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PROPERTIES OF SOME SUBSEQUENCES OF

THE WALSH–KACZMARZ–DIRICHLET KERNELS

NACIMA MEMIĆ

(Communicated by I. Perić)

Abstract. We study some properties of a family of subsequences of the Walsh-Kaczmarz-Dirichlet
kernels. We prove properties related to the L1 norm of the weighted maximal function and to the
Fejér means of partial sums of Fourier series obtained by convolution with integrable functions.

1. Introduction

Let Z2 denote the discrete cyclic group Z2 = {0,1} , where the group operation is
addition modulo 2. If μ(E) denotes the measure of the subset E ⊂ Z2 , then μ({0}) =
μ({1}) = 1

2 .

The dyadic group G is obtained by G =
∞
∏
i=0

Z2 (see [8]), where topology and

measure are obtained from the product. The notation μ(E) is used for the probability
measure for subsets E of the dyadic group G .

Let x = (xn)n�0 ∈ G . The sets In(x) := {y ∈ G : y0 = x0, . . . ,yn−1 = xn−1} , n � 1
and I0(x) := G are dyadic intervals of G . Let In = In(0) , and en := (δin)i . It is easily
seen that (In)n is a decreasing sequence of subgroups. Moreover, for every x ∈ G and
every nonnegative integer n , it can be seen that μ(In(x)) = 1

2n .
Since every nonnegative integer i can be written in the form i = ∑∞

k=0 ik2k , where
ik ∈ {0,1} , we define the sequence (zi)i�0 of elements from G by

zi =
∞

∑
k=0

ikek.

It is easily seen that for each positive integer n , the set {zi, i < 2n} is a set of represen-
tatives of In -cosets.

The Walsh-Paley system is defined as the set of Walsh-Paley functions:

ωn(x) =
∞

∏
k=0

(rk(x))nk , n ∈ N, x ∈ G,
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where n =
∞
∑

k=0
nk2k , nk ∈ {0,1} and rk(x) = (−1)xk . The n -th Walsh-Kaczmarz func-

tion is

κn(x) := r|n|(x)
|n|−1

∏
k=0

(r|n|−1−k(x))
nk ,

where |n| = max{k : nk �= 0} .
For every positive integer A , define the transformation τA : G→G by the formula

τA(x) = (xA−1,xA−2, . . . ,x1,x0,xA,xA+1, . . .), ∀x = (xn)n�0.

It is clear that τ satisfies the property τA(τA(x)) = x , for every x ∈ G . Moreover, it can
be easily seen that κn and ωn are tied by the relation

κn(x) = r|n|(x)ωn(τ|n|(x)), ∀n ∈ N.

The Dirichlet kernel functions with respect to the Walsh and Kaczmarz systems are
respectively defined by the formulae

Dn(x) =
n−1

∑
k=0

ωk(x), Dκ
n (x) =

n−1

∑
k=0

κk(x), ∀n ∈ N, x ∈ G.

We use the notation Sn f , n � 1, for partial sums of any function f ∈ L1(G) relative to
the Kaczmarz system. Namely,

Sn f (y) = Dκ
n ∗ f (y) =

∫
Dκ

n (y− x) f (x)dx, ∀y ∈ G.

It is known that for every nonnegative integer n

D2n(x) = Dκ
2n(x) =

{
2n, x ∈ In;

0, x ∈ I \ In.
(1)

Hence, it can be seen that for every nonnegative integer n ,

S2n f (y) =
∫

In(y)
f (x)dx, ∀y ∈ G.

Namely, S2n f , n ∈ N represent the mean values of f . In [7] it was noticed that the
Dirichlet kernel function with respect to the Kaczmarz system can be written in the
form

Dκ
n (x) = D2|n|(x)+ r|n|(x)Dn−2|n|(τ|n|(x)). (2)

In the first part of this paper Proposition 1 describes the weighted maximal func-
tion of the subsequence of Dirichlet kernels with respect to the Kaczmarz system,
generated by the sequence (β (n))n of positive integers. This subsequence keeps the
properties of the whole sequence of Dirichlet kernels concerning the L1 norm of the
weighted maximal function proved in [6, Proposition 3]. Its specificity is the fact that
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the sequence (β (2n)+β (2n+1))n generates a bounded maximal function of Dirichlet
kernels, which is a contrast considering the fact that the integrability of the weighted

maximal function sup
n

|Dκ
n (x)|

α(|n|) depends on the convergence of the series
∞
∑

A=0

A
α(A) .

