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FUNCTIONS IN SEMINORMED SPACES
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(Communicated by J. Pečarić)

Abstract. In this paper, we study the approximation properties of 2π -periodic functions in a
seminormed space. We use a general matrix method of summability, and the moduli of continuity
in the seminormed space as a measure of approximation. Our results generalize and improve
some of the previous results available in the literature.

1. Introduction

Let C and Lp (1 � p < ∞) denote the spaces of 2π -periodic real valued contin-
uous functions and p− th power Lebesgue integrable functions, respectively, equipped
with the following norms

‖ f‖C := ‖ f (·)‖C = max
−π�t�π

| f (t) |

and

‖ f‖
Lp := ‖ f (·)‖

Lp =
{∫ π

−π
| f (t) |p dt

} 1
p

.

For a seminorm P, we define the following seminormed spaces:

(Lp,P) = { f ∈ Lp : P( f ) < ∞} ,

(C,P) = { f ∈C : P( f ) < ∞}
with the property that f (·+h)∈ (Lp,P) or f (·+h)∈ (C,P) for any h∈R , respectively.

In this paper we will consider the seminorm P satisfying, for all f ,g ∈ (Lp,P) (or
f ,g ∈ (C,P)), the following conditions:

1. for any h ∈ R

P( f (·+h)) = P( f (·)) , (1)
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2. if | f (x)| � |g(x)| for every x ∈ [−π ,π ], then

P( f ) � P(g) . (2)

For f ∈ L1 we will consider the trigonometric Fourier series

S [ f ] (x) :=
1
2π

∫ π

−π
f (t)dt +

∞

∑
ν=1

[
cosνx

π

∫ π

−π
f (t)cosνtdt +

sinνx
π

∫ π

−π
f (t)sinνtdt

]

with the partial sums Sk [ f ] .
We will also need some notations on methods of summability of the series S [ f ] .
If A :=

(
an,k
)
0�n,k<∞ is an infinite matrix of real numbers such that an,k � 0 for all

k,n = 0,1,2, . . . , or A0 :=
(
an,k
)
0�n,k<∞ is an infinite matrix of real numbers such that

an,k � 0 for k = 0,1,2, . . . ,n and an,k = 0 when k = n+1,n+2, . . . , with limn→∞ an,k =
0 for every k and ∑∞

k=0 an,k = 1 for every n , then

Tn,A [ f ] (x) :=
∞

∑
k=0

an,kSk [ f ] (x) (n = 0,1,2, . . .)

or

Tn,A0
[ f ] (x) :=

n

∑
k=0

an,kSk [ f ] (x) (n = 0,1,2, . . .) ,

define the respective matrix means of S [ f ] .
It is well-known that in Fourier analysis, various interesting results are established

by assuming monotonicity of the entries of a matrix A . One of the methods of obtaining
generalizations of these results was the use of the so-called bounded variation concept.
There have been defined many classes of bounded variation sequences (see for example
[5], [12]–[16]). We will also use one of them in this paper. Namely, following Leindler
[6] we define the class of Head Bounded Variations Sequences

HBVS :=

{
(ck) ⊂ [0,∞) :

m−1

∑
k=0

|ck − ck+1| = O(cm) for all m ∈ N

}
.

For f ∈ (Lp,P)(or f ∈ (C,P)) , we denote the best approximation by

En( f )P = inf
Tn
{P( f −Tn)}, n = 0,1,2, . . . ,

where the infimum is taken over all trigonometric polynomials

Tn(x) =
n

∑
k=−n

cne
inx

of the degree at most n.
The modulus of continuity of f ∈ (Lp,P) (or f ∈ (C,P)) with respect to P is

defined by the following formula:
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Ω f (δ )P = sup
0�h�δ

P( f (·+h)− f (·)) .

With such modulus of continuity, we can define the following class of functions:

LipP (ω) = { f ∈ (Lp,P) (or f ∈ (C,P)) : Ω f (δ )P = O(ω (δ )) , δ � 0} ,

where ω is a function of modulus of continuity type on the interval [0,2π ], i.e., a non-
decreasing continuous function having the following properties: ω (0)= 0, ω (δ1 + δ2)
� ω (δ1)+ ω (δ2) for any 0 � δ1 � δ2 � δ1 + δ2 � 2π .

