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CONVERGENCE IN MEASURE OF FEJÉR MEANS OF

TWO PARAMETER CONJUGATE WALSH TRANSFORMS

USHANGI GOGINAVA ∗ AND SALEM BEN SAID

(Communicated by I. Perić)

Abstract. Weisz proved-among others – that for f ∈ L logL the Fejér means σ̃ (t,u)
n,m of conjugate

transform of two-parameter Walsh-Fourier series a. e. converges to f (t,u) . The main aim of this
paper is to prove that for any Orlicz space, which is not a subspace of L logL , the set of functions
for which Walsh-Fejér Means of two parameter Conjugate Transforms converge in measure is of
first Baire category.

1. Definitions and notations

We shall denote the set of all non-negative integers by N , the set of all integers
by Z and the set of dyadic rational numbers in the unit interval I := [0,1) by Q . In
particular, each element of Q has the form p

2n for some p,n ∈ N , 0 � p � 2n .
Denote the dyadic expension of n ∈ N and x ∈ I by

n =
∞

∑
j=0

n j2 j, n j = 0,1

and

x =
∞

∑
j=0

x j

2 j+1 , x j = 0,1.

In the case of x ∈ Q chose the expension which terminates in zeros. ni,xi are the i-th
coordinates of n , x , respectively. Define the dyadic addition � as

x� y =
∞

∑
k=0

|xk − yk|2−(k+1).

Denote by ⊕ the dyadic (or logical) addition. That is,

k⊕n :=
∞

∑
i=0

|ki−ni|2i,
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where ki,ni are the i th coordinate of natural numbers k,n with respect to number sys-
tem based 2.

The sets In (x) := {y ∈ I : y0 = x0, . . . ,yn−1 = xn−1} for x ∈ I, In := In (0) for 0 <
n ∈ N and I0 (x) := I are the dyadic intervals of I . For 0 < n ∈ N denote by |n| :=
max

{
j ∈ N : n j �= 0

}
, that is, 2|n| � n < 2|n|+1. Set e j := 1/2 j+1, the i th coordinate

of ei is 1 , the rest sre are zeros (i ∈ N) .
The Rademacher system is defined by

rn (x) := (−1)xn (x ∈ I, n ∈ N) .

The Walsh-Paley system is defined as the sequence of the Walsh-Paley functions:

wn (x) :=
∞

∏
k=0

(rk (x))nk = (−1)

|n|
∑

k=0
nkxk

, (x ∈ I, n ∈ N) .

The Walsh-Dirichlet kernel is defined by

Dn (x) =
n−1

∑
k=0

wk (x) .

Recall that (see [12])

D2n (x) =
{

2n, if x ∈ [0,2−n)
0, if x ∈ [2−n,1) , (1)

The σ -algebra generated by the dyadic intervals {In (x) : x ∈ G} is denoted by
An, more precisely,

An := σ {In (x) : x ∈ G} .

Denote by f = ( fn,n ∈ N) martingale with respect to (An,n ∈ N) (for details see, e. g.
[16, 17]). For a martingale

f ∼
∞

∑
n=0

( fn − fn−1) , f−1 = 0

the conjugate transforms are defined by

f̃ (t) ∼
∞

∑
n=0

rn (t)( fn − fn−1) ,

where t ∈ I is fixed.
Note that f̃ (0) = f . As is well known, if f is an integrable function, then conjugate

transforms f̃ (t) do exist almost everywhere, but they are not integrable in general.
Let

ρ0 (t) := r0 (t) ,ρk (t) := rn (t) if 2n−1 � k < 2n.
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Then the n th partial sums of the conjugate transforms is given by

S̃(t)
n (x; f ) :=

n−1

∑
k=0

ρk (t) f̂ (k)wk (x) (t ∈ I, n ∈ P) .

The conjugate (C,1) -means of a martingale f are introduced by

σ̃ (t)
n (x; f ) :=

1
n

n−1

∑
k=0

S̃(t)
k (x; f ) (t ∈ I, n ∈ P) .