[4, Theorem 1] provides sufficient conditions on subsequences of Dirichlet kernels
whose convolution with any integrable function converges almost everywhere. The
second part of this work deals with the same question in Theorem 1, with respect to
the Kaczmarz system. Our additional condition concerning the Kaczmarz system is
that the sequence of positive numbers (α(n))n generating the subsequence of Dirichlet
kernels (Dκ

α(n))n , does not grow too fast. Both of Proposition 1 and Theorem 1 are
based on Lemma 1. Formula (3) is given in Lemma 1 and provides a new expression of
the Dirichlet kernel with respect to the Kaczmarz system.

Throughout the paper the notation C denotes an absolute positive constant which
may vary in different contexts. It is used to express the boundedness of some estimated
quantities.

2. On the integrability of some weighted maximal functions

The first lemma gives a new representation of the Dirichlet kernel with respect to
the Kaczmarz system. Namely, Dκ

n can be written as a linear combination of character-
istic functions of the form given in formula (1). This property will enable us to estimate
in an easy way the operators defined in Theorem 1, which is the main result in this
paper.

LEMMA 1. Let n be a positive integer having the dyadic representation n = 2N1 +
. . .+2Nt , where t � 2 , N1 < N2 < .. . < Nt and Nt = |n| . Then, Dκ

n (x) can be written
in the form

Dκ
n (x) = D2Nt (x)+

2Nt−1

∑
j=0

An, j (D2Nt+1(x+ z j)−D2Nt (x+ z j)) , (3)

where for every 1 � j < 2Nt−N1 ,

An, j :=

⎧⎪⎪⎨
⎪⎪⎩

∑i
s=1 2Ns−Nt rNt−Nt−1−1(z j) . . . rNt−Ns+1−1(z j), i ∈ {1, . . . ,t −2};

∑t−2
s=1 2Ns−Nt rNt−Nt−1−1(z j) . . . rNt−Ns+1−1(z j)+2Nt−1−Nt , i = t−1, t � 3;

2N1−N2 , i = t−1, t = 2.
(4)

Where i ∈ {1, . . . ,t−1} is the unique integer satisfying j ∈ {2Nt−Ni+1 , . . . ,2Nt−Ni −1} .
For j = 0 , then An,0 := ∑t−1

s=1 2Ns−Nt and for 2Nt−N1 � j < 2Nt , An, j = 0 . Moreover, it
can be easily seen that

|An, j| � 2Ni−Nt+1 � 2
j +1

. (5)
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Proof. First notice that for all 0 < m < s , we have

(D2m ◦ τs)(x) = 2m−s
2s−m−1

∑
j=0

D2s(x+ z j). (6)

Besides, it was proved in [8] that

Dn−2Nt =
t−1

∑
i=1

rNt−1 . . . rNi+1D2Ni . (7)

Hence, combining (2), (7) then (6) we get

Dκ
n (x) = D2Nt (x)+ rNt (x)

t−1

∑
i=1

(rNt−1 ◦ τNt )(x) . . . (rNi+1 ◦ τNt )(x) · (D2Ni ◦ τNt )(x)

= D2Nt (x)+ rNt (x)
t−1

∑
i=1

2Ni−Nt rNt−Nt−1−1(x) . . . rNt−Ni+1−1(x)
2Nt−Ni−1

∑
j=0

D2Nt (x+ z j)

= D2Nt (x)+
t−1

∑
i=1

2Ni−Nt rNt−Nt−1−1(x) . . . rNt−Ni+1−1(x)

·
2Nt−Ni−1

∑
j=0

(D2Nt+1(x+ z j)−D2Nt (x+ z j))

= D2Nt (x)+
t−1

∑
i=1

2Nt−Ni−1

∑
j=2Nt−Ni+1

i

∑
s=1

2Ns−Nt rNt−Nt−1−1(z j) . . . rNt−Ns+1−1(z j)

·(D2Nt+1(x+ z j)−D2Nt (x+ z j))+
t−1

∑
s=1

2Ns−Nt (D2Nt+1(x)−D2Nt (x)) ,

where the second equality holds because rNt (z j) = 1, for all j < 2Nt −1, and the third
equality is obtained since for all j < 2Nt −1 and s < Nt , rs(x) = rs(z j) if D2Nt (x+ z j)
does not vanish. The result follows by applying the definition of An, j , j � 2Nt −1.