We know that the following Jackson-type inequality (see [17, Theorems 1, 2, p.
159]) holds:

En( f )P = O

(
Ω f

(
1

n+1

)
P

)
; n = 0,1,2, . . . ,

for f ∈ (Lp,P) (or f ∈ (C,P)).
With these definitions, it is pertinent to study the problem of approximation in the

seminormed spaces defined above. Our results presented in this paper generalize and
improve the results of A. Guven [2], B. Szal [11, Theorem 5 (v)] and R. N, Mohapatra,
B. Szal [10, Theorem 5 (vi)] using seminorms instead of special kind of the Orlicz
norms and considering more general matrix means.

2. Main results

In the beginning we present a general result dealing with the degree of approxima-
tion in terms of the best approximation and the modulus of continuity.

THEOREM 1. Let f ∈ (Lp,P) with 1 � p < ∞ , where seminorm P satisfies (1)
and (2) or the following condition

P( f ) � ‖ f (·)‖Lp . (3)

If entries of the matrix A satisfy the conditions

∞

∑
k=0

(k+1)β
∣∣∣∣ an,k

(k+1)β − an,k+1

(k+2)β

∣∣∣∣= O

(
1

n+1

)
, (4)

for some β � 0 and
∞

∑
k=0

(k+1)an,k = O(n+1), (5)

then

P
(
Tn,A [ f ]− f

)
= O

(
En( f )P +

n

∑
k=0

an,kEk( f )P

)
, (6)

for n = 0,1,2, . . .
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Let GM be a class of all sequences (ck) of real numbers such that there exist
constants M > 0 and λ > 1 for which

2n−1

∑
k=n

|ck − ck+1| � M
[λn]

∑
k=[n/λ ]

|ck|
k

for all n ∈ N (see [8]).
If ((k+1)−βan,k) ∈ GM with respect to k for some β � 0 and

∞

∑
k=0

an,k

k+1
= O

(
1

n+1

)
(7)

for all n = 0,1,2, . . . , then for some M0 > 0

∞

∑
k=1

(k+1)β
∣∣∣∣ an,k

(k+1)β − an,k+1

(k+2)β

∣∣∣∣ =
∞

∑
s=0

2s+1−1

∑
k=2s

(k+1)β
∣∣∣∣ an,k

(k+1)β − an,k+1

(k+2)β

∣∣∣∣
� M

∞

∑
s=0

(
2s+1)β

[λ2s]

∑
k=[2s/λ ]

an,k

k(k+1)β

� MM0

∞

∑
k=0

an,k

k+1
= O

(
1

n+1

)
.

Thus (4) is satisfied. Using this and Theorem 1 we can formulate the following corol-
lary:

COROLLARY 1. Let f ∈ (Lp,P) with 1 � p < ∞ , where the seminorm P satisfy
(1) and (2) or (3). If entries of the matrix A satisfy conditions ((k + 1)−βan,k) ∈ GM
with respect to k for some β � 0 , (5) and (7), then (6) holds.

In case of the triangular means defined by matrices A0, we have the following
remark:

REMARK 1. We can observe that all lower triangular matrices satisfy (5). Indeed

∞

∑
k=0

(k+1)an,k =
n

∑
k=0

(k+1)an,k � (n+1)
n

∑
k=0

an,k = n+1.

Moreover, using the monotonicity of En( f )P with respect to n , we get

n

∑
k=0

an,kEk( f )P � En( f )P

n

∑
k=0

an,k = En( f )P.

Using Theorem 1 and Remark 1 we get the following corollary:
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COROLLARY 2. Let f ∈ (Lp,P) with 1 � p < ∞ , where the seminorm P satisfy
(1) and (2) or (3). If entries of the matrix A0 satisfy condition (4) for some β � 0 , then

P
(
Tn,A0

[ f ]− f
)

= O

(
n

∑
k=0

an,kEk( f )P

)
, (8)

for n = 0,1,2, . . .

Suppose that A0 and ((k + 1)−βan,k) ∈ HBVS with respect to k for some β � 0
and (n+1)an,n = O(1) . Then

∞

∑
k=0

(k+1)β
∣∣∣∣ an,k

(k+1)β − an,k+1

(k+2)β

∣∣∣∣
=

n−1

∑
k=0

(k+1)β
∣∣∣∣ an,k

(k+1)β − an,k+1

(k+2)β

∣∣∣∣+an,n

� (n+1)β
n−1

∑
k=0

∣∣∣∣ an,k

(k+1)β − an,k+1

(k+2)β

∣∣∣∣+an,n

� (n+1)βO

(
an,n

(n+1)β

)
+an,n = O(an,n) = O

(
1

n+1

)
.