Set

σ̃ (0)
n (x; f ) := σn (x; f ) =

1
n

n−1

∑
k=0

Sk ( f ) (n ∈ P) .

We consider the double system
{
wn1(x1)×wn2(x2) : n1,n2 ∈ N

}
on the unit square

I2 = [0,1)× [0,1) .
For a set X �= ∅ let X2 be its Cartesian product X×X taken with itself. The Carte-

sian product of two dyaduc intervals is said to be a dyadic rectangle. Clearrly, the dyadic
rectangle of area 2−n1×2−n2

containing
(
x1,x2

)∈ I2 is given by In1

(
x1
)×In2

(
x2
)

The
σ -algebra generated by the dyadic rectangles

{
In1

(
x1
)× In2

(
x2
)

: x1,x2 ∈ I
}

will be

denoted by An1,n2 (
n1,n2 ∈ N

)
. Let

(
fn1,n2 : n1,n2 ∈ N

)
be two-parameter martingale

with respect to
(
An1,n2

: n1,n2 ∈ N
)

(for details see, e. g. [16, 17]).

We denote by L0(I2) the Lebesgue space of functions that are measurable and
finite almost everywhere on I2 . μ (A) is the Lebesgue measure of the set A ⊂ I2 .

We denote by Lp
(
I2
)

the class of all measurable functions f that are 1-periodic
with respect to all variable and satisfy

‖ f‖p :=

⎛⎝∫
I2

| f |p
⎞⎠1/p

< ∞.

Let LQ = LQ(I2) be the Orlicz space [13] generated by Young function Q , i.e. Q
is convex continuous even function such that Q(0) = 0 and

lim
u→+∞

Q(u)
u

= +∞, lim
u→0

Q(u)
u

= 0.

This space is endowed with the norm

‖ f‖LQ(I2) = inf{k > 0 :
∫
I2

Q(| f |/k) � 1}.

In particular, if Q(u) = u log(1+u) , u > 0, then the corresponding space will be
denoted by L logL .
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For a martingale

f ∼
∞

∑
n1,n2=0

(
fn1,n2 − fn1−1,n2 − fn1,n2−1 + fn1−1,n2−1

)
, f−1,n2 = fn1,−1 = f−1,−1 = 0

the conjugate transform is defined by the martingale

f̃ (t
1,t2) ∼

∞

∑
n1,n2=0

rn1

(
t1
)
rn2

(
t2
)(

fn1,n2 − fn1−1,n2 − fn1,n2−1 + fn1−1,n2−1

)
,

where t1, t2 ∈ I are fixed. Note that f̃ (0,0) = f . As is well known, if f ∈ L logL
(
I2
)

then the conjugate transforms f̃ (t
1,t2) do exists almost everywhere, but they are not

integrable in general.
If f ∈ L1

(
I2
)
, then

f̂
(
n1,n2) =

∫
I2

f
(
y1,y2)wn1(y1)wn2(y2)dy1dy2

is the
(
n1,n2

)
-th Fourier coefficient of f .

The rectangular partial sums of double Fourier series with respect to the Walsh
system are defined by

SN1,N2

(
x1,x2; f

)
=

N1−1

∑
n1=0

N2−1

∑
n2=0

f̂
(
n1,n2)wn1(x1)wn2(x2).

It is easy to see that the sequence
{

S
2n1

,2n2 ( f ) = fn1,n2 : n1,n2 ∈ N
}

is two-para-

meter martingale.
Then the

(
n1,n2

)
th partial sum of the conjugate transforms is given by

S̃
(t1,t2)
n1,n2

(
x1,x2; f

)
:=

n1−1

∑
v1=0

n2−1

∑
v2=0

ρv1

(
t1
)

ρv2

(
t2
)

f̂
(
v1,v2)wv1

(
x1)wv2

(
x2) .