The following example gives an illustration of formula (3). It expresses the Dirich-
let kernel Dκ

n as a linear combination of locally constant functions having mutually
disjoint supports.

EXAMPLE 1. Let n = 2+23 +24 . Following the notations of Lemma 1, we can
see that N1 = 1, N2 = 3 and Nt = N3 = 4, where t = 3.

For i = 2 = t − 1, the set
{
1, . . . ,2t −2t−1−1

}
only contains j = 1. Therefore,

(4) has the expression

An,1 :=
1

∑
s=1

2Ns−Nt rNt−Nt−1−1(z j) . . . rNt−Ns+1−1(z j)+2N2−N3

= 2N1−N3rN3−N2−1(z1)+2N2−N3 = 2−3r0(z1)+2−1.
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Similarly, for i = 1, we have j ∈ {2, . . . ,23−1} , because

Nt −Ni+1 = N3 −N2 = 1, Nt −Ni = N3 −N1 = 3.

Therefore, for every j ∈ {2, . . . ,23−1} , (4) takes the form

An, j =
1

∑
s=1

2Ns−Nt rNt−Nt−1−1(z j) . . . rNt−Ns+1−1(z j) = 2N1−N3rN3−N2−1(z j) = 2−3r0(z j).

Besides,

An,0 = 2N1−N3 +2N2−N3 = 2−3 +2−1.

Since, z0 = 0, it follows that

Dκ
n (x) = D24(x)+ (2−3 +2−1)(D25(x)−D24(x))+ (2−3r0(z1)+2−1)

·(D25(x+ z1)−D24(x+ z1))+
23−1

∑
j=2

2−3r0(z j)(D25(x+ z j)−D24(x+ z j)) .

Notice that the locally constant functions D24(x) + (2−3 + 2−1)(D25(x)−D24(x)) ,
D25(x+ z j)−D24(x+ z j) , j ∈ {1, . . . ,23−1} , have mutually disjoint supports.

As said in the introduction, the following proposition discusses integrability of

the functions sup
n

|Dκ
β(2n)(x)|
α(2n) , sup

n

|Dκ
β(2n+1)(x)|
α(2n+1) , and sup

n

|Dκ
β(2n)+β(2n+1)(x)|

α(2n+1) . It proves that the

integrability of the two first functions, which are generated from the sequences β (2n)

and β (2n+ 1) , depend on the convergence of the series
∞
∑

A=0

A
α(A) . The third function,

which is generated from the sum of the two previous sequences β (2n)+ β (2n+1) , is

always bounded and its integrability does not depend on the series
∞
∑

A=0

A
α(A) .

PROPOSITION 1. Define the sequence (β (n))n by β (2n) =
n
∑

k=0
22k and β (2n +

1) =
n
∑

k=0
22k+1 , for all n � 0 . Let (α(n))n be any increasing sequence of positive

integers. Then, we have

1. sup
n

max

{
|Dκ

β(2n)(x)|
α(2n) ,

|Dκ
β(2n+1)(x)|
α(2n+1)

}
∈ L1(G) if and only if the series

∞
∑

A=0

A
α(A) con-

verges.

2. The function sup
n

|Dκ
β(2n)+β(2n+1)(x)|

α(2n+1) is bounded.
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Proof. It was proved in [6, Proposition 3] that sup
n

|Dκ
n (x)|

α(|n|) ∈ L1(G) if and only if

the series
∞
∑

A=0

A
α(A) converges. More precisely, according to formula (2), the sequence

of functions (Lα ,N)N introduced in the proof of [6, Proposition 3] can be expressed by

Lα ,N = max

{
sup
n�N

max
0�t<n

|Dκ
2n+2t (x)−D2n |

α(n)
,
|D2n |
α(n)

}
.

Therefore, applying [6, Proposition 1], we can see from the proof of [6, Proposition 3]

that the L1 norm of the maximal function sup
n

max
0�t<n

|Dκ
2n+2t

(x)−D2n |
α(n) is finite if and only

if the series
∞
∑

A=0

A
α(A) converges.