Thus (4) is satisfied. Using this and Theorem 1 we can formulate the following corol-
lary:

COROLLARY 3. Let f ∈ (Lp,P) with 1 � p < ∞ , where the seminorm P satisfy
(1) and (2) or (3). If entries of the matrix A0 satisfy conditions ((k+1)−β an,k)∈HBVS
with respect to k for some β � 0 and (n+1)an,n = O(1), then (8) holds.

Next we consider some special cases and approximate f ∈ LipP (ω) .

THEOREM 2. Let f ∈ LipP (ω) , where the seminorm P satisfy (1) and (2) or (3).
If entries of the matrix A satisfy conditions (4) for some β � 0 and (5), then

P
(
Tn,A [ f ]− f

)
=

⎧⎪⎨
⎪⎩

O
(
ω( 1

n+1)
)
, when β > 0,

O

(
1

n+1

n
∑

k=0
ω( 1

k+1 )
)

, when β = 0,
(9)

for n = 0,1,2, . . .

In the similar way as in the proof of Theorem 2 using Corollary 1, 2 and 3 we
obtain the following corollaries:

COROLLARY 4. Let f ∈ LipP (ω) with 1 � p < ∞ , where the seminorm P satisfy
(1) and (2) or (3). If entries of the matrix A satisfy conditions ((k + 1)−βan,k) ∈ GM
with respect to k for some β � 0 , (5) and (7), then

P
(
Tn,A [ f ]− f

)
= O

(
ω
(

1
n+1

))
(10)
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for n = 0,1,2, . . .

COROLLARY 5. Let f ∈ LipP (ω) with 1 � p < ∞ , where the seminorm P satisfy
(1) and (2) or (3). If entries of the matrix A0 satisfy condition (4) for some β � 0 , then

P
(
Tn,A [ f ]− f

)
=

⎧⎪⎨
⎪⎩

O
(
ω( 1

n+1)
)
, when β > 0,

O

(
an,n

n
∑

k=0
ω( 1

k+1)
)

, when β = 0,

for n = 0,1,2, . . .

COROLLARY 6. Let f ∈ LipP (ω) , where the seminorm P satisfy (1) and (2) or
(3). If entries of the matrix A0 satisfy conditions ((k + 1)−β an,k) ∈ HBVS for some
β � 0 with respect to k and (n+1)an,n = O(1), then (9) holds.

Finally, we have the following examples and remarks.

EXAMPLE 1. One can easily verify that an,k = e−n ∑∞
j=k

n j

( j+1)! , where n,k = 0,1,

2, . . . , satisfies the conditions (4) for any β � 0 with respect to k and (5).

EXAMPLE 2. Let an,k = (k+1)β−kβ

(n+1)β for k � n and an,k = 0 for k > n , where n,k =
0,1,2, . . . . We can easily show that this sequence satisfies the conditions (4) for any
β > 1 and (n+1)an,n = O(1) .

REMARK 2. Theorem 1 and Corollaries 1-3 will also be true for f ∈ (C,P) be-
cause (C,P) ⊂ (Lp,P) for 1 � p < ∞ .

REMARK 3. Let the seminorm P satisfy (2) or (3). If f ∈ LipP (ω) with ω (δ ) =
δ α , where α ∈ (0,1] , then from Corollary 6 the results of [1], [2], [7], [10, Theorem 5
(vi)] and [11, Theorem 5 (v)] follow at once in the more general and improved forms.
The similar results can also be seen in papers [3] and [4].

3. Lemmas

We need the following lemmas for the proofs of our theorems.

LEMMA 1. (see [17, Theorem 1, p. 58]) Let g be a continuous function of two
variables, 2π - periodic on [−π ,π ]× [−π ,π ]. If g(·, t) ∈ (C,P) for every t ∈ [−π ,π ]
and (1) holds, then ∫ π

−π
g(·,t)dt ∈ (C,P)

and

P

(∫ π

−π
g(·,t)dt

)
�
∫ π

−π
P(g(·, t))dt.
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LEMMA 2. (cf. [17, Corollary 1, p. 59]) Let f ∈ (Lp,P) with 1 � p < ∞ and
K ∈ (C,P) . If the seminorm P satisfies the condition (1) and (3), then

∫ π

−π
f (·+ t)K (t)dt ∈ (Lp,P)

and

P

(∫ π

−π
f (·+ t)K (t)dt

)
� P( f )

∫ π

−π
|K (t)|dt.

