those introduced in Lemma 2.
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LEMMA 3. Let f € L'(G) be such that ||f||; < A. For every k > 1, there exists
a collection F  , of mutually disjoint intervals (I,]{‘/(ulj‘)) j=1, satisfying

1
w| Uv)<5z 3 [inwso, an
JEF ), JeF M
and
||S2n|f|1( U J)pHMQCZkl,VnEO, (12)
JER

where the constant C is independent on the choice of A, k and n.

Proof. For every positive integer k, define the appropriate mutually disjoint inter-
vals (I,’C‘](u’;)) j>1 corresponding to the intervals introduced in Lemma 2, by replacing

A with 251 . Then, if we define the collection Fy ; = {I,’{‘/_(u’;), j =1}, using Remark 2,

where A is replaced with 2€A, we obtain (11), because

1
w| Uv|= 3 un<gm 3 [inwso
Jeb ;0T

JEF ), JEF )

Similarly, combining Remark 3 and Remark 1 gives (12).

In [4, Theorem 1], G.Gét proves sufficient conditions on subsequences of Dirichlet
kernels, related to the Walsh system, whose convolution with any function f € L!(G)
converges almost everywhere. The following result deals with the same question con-
cerning the Kaczmarz system. The latter structure has some specific properties with
regards to the Walsh system which makes it impossible to apply Gét’s method. Our
techniques require an additional condition which is expressed in formula (13). It de-
scribes the growth of the sequence of positive numbers (0:(n)), generating the subse-
quence of Dirichlet kernels (Dch(n) n-

THEOREM 1. Let f € L'(G) and (0.(n)), be an increasing sequence of positive
integers satisfying o(n+ 1) > qo(n), for some q > 1 and

|ot(n)| = |e(m)| < CnP = (n—m), (13)
Sforsome 1 < B < % and for all n >m > 1. Then,

1 N
DI

almost everywhere.

Proof. Following the techniques used in the proof of [4, Theorem 1]), it suffices
to prove the result for g > 2.
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If we prove that the operator sup%E D" ) * f is of weak type (1,1), then
s

the result can be deduced by means of some standard arguments (see for example [4,
Theorem 1]).

Applying formula (3) on the elements of the sequence (¢ (n)),, we have for every
positive integer s and every x € G

RNV 1

;}Z,l <Da(n) *f> (x) = ;rg,lszwaw)\f(x) (14)
1S ola(m)] 1

+- 2 Ag(n)j (Syam f(x+2j) = Syjam f(x+2))) -

n=1 j=0

Denote by

s 2leml_y
LYf(x)= Y, Ag(n).j (a1 £ +2) = Spjawmi f(x+2;)) -

It is known that the operator f*(x) = sup|Sa f(x)| is of weak type (1,1). Therefore,
n

this is also valid for the operator sup 2| ¥5_, o) f(x)|. Hence, it suffices to prove
that the operator sup 1 |T5(a) f(x)] is of weak type (1,1).
s

For every nonnegative integer j set v;(x) = inf{i > 0 : Sy|f|(x +z;) > 2*A},
where & is the least integer satisfying j < 2~.

For every y € G and every nonnegative integer n, denote by A, f(y) the expres-
sion

Do f(y) == Sonir f(y) = S f ().

Since 1 {v;(x)>m} is constant on each [, -coset, it is clear that for all positive integers m,
n and all j <2™ and i < 2" we have

/ Liy,smy Omf (X +2) - Ly, sy Onf (x4 2i)dx = 0, (15)

oo 2K
whenever m # n or i # j. Moreover,if F=|J U ( ( U J>> , we have

k=0 j=0 JEF,

1
,u{xEFC:—
s

e

n<°‘>f<x>) > A}

h|>—t

2 ; 0 M@ >lan () Bl (¥ +2))

>7L},
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c
becauseif x € F¢,thenwecanseethatxe [ z;+ (U U J | foreverynonnegative
kij<2kJER ),
integer j. Indeed, the set F' can also be expressed in the form

F={Ulz+|{ U UV7]],
Jj=0 k:j<2k JEF} 3
hence from the De Morgan’s law we obtain
c

F=Ols+l U UV

=0 kij<2kJEF} 3

Then by means of (12) obtained in Lemma 3, we get Sy|f|(x+z;) <2*4, forall i >0
and every k >0 such that j < 2*. This means that v;(x) = and Ly, > a(my () =1,
Vji>0,n> 1.