Following the same techniques, in order to prove assertion (1), it suffices to prove
that for all x ∈ G and n � 1

max
0�t<2n

|Dκ
22n+2t (x)−D22n(x)| � 2|Dκ

β (2n)(x)−D22n |, (8)

and
max

0�t<2n+1
|Dκ

22n+1+2t (x)−D22n+1(x)| � 2|Dκ
β (2n+1)(x)−D22n+1(x)|. (9)

According to formula (3), where we can see that Dκ
n (x)−D2|n|(x) is expressed as a

linear combination of characteristic functions of mutually disjoint dyadic intervals, it
suffices to prove that

max
0�t<2n

| A22n+2t , j |� 2 | Aβ (2n), j |,∀ j < 22n,

and
max

0�t<2n+1
| A22n+1+2t , j |� 2 | Aβ (2n+1), j |,∀ j < 22n+1.

Let x ∈ G and j < 22n be such that x ∈ I2n(z j) . First assume that 22n−2k−1 � j <
22n−2k , for some k : 1 � k � n−1. Applying formula (4) we can see that for all t < 2n
such that 22n−t > j , A22n+2t , j = 2t−2n . Besides, according to the definition of An, j

introduced in Lemma 1, A22n+2t , j = 0, for all t < 2n such that j � 22n−t . Hence,

max
0�t<2n

| A22n+2t , j |= 22k−2n.

Using the notations of Lemma 1 we can see that β (2n)= ∑t
s=1 2Ns , where Ns = 2(s−1)

and t = n + 1. In this case, the unique integer i satisfying 2Nt−Ni+1 � j < 2Nt−Ni is
i = k+1. Hence, (4) takes the form

Aβ (2n), j =
k+1

∑
s=1

22(s−1)−2nr1(z j)r3(z j) . . . r2n−2s−1(z j).
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For s < k it is clear that r2n−2k+1(z j) = . . . = r2n−2s−1(z j) = 1, hence

| Aβ (2n), j |

=

∣∣∣∣∣
k

∑
s=1

22(s−1)−2nr1(z j)r3(z j) . . . r2n−2k−1(z j)+22k−2nr1(z j)r3(z j) . . . r2n−2k−3(z j)

∣∣∣∣∣
=

∣∣∣∣∣r2n−2k−1(z j)
k

∑
s=1

22(s−1)−2n +22k−2n

∣∣∣∣∣
= −

k

∑
s=1

22(s−1)−2n +22k−2n > −22k−1−2n +22k−2n

= 22k−1−2n =
1
2

max
0�t<2n

| A22n+2t , j | .

In this way we have proved inequality (8) for 22n−2k−1 � j < 22n−2k . In a similar way
we can see that for all t < 2n+1 such that 22n−t > j , A22n+1+2t , j = 2t−2n−1 . Hence,

max
0�t<2n+1

| A22n+1+2t , j |= 22k−2n.

Proceeding as in the estimation of | Aβ (2n), j | we can see that β (2n + 1) = ∑t
s=1 2Ns ,

where Ns = 2s−1 and t = n+1. In this case, the unique integer i satisfying 2Nt−Ni+1 �
j < 2Nt−Ni is i = k+1. We get

| Aβ (2n+1), j | =
∣∣∣ k

∑
s=1

22s−1−2n−1r1(z j)r3(z j) . . . r2n−2k−1(z j)

+22k−2nr1(z j)r3(z j) . . . r2n−2k−3(z j)
∣∣∣=| Aβ (2n), j | .

Hence, (9) is obtained for 22n−2k−1 � j < 22n−2k .
Now, we estimate |Aβ (2n), j | for 22n−2k � j < 22n−2k+1 , for some k : 1 � k � n−1.

First we have
max

0�t<2n
| A22n+2t , j |= 22k−1−2n.

As seen above, since j < 22n−2k+1 < 22n−2(k−1) , we have that 2Nt−Ni+1 � j < 2Nt−Ni

for i = k . Therefore,

| Aβ (2n), j |

=

∣∣∣∣∣
k−1

∑
s=1

22(s−1)−2nr1(z j)r3(z j) . . . r2n−2k+1(z j)+22k−2−2nr1(z j)r3(z j) . . . r2n−2k−1(z j)

∣∣∣∣∣
=

∣∣∣∣∣r2n−2k+1(z j)
k−1

∑
s=1

22(s−1)−2n +22k−2n−2

∣∣∣∣∣=
k−1

∑
s=1

22(s−1)−2n +22k−2n−2

> 22k−2−2n =
1
2

max
0�t<2n

| A22n+2t , j | .



38 N. MEMIĆ

Hence, (8) is proved for 22n−2k � j < 22n−2k+1 . The verification of (9) for 22n−2k �
j < 22n−2k+1 is left to the reader.