Proof. If f ,K ∈ (C,P) , then using Lemma 1 we have

P

(∫ π

−π
f (·+ t)K (t)dt

)
�
∫ π

−π
P( f (·+ t)K (t))dt

=
∫ π

−π
P( f (·+ t)) |K (t)|dt

=
∫ π

−π
P( f (·)) |K (t)|dt = P( f )

∫ π

−π
|K (t)|dt. (11)

We know that the set of continuous functions is dense in the space Lp for 1 � p < ∞
(see [9]). Therefore, for every f ∈ (Lp,P) with 1 � p < ∞ , there exists a sequence
( fn) of continuous functions such that ‖ fn − f‖Lp → 0 as n → ∞. Hence for every
f ∈ (Lp,P) with 1 � p < ∞

gn (x) =
∫ π

−π
fn(x+ t)K (t)dt =

∫ π

−π
fn(t)K (t− x)dt →

∫ π

−π
f (t)K (t − x)dt = g(x)

uniformly with respect to x as n → ∞ , since by the Hölder inequality

|gn (x)−g(x)| � max
|s|�π

|K (s)|
∫ π

−π
| fn (t)− f (t)|dt � (2π)1−1/p max

|s|�π
|K (s)| ‖ fn − f‖Lp .

Next, applying (3) we get for 1 � p < ∞

lim
n→∞

|P( fn)−P( f )| � lim
n→∞

P( fn − f ) � lim
n→∞

‖ fn − f‖Lp = 0.

Therefore, P is continuous and thus using (11), we obtain

P

(∫ π

−π
f (·+ t)K (t)dt

)
= P(g) = lim

n→∞
P(gn)

= lim
n→∞

P

(∫ π

−π
fn(·+ t)K (t)dt

)

� lim
n→∞

P( fn)
∫ π

−π
|K (t)|dt = P( f )

∫ π

−π
|K (t)|dt.
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Using (3) and the Minkowski inequality

P

(∫ π

−π
f (·+ t)K (t)dt

)
�
∥∥∥∥
∫ π

−π
f (·+ t)K (t)dt

∥∥∥∥
Lp

�
∫ π

−π
‖ f (·+ t)‖Lp |K (t)|dt

= ‖ f (·)‖Lp

∫ π

−π
|K (t)|dt � 2π ‖ f (·)‖Lp max

|s|�π
|K (s)| < ∞.

Thus ∫ π

−π
f (·+ t)K (t)dt ∈ (Lp,P)

and this ends our proof.

LEMMA 3. Let f ∈ (Lp,P) with 1 � p < ∞ and K ∈ L1 . If a seminorm P satisfies
(1) and (2), then ∫ π

−π
f (·+ t)K (t)dt ∈ (Lp,P)

and

P

(∫ π

−π
f (·+ t)K (t)dt

)
� P( f )

∫ π

−π
|K (t)|dt.

Proof. Using (2) we can easily show that P( f ) = P(| f |) . Therefore, applying
again (2) and absolute homogeneity of the seminorm P, we obtain

P

(∫ π

−π
f (·+ t)K (t)dt

)
� P

(∫ π

−π
| f (·+ t)K (t)|dt

)

= P

(∫ π

−π
|K (t)|dt

∫ π

−π

| f (·+ t)K (t)|∫ π
−π |K (t)|dt

dt

)

=
∫ π

−π
|K (t)|dtP

(
1∫ π

−π |K (t)|dt

∫ π

−π
| f (·+ t)K (t)|dt

)
.

Using the Jensen inequality, we obtain

P

(
1∫ π

−π |K (t)|dt

∫ π

−π
| f (·+ t)K (t)|dt

)
� 1∫ π

−π |K (t)|dt

∫ π

−π
P(| f (·+ t)|) |K (t)|dt

=
1∫ π

−π |K (t)|dt

∫ π

−π
P(| f (·)|) |K (t)|dt

= P(| f (·)|) = P( f )

and our result follows.
Next we present some estimate of the kernel.
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LEMMA 4. If β � 0 and 0 < t � π , then∣∣∣∣∣
n

∑
k=0

(k+1)β sin (2k+1)t
2

2sin t
2

∣∣∣∣∣� π2 (n+1)β

t2
.