Since ¢ > 2, then |a(m)| # |o(n)| whenever m # n, hence applying (15) we get

1
”{XEFC:E Ts(a)f(X))>A,} (16)
2
1 s 2letl_q
<szitz/ 21 ZO Aan).j Lv;(0> )y (X) - Bja) fx+25) | dx
n—= Jj=
1 s 2\0{)1)\_1 ) )
<Sem 20 Ain).j / Liv >l (30) (Do) f (x +27)) " dx
n= J=
| 2o0l X
2
S o Aan) j / Liv; 0oy (0) (D) (+25)) " dx
J=0 ol
n<s
|20y i
< 553 - /l (% () (Ao f(x+z)) dx,
s2A2 ZO (j+1) n:z%u,- 1@l (¥) (B S (x+27))
n<s

where, the last inequality is obtained from (5). Applying [2, Lemma 2.1] we obtain

Je(s)l 1
e 1 () c1? 1
u{xeF A f(x)’>l}ézs—2 S i

because according to the definition of v;(x), if v;(x) > |o(n)| then
Syttt |[F1(x+2) < 285100 [f1(x+2j) <4jA.

It follows that

1 a
u{xeF‘ |1 r ) >A} <C";‘§;>|Hf||1. (17)
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We can deduce from (13) that
Joe(s)| = er(1)] < CsP,

hence, (17) implies that

e L) !
u{xEF |1 f(x)‘>x}<cszm||f1. (18)

Notice that 7;'% f(x) can be written in the form

plas) _ 1
Y, M)
j=0
where
Mi(x) =Y Ag.; (Syami f(x+27) = Syamif(x+2))) -
n:2lemls
n<s

Therefore, if k% < s < (k+ 1)9 , for some fixed 6 satisfying ﬁ <0< ﬁ, then we
get
ol _4 olex(s)| _
r| < X M|+ T M) (19)
j=0

j=2la®)]

Proceeding as in the proof of [4, Theorem 1], the calculations made in (16) give

2les)l g
PAXEF = Y Mx)|>A (20)
j=2lo®®)]
_ Cla((k+1)%)] - \Of(k")\”fH
Cke—lke(/s 1)
Saer

where the last inequality is obtained from assumption (13). Combining (18), (19) and
(20) we obtain

. 1
,u{xeF‘:sup—
s S

7 ()] > 21}

1
<;,L{x6FC:51;pk—9 sup Ts(a)f(x)‘>27t}

kO<s<(k+1)0
2lek®) _q | oleds)| 1
SUSxXEF: sup 5 2 M;j(x)| +sup—5  sup 2 M;(x)| > 21
k Jj=0 k kO <s<(k+1)¢ j:2‘a(ke)‘
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2le®k®) _q

<USxXEF: sup M;(x)| > A

a4
ola(s)l 1

) 1
FUSxEF sup-  sup 2 Mj(x)| > A
k kO <s<(k+1)° j—0lek9)]

+ Y u xeF”:k—6 Y, Mj(x)|>A

S 72 Zke(zfﬁ)J“; )y Co e

< G/l 5 - ! Clifll
1(2 e z (ﬁ)ﬂ)g )Ll.

As mentioned in the discussion made after Lemma 2, the sets (F; 3 )x have mutu-
ally disjoint elements. Hence, according to (11)

pF) <Y Yulu+| UJ

k=0 j=0 JEF
oo 2k—1

<Tap 2 i
k=0 j=0 JEF;
1< / /1l

<o |/l
A’IZE)JEF,M J x’

It follows

1 . 1
u{sup;’ﬂ(a)f(x)’ >2/l} < /.1(F)+[.1{x6FL s sup —

: ’T_f"‘)f(x)’ >2x}
Cllf1lh
< =
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