In order to prove assertion (2), notice that β (2n)+ β (2n+ 1) = ∑t
s=1 2Ns , where

Ns = s−1 and t = 2n+2. Hence, (4) takes the form

Aβ (2n)+β (2n+1), j =
i

∑
s=1

2s−1−2n−1r0(z j)r1(z j) . . . r2n+1−s−1(z j),

if 22n+1−i � j < 22n+1−(i−1) . For all s < i−1, we have r2n−(i−2)(z j)= . . .= r2n−s(z j)=
1. It follows

| Aβ (2n)+β (2n+1), j |

=

∣∣∣∣∣
i−1

∑
s=1

2s−2n−2r0(z j)r1(z j) . . . r2n+1−i(z j)+2i−2n−2r0(z j)r1(z j) . . . r2n−i(z j)

∣∣∣∣∣
=

∣∣∣∣∣r2n+1−i(z j)
i−1

∑
s=1

2s−2n−2 +2i−2n−2

∣∣∣∣∣
= −

i−1

∑
s=1

2s−2n−2 +2i−2n−2 = 2−2n−1.

Therefore,

|Dκ
β (2n)+β (2n+1)(x)| � 1,∀x ∈ G,∀n � 0.

3. Fejér means of some subsequences of partial sums of Fourier series

We recall the Calderón-Zygmund decomposition lemma proved in [8], [5, Theo-
rem 1] and [5, Lemma 2]. It is used in the proof of Theorem 1.

LEMMA 2. ([8], [5, Lemma 2]) Let f ∈ L1(G) be such that ‖ f‖1 < λ . Then,
there exist a decomposition f = ∑∞

j=0 f j and mutually disjoint intervals (Ik j (u j)) j such

that the function f j is supported on Ik j (u j) for every j � 1 , μ(Fλ ) � C ‖ f‖1
λ , where

Fλ :=
⊎∞

j=1 Ik j (u j) ,
∫
Ik j

(u j) f j = 0 , ∀ j � 1 , λ < 1
μ(Ik j

(u j))
∫
Ik j

(u j) | f j|�Cλ , ∀ j � 1 , and

‖ limsup
n

S2n | f0|‖∞ � Cλ .

REMARK 1. It can be seen in the proof of [5, Lemma 2] that the constant C ,
mentioned in Lemma 2, does not depend on the positive number λ . Indeed, using the
notations of Lemma 2, it can be seen that μ(Fλ ) � ‖ f‖1

λ , 1
μ(Ik j

(u j))
∫
Ik j

(u j) | f j|� 4λ and

‖ limsup
n

S2n | f0|‖∞ � 3λ .
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REMARK 2. It can be seen in the proof of [5, Lemma 2] that the mutually disjoint
intervals (Ik j (u j)) j , introduced in Lemma 2, are such that

λ <
1

μ(Ik j (u j))

∫
Ik j

(u j)
| f | � 2λ .

The following remark provides an additional estimate of the mean values of the
function | f | on the set Fc

λ . It will be used in the proof of Lemma 3.

REMARK 3. Using the notations of Lemma 2, it can be easily seen that

‖S2n | f | ·1Fc
λ
‖∞ � Cλ , ∀n � 0, (10)

where 1M denotes the characteristic function of the subset M ⊆ G , and Mc = G\M
denotes its complement set in G . Indeed, let n be some fixed arbitrary nonnegative in-
teger and x∈ Fc

λ . If j ∈N is such that In(x) and Ik j (u j) are disjoint, then we obviously
have that

S2n | f j|(x) = 2n
∫

In(x)
| f j| = 0.

On the other hand if In(x) and Ik j (u j) intersect, then we must have that Ik j (u j) ⊂ In(x)
because x ∈ Fc

λ ⊆ (Ik j (u j))c . Hence, we have

S2n | f |(x) = 2n
∫

In(x)
| f | = 2n

∫
In(x)

|
∞

∑
j=0

f j| � 2n
∞

∑
j=0

∫
In(x)

| f j|

� 2n ∑
j�1

Ik j
(u j)⊂In(x)

∫
In(x)

| f j|+2n
∫

In(x)
| f0|

� 2n ∑
j�1

Ik j
(u j)⊂In(x)

∫
Ik j

(u j)
| f j|+S2n| f0|(x)

� 2nCλ ∑
j�1

Ik j
(u j)⊂In(x)

μ(Ik j(u j))+S2n | f0|(x)

� 2nCλ μ

( ⋃
j�1

Ik j
(u j)⊂In(x)

Ik j (u j)

)
+S2n| f0|(x)

� 2nCλ μ(In(x))+S2n | f0|(x) � Cλ ,

for some conveniently chosen constant C independent on the choice of n and λ as seen
in Remark 1.