Proof. Using the Abel transformation and ∑n
l=0

sin (2l+1)t
2

2sin t
2

= sin2 (n+1)t
2

2sin2 t
2

(see [18]),

we have ∣∣∣∣∣
n

∑
k=0

(k+1)β sin (2k+1)t
2

2sin t
2

∣∣∣∣∣
�
∣∣∣∣∣
n−1

∑
k=0

[
(k+1)β − (k+2)β

] k

∑
l=0

sin (2l+1)t
2

2sin t
2

+(n+1)β
n

∑
l=0

sin (2l+1)t
2

2sin t
2

∣∣∣∣∣
�

n−1

∑
k=0

∣∣∣(k+1)β − (k+2)β
∣∣∣ sin2 (k+1)t

2

2sin2 t
2

+(n+1)β sin2 (n+1)t
2

2sin2 t
2

� π2

2t2

[
n−1

∑
k=0

∣∣∣(k+1)β − (k+2)β
∣∣∣+(n+1)β

]

=
π2

2t2

[
2(n+1)β −1

]
� π2

t2
(n+1)β

and this ends our proof.
Application of Lemma 4 gives next more general estimate.

LEMMA 5. If (4) for some β � 0 and (5) hold, then

∫ π

−π

∣∣∣∣∣
∞

∑
k=0

an,k

(
1
2

+
k

∑
ν=1

cosνt

)∣∣∣∣∣dt = O(1) .

Proof. Since 1
2 + ∑k

ν=1 cosνt = sin (2k+1)t
2

2sin t
2

(see [18]),

∫ π

−π

∣∣∣∣∣
∞

∑
k=0

an,k

(
1
2

+
k

∑
ν=1

cosνt

)∣∣∣∣∣dt =
∫ π

−π

∣∣∣∣∣
∞

∑
k=0

an,k
sin (2k+1)t

2

2sin t
2

∣∣∣∣∣dt.

Using the Abel transformation, Lemma 4 and (4), we have∣∣∣∣∣
∞

∑
k=0

an,k

(k+1)β (k+1)β sin (2k+1)t
2

2sin t
2

∣∣∣∣∣
=

∣∣∣∣∣
∞

∑
k=0

[
an,k

(k+1)β − an,k+1

(k+2)β

] k

∑
l=0

(l +1)β sin (2l+1)t
2

2sin t
2

∣∣∣∣∣
� π2

∞

∑
k=0

∣∣∣∣ an,k

(k+1)β − an,k+1

(k+2)β

∣∣∣∣ (k+1)β

t2
= O

(
1

t2(n+1)

)
.



98 W. ŁENSKI, U. SINGH AND B. SZAL

Thus, by the assumption (5), we have

∫ π

0

∣∣∣∣∣
∞

∑
k=0

an,k
sin (2k+1)t

2

2sin t
2

∣∣∣∣∣dt =

(∫ π
n+1

0
+
∫ π

π
n+1

)∣∣∣∣∣
∞

∑
k=0

an,k
sin (2k+1)t

2

2sin t
2

∣∣∣∣∣dt

�
∫ π

n+1

0

∞

∑
k=0

an,k
2k+1

2
dt +

∫ π

π
n+1

O

(
1

t2(n+1)

)
dt

� π
n+1

(n+1)+
O(1)
n+1

(
π

n+1

)−1

= O(1)

and our estimate follows.
We yet need an approximation result.

LEMMA 6. Suppose f ∈ (Lp,P) with 1 � p < ∞, where seminorm P satisfies (1)
and (2) or (3), and let Tn be a trigonometric polynomial of the degree at most n, such
that P( f −Tn) = O(En( f )P) . If (4) for some β � 0 and (5) hold, then

P

(
∞

∑
k=0

an,kSk [ f −Tn]

)
= O(En( f )P) .

Proof. It is clear that

Sk [ f −Tn] (x) =
1
π

∫ π

−π
[ f −Tn] (x+ t)

(
1
2

+
k

∑
ν=1

cosνt

)
dt

and therefore,

∞

∑
k=0

an,kSk [ f −Tn] (x) =
1
π

∫ π

−π
[ f −Tn] (x+ t)

∞

∑
k=0

an,k

(
1
2

+
k

∑
ν=1

cosνt

)
dt.

Hence, by Lemma 2 or Lemma 3, we have

P

(
∞

∑
k=0

an,kSk [ f −Tn]

)
� 1

π

∫ π

−π
P( f −Tn)

∣∣∣∣∣
∞

∑
k=0

an,k

(
1
2

+
k

∑
ν=1

cosνt

)∣∣∣∣∣dt

and further,

P

(
∞

∑
k=0

an,kSk [ f −Tn]

)
= O(En( f )P)

1
π

∫ π

−π

∣∣∣∣∣
∞

∑
k=0

an,k

(
1
2

+
k

∑
ν=1

cosνt

)∣∣∣∣∣dt.