In the following lemma, for every k � 1, we form a collection Fk,λ of mutually
disjoint intervals analogue to those introduced in Lemma 2.
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LEMMA 3. Let f ∈ L1(G) be such that ‖ f‖1 < λ . For every k � 1 , there exists
a collection Fk,λ , of mutually disjoint intervals (Ik

k j
(uk

j)) j�1 , satisfying

μ

⎛
⎝ ⋃

J∈Fk,λ

J

⎞
⎠� 1

2kλ ∑
J∈Fk,λ

∫
J
| f |,∀k � 0, (11)

and
‖S2n | f | ·1(

⋃
J∈Fk,λ

J)c‖∞ � C2kλ , ∀n � 0, (12)

where the constant C is independent on the choice of λ , k and n.

Proof. For every positive integer k , define the appropriate mutually disjoint inter-
vals (Ik

k j
(uk

j)) j�1 corresponding to the intervals introduced in Lemma 2, by replacing

λ with 2kλ . Then, if we define the collection Fk,λ = {Ik
k j

(uk
j), j � 1} , using Remark 2,

where λ is replaced with 2kλ , we obtain (11), because

μ

⎛
⎝ ⋃

J∈Fk,λ

J

⎞
⎠= ∑

J∈Fk,λ

μ(J) � 1
2kλ ∑

J∈Fk,λ

∫
J
| f |,∀k � 0.

Similarly, combining Remark 3 and Remark 1 gives (12).
In [4, Theorem 1], G.Gát proves sufficient conditions on subsequences of Dirichlet

kernels, related to the Walsh system, whose convolution with any function f ∈ L1(G)
converges almost everywhere. The following result deals with the same question con-
cerning the Kaczmarz system. The latter structure has some specific properties with
regards to the Walsh system which makes it impossible to apply Gát’s method. Our
techniques require an additional condition which is expressed in formula (13). It de-
scribes the growth of the sequence of positive numbers (α(n))n generating the subse-
quence of Dirichlet kernels (Dκ

α(n))n .

THEOREM 1. Let f ∈ L1(G) and (α(n))n be an increasing sequence of positive
integers satisfying α(n+1) � qα(n) , for some q > 1 and

|α(n)|− |α(m)|� Cnβ−1(n−m), (13)

for some 1 < β < 3
2 and for all n > m � 1 . Then,

1
s

s

∑
n=1

Dκ
α(n) ∗ f → f , s → ∞,

almost everywhere.

Proof. Following the techniques used in the proof of [4, Theorem 1]), it suffices
to prove the result for q � 2.
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If we prove that the operator sup
s

1
s ∑s

n=1 Dκ
α(n) ∗ f is of weak type (1,1) , then

the result can be deduced by means of some standard arguments (see for example [4,
Theorem 1]).

Applying formula (3) on the elements of the sequence (α(n))n , we have for every
positive integer s and every x ∈ G

1
s

s

∑
n=1

(
Dκ

α(n) ∗ f
)

(x) =
1
s

s

∑
n=1

S2|α(n)| f (x) (14)

+
1
s

s

∑
n=1

2|α(n)|−1

∑
j=0

Aα(n), j
(
S2|α(n)|+1 f (x+ z j)−S2|α(n)| f (x+ z j)

)
.

Denote by

T (α)
s f (x) :=

s

∑
n=1

2|α(n)|−1

∑
j=0

Aα(n), j
(
S2|α(n)|+1 f (x+ z j)−S2|α(n)| f (x+ z j)

)
.

It is known that the operator f ∗(x) = sup
n
|S2n f (x)| is of weak type (1,1) . Therefore,

this is also valid for the operator sup
s

1
s |∑s

n=1 S2|α(n)| f (x)| . Hence, it suffices to prove

that the operator sup
s

1
s |T (α)

s f (x)| is of weak type (1,1) .

For every nonnegative integer j set ν j(x) = inf{i � 0 : S2i | f |(x + z j) > 2kλ} ,
where k is the least integer satisfying j < 2k .

For every y ∈ G and every nonnegative integer n , denote by �n f (y) the expres-
sion

�n f (y) := S2n+1 f (y)−S2n f (y).

Since 1{ν j(x)>m} is constant on each Im -coset, it is clear that for all positive integers m ,
n and all j < 2m and i < 2n we have

∫
1{ν j(x)>m}�m f (x+ z j) ·1{νi(x)>n}�n f (x+ zi)dx = 0, (15)

whenever m �= n or i �= j . Moreover, if F =
∞⋃

k=0

2k−1⋃
j=0

(
z j +

( ⋃
J∈Fk,λ

J

))
, we have

μ
{

x ∈ Fc :
1
s

∣∣∣T (α)
s f (x)

∣∣∣> λ
}

� μ

{
x :

1
s

∣∣∣∣∣
s

∑
n=1

2|α(n)|

∑
j=0

Aα(n), j ·1{ν j(x)>|α(n)|}(x) ·�|α(n)| f (x+ z j)

∣∣∣∣∣> λ

}
,
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because if x∈Fc , then we can see that x∈
(

z j +
⋃

k: j<2k

⋃
J∈Fk,λ

J

)c

for every nonnegative

integer j . Indeed, the set F can also be expressed in the form

F =
∞⋃

j=0

⎛
⎝z j +

⎛
⎝ ⋃

k: j<2k

⋃
J∈Fk,λ

J

⎞
⎠
⎞
⎠ ,

hence from the De Morgan’s law we obtain

Fc =
∞⋂

j=0

⎛
⎝z j +

⎛
⎝ ⋃

k: j<2k

⋃
J∈Fk,λ

J

⎞
⎠
⎞
⎠

c

.

Then by means of (12) obtained in Lemma 3, we get S2i | f |(x+ z j) � 2kλ , for all i � 0
and every k � 0 such that j < 2k . This means that ν j(x) = ∞ and 1{ν j(x)>|α(n)|}(x) = 1,
∀ j � 0, n � 1.

Since q � 2, then |α(m)| �= |α(n)| whenever m �= n , hence applying (15) we get

μ
{

x ∈ Fc :
1
s

∣∣∣T (α)
s f (x)

∣∣∣> λ
}

(16)

� 1
s2λ 2

∫ ∣∣∣∣∣
s

∑
n=1

2|α(n)|−1

∑
j=0

Aα(n), j ·1{ν j(x)>|α(n)|}(x) ·�|α(n)| f (x+ z j)

∣∣∣∣∣
2

dx

� 1
s2λ 2

s

∑
n=1

2|α(n)|−1

∑
j=0

A2
α(n), j

∫
1{ν j(x)>|α(n)|}(x)

(�|α(n)| f (x+ z j)
)2

dx

� 1
s2λ 2

2|α(s)|−1

∑
j=0

∑
n:2|α(n)|> j

n�s

A2
α(n), j

∫
1{ν j(x)>|α(n)|}(x)

(�|α(n)| f (x+ z j)
)2

dx

� 1
s2λ 2

2|α(s)|−1

∑
j=0

1
( j +1)2 ∑

n:2|α(n)|> j
n�s

∫
1{ν j(x)>|α(n)|}(x)

(�|α(n)| f (x+ z j)
)2

dx,

where, the last inequality is obtained from (5). Applying [2, Lemma 2.1] we obtain

μ
{

x ∈ Fc :
1
s

∣∣∣T (α)
s f (x)

∣∣∣ > λ
}

� C
λ

1
s2

2|α(s)|−1

∑
j=0

1
j +1

‖ f‖1,

because according to the definition of ν j(x) , if ν j(x) > |α(n)| then

S2|α(n)|+1 | f |(x+ z j) � 2S2|α(n)| | f |(x+ z j) � 4 jλ .

It follows that

μ
{

x ∈ Fc :
1
s

∣∣∣T (α)
s f (x)

∣∣∣> λ
}

� C
|α(s)|
s2λ

‖ f‖1. (17)
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We can deduce from (13) that

|α(s)|− |α(1)| � Csβ ,

hence, (17) implies that

μ
{

x ∈ Fc :
1
s

∣∣∣T (α)
s f (x)

∣∣∣> λ
}

� C
1

s2−β λ
‖ f‖1. (18)

Notice that T (α)
s f (x) can be written in the form

T (α)
s f (x) =

2|α(s)|−1

∑
j=0

Mj(x),

where
Mj(x) = ∑

n:2|α(n)|> j
n�s

Aα(n), j
(
S2|α(n)|+1 f (x+ z j)−S2|α(n)| f (x+ z j)

)
.