Since by Lemma 5

1
π

∫ π

−π

∣∣∣∣∣
∞

∑
k=0

an,k

(
1
2

+
k

∑
ν=1

cosνt

)∣∣∣∣∣dt = O(1) ,

whence

P

(
∞

∑
k=0

an,kSk [ f −Tn]

)
= O(En( f )P)

and our proof is ended.
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4. Proofs of main results

4.1. Proof of Theorem 1

For each n = 0,1,2, . . . , let Tn be a trigonometric polynomial such that P( f −Tn)=
O(En( f )P) (which exists by [17, Theorem 1, p. 36]), then

P
(
Tn,A [ f ]− f

)
= P

(
Tn,A [ f ]−

n

∑
k=0

an,kTk −
∞

∑
k=n+1

an,kTn +
n

∑
k=0

an,kTk +
∞

∑
k=n+1

an,kTn− f

)

� P

(
Tn,A [ f ]−

n

∑
k=0

an,kTk −
∞

∑
k=n+1

an,kTn

)
+P

(
n

∑
k=0

an,kTk +
∞

∑
k=n+1

an,kTn− f

)

= P

(
n

∑
k=0

an,k {Sk [ f ]−Tk}+
∞

∑
k=n+1

an,k {Sk [ f ]−Tn}
)

+P

(
n

∑
k=0

an,k ( f −Tk)+
∞

∑
k=n+1

an,k ( f −Tn)

)

� P

(
∞

∑
k=0

an,kSk [ f −Tn]

)
+P

(
n

∑
k=0

an,k ( f −Tk)

)
+P

(
∞

∑
k=n+1

an,k ( f −Tn)

)

= P

(
∞

∑
k=0

an,kSk [ f −Tn]

)
+

n

∑
k=0

an,kO(Ek( f )P)+
∞

∑
k=n+1

an,kO(En( f )P) ,

since

Sk [ f −Tn] (x) =
{

Sk f (x)−Tk (x) , for k � n,
Sk f (x)−Tn (x) , for k � n.

We note that by Lemma 6,

P

(
∞

∑
k=0

an,kSk [ f −Tn]

)
= O(En( f )P)

and thus our result follows.

4.2. Proof of Theorem 2

The subadditivity of ω implies ω (nδ )� nω (δ ) , whence ω (λ δ )� (λ +1)ω (δ )
and therefore ω(δ2)

δ2
� 2ω(δ1)

δ1
since

ω (δ2) = ω
(

δ1

δ1
δ2

)
�
(

δ2

δ1
+1

)
ω (δ1)

=
(

δ2

δ1
+

δ1

δ1

)
ω (δ1) �

(
δ2

δ1
+

δ2

δ1

)
ω (δ1) = 2

δ2

δ1
ω (δ1) ,
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where n ∈ N0, λ � 0 and 0 < δ1 � δ2. Hence, using the Abel transformation and (4)
with β > 0,

n

∑
k=0

an,kω
(

1
k+1

)
=

n

∑
k=0

an,k

k+1

ω( 1
k+1 )
1

k+1

� 2(n+1)ω
(

1
n+1

) n

∑
k=0

an,k

k+1

� 2(n+1)ω
(

1
n+1

) ∞

∑
k=0

(k+1)β−1 an,k

(k+1)β

� 2(n+1)ω
(

1
n+1

) ∞

∑
k=0

∣∣∣∣ an,k

(k+1)β − an,k+1

(k+2)β

∣∣∣∣ k

∑
l=0

(l +1)β−1

� 2

(
1+

1
β

)
(n+1)ω

(
1

n+1

) ∞

∑
k=0

(k+1)β
∣∣∣∣ an,k

(k+1)β − an,k+1

(k+2)β

∣∣∣∣
= O

(
ω
(

1
n+1

))

but with β = 0

n

∑
k=0

an,kω
(

1
k+1

)
�

n−1

∑
k=0

∣∣an,k −an,k+1
∣∣ k

∑
l=0

ω
(

1
l +1

)
+an,n

n

∑
l=0

ω
(

1
l +1

)

�
(

n−1

∑
k=0

∣∣an,k −an,k+1
∣∣+ ∞

∑
k=n

(
an,k −an,k+1

)) n

∑
l=0

ω
(

1
l +1

)

= O

(
1

n+1

n

∑
l=0

ω
(

1
l +1

))
.

Thus our result, by Theorem 1 and the Jackson-type inequality, follows.
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Faculty of Mathematics, Computer Science and Econometrics
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Faculty of Mathematics, Computer Science and Econometrics
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