Therefore, if kθ � s < (k+1)θ , for some fixed θ satisfying 1
2−β < θ < 1

β−1 , then we
get ∣∣∣T (α)

s f (x)
∣∣∣�
∣∣∣∣∣∣
2|α(kθ )|−1

∑
j=0

Mj(x)

∣∣∣∣∣∣+
∣∣∣∣∣∣

2|α(s)|−1

∑
j=2|α(kθ )|

Mj(x)

∣∣∣∣∣∣ . (19)

Proceeding as in the proof of [4, Theorem 1], the calculations made in (16) give

μ

⎧⎨
⎩x ∈ Fc :

1
s

∣∣∣∣∣∣
2|α(s)|−1

∑
j=2|α(kθ )|

Mj(x)

∣∣∣∣∣∣> λ

⎫⎬
⎭ (20)

� C
λ
|α((k+1)θ )|− |α(kθ )|

k2θ ‖ f‖1

� C
λ

kθ−1kθ(β−1)

k2θ ,

where the last inequality is obtained from assumption (13). Combining (18), (19) and
(20) we obtain

μ
{

x ∈ Fc : sup
s

1
s

∣∣∣T (α)
s f (x)

∣∣∣> 2λ
}

� μ

{
x ∈ Fc : sup

k

1
kθ sup

kθ �s<(k+1)θ

∣∣∣T (α)
s f (x)

∣∣∣> 2λ

}

� μ

⎧⎨
⎩x ∈ Fc : sup

k

1
kθ

∣∣∣∣∣∣
2|α(kθ )|−1

∑
j=0

Mj(x)

∣∣∣∣∣∣+ sup
k

1
kθ sup

kθ <s<(k+1)θ

∣∣∣∣∣∣
2|α(s)|−1

∑
j=2|α(kθ )|

Mj(x)

∣∣∣∣∣∣> 2λ

⎫⎬
⎭
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� μ

⎧⎨
⎩x ∈ Fc : sup

k

1
kθ

∣∣∣∣∣∣
2|α(kθ )|−1

∑
j=0

Mj(x)

∣∣∣∣∣∣> λ

⎫⎬
⎭

+μ

⎧⎨
⎩x ∈ Fc : sup

k

1
kθ sup

kθ <s<(k+1)θ

∣∣∣∣∣∣
2|α(s)|−1

∑
j=2|α(kθ )|

Mj(x)

∣∣∣∣∣∣> λ

⎫⎬
⎭

�
∞

∑
k=1

μ

⎧⎨
⎩x ∈ Fc :

1
kθ

∣∣∣∣∣∣
2|α(kθ )|−1

∑
j=0

Mj(x)

∣∣∣∣∣∣> λ

⎫⎬
⎭

+
∞

∑
k=1

(k+1)θ−1

∑
s=kθ +1

μ

⎧⎨
⎩x ∈ Fc :

1
kθ

∣∣∣∣∣∣
2|α(s)|−1

∑
j=2|α(kθ )|

Mj(x)

∣∣∣∣∣∣> λ

⎫⎬
⎭

� C‖ f‖1

λ

∞

∑
k=1

1

kθ(2−β ) +
∞

∑
k=1

(k+1)θ−1

∑
s=kθ

C
‖ f‖1

λkθ(2−β )+1

� C‖ f‖1

λ

(
∞

∑
k=1

1

kθ(2−β ) +
∞

∑
k=1

1

kθ(1−β )+2

)
� C‖ f‖1

λ
.

As mentioned in the discussion made after Lemma 2, the sets (Fk,λ )k have mutu-
ally disjoint elements. Hence, according to (11)

μ(F) �
∞

∑
k=0

2k−1

∑
j=0

μ

⎛
⎝z j +

⎛
⎝ ⋃

J∈Fk,λ

J

⎞
⎠
⎞
⎠

�
∞

∑
k=0

1
2kλ

2k−1

∑
j=0

∑
J∈Fk,λ

∫
J
| f |

� 1
λ

∞

∑
k=0

∑
J∈Fk,λ

∫
J
| f | � ‖ f‖1

λ
.

It follows

μ
{

sup
s

1
s

∣∣∣T (α)
s f (x)

∣∣∣> 2λ
}

� μ(F)+ μ
{

x ∈ Fc : sup
s

1
s

∣∣∣T (α)
s f (x)

∣∣∣ > 2λ
}

� C‖ f‖1

λ
.
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