The conjugate (C,1,1) means of the function f are introduced by

σ̃(t1,t2)
n1,n2

(
x1,x2; f

)
:=

1
n1n2

n1

∑
v1=1

n2

∑
v2=1

S̃
(t1,t2)
v1,v2

(
x1,x2; f

)
.

The rectangular partial sums of the Walsh-Fourier series Sn1,n2 ( f ) , of the function
f ∈ Lp

(
I2
)
, 1 < p < ∞ converge in Lp norm to the function f as n1,n2 → ∞ , [11, 19].

In the case L1
(
I2
)

this result does not hold [6, 12]. But in the one-dimensional case
the operators Sn are of weak type (1,1) [15], that is the analogue of the estimate of
Kolmogorov for conjugate function [8]. This estimate implies the convergence of Sn ( f )
in measure on I to the function f ∈ L1 (I) . However, for double Walsh-Fourier series
this result [5, 14] fails to hold.
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Classical regular summation methods often improve the convergence of Walsh-

Fourier series. For instance, the Fejér means σn1,n2 ( f ) := σ̃ (0,0)
n1,n2 ( f ) of the Walsh-

Fourier series of the function f ∈ L1
(
I2
)
, converge in norm L1

(
I2
)

to the function f ,
as n1,n2 → ∞ [9, 19, 7].

In 1992 Móricz, Schipp and Wade [10] proved with respect to the Walsh-Paley
system that

σn1,n2 ( f ) =
1

n1n2

n1−1

∑
v1=0

n2−1

∑
v2=0

Sv1,v2( f ) → f

a.e. for each f ∈ L log+ L(I2) , when min
{
n1,n2

} → ∞ . In 2000 Gát proved [4]
that the theorem of Möricz, Schipp and Wade above can not be improved. Namely,
let δ : [0,+∞) → [0,+∞) be a measurable function with property limt→∞ δ (t) = 0.
Gát proved [4] the existence of a function f ∈ L1(I2) such that f ∈ L logLδ (L) , and
σn1,n2 ( f ) does not converge to f a.e. as min

{
n1,n2

}→ ∞ . That is, the maximal con-
vergence space for the (C,1,1) means of two-dimensional partial sums is L logL(I2) .
On the othar hand, the (C,1,1) means of two-dimensional partial sums of the function
f ∈ L1

(
I2
)
, converge in norm L1

(
I2
)

to the function f , as n1,n2 → ∞ which imply
converge in measure of the (C,1,1) means for all functions f ∈ L1

(
I2
)
.

Almost everywhere convergence of conjugate (C,1,1) means of two-parameter
Walsh-Fourier series was investigated by Weisz [18]. In particular, he proved the fol-
lowing theorem.

THEOREM W. Let t1, t2 ∈ I and f ∈ L logL
(
I2
)
. Then

σ̃(t1,t2)
n1,n2

(
x1,x2; f

)→ f̃ (t
1,t2) (x1,x2)

a. e. as n1,n2 → ∞ .

The main aim of this paper is to prove that when t1,t2 are dyadic irational then
the Walsh-Fejér Means of two parameter Conjugate Transforms does not improve the
convergence in measure. In particular, we prove the following

THEOREM 1. Let t1, t2 /∈ Q and Q(L)
(
I2
)

be an Orlicz space such that

Q(L)
(
I2) � L logL

(
I2) .

Then the set of function from the Orlicz space Q(L)
(
I2
)

with Fejér means of conjugate

transform σ̃(t1,t2)
n1,n2 ( f ) of two-parameter Walsh-Fourier series converges in measure on

I2 is of first Bairy category in Q(L)
(
I2
)
.

COROLLARY 1. Let t1,t2 /∈ Q and ϕ : [0,∞) → [0,∞) be a nondecreasing func-
tion satisfying for x → ∞ , the condition

ϕ (x) = o(x logx) .
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Then there exists a function f ∈ L1
(
I2
)

such that

a)
∫
I2

ϕ
(∣∣ f (x1,x2

)∣∣)dx1dx2 < ∞;

b) Fejér means of conjugate transform of two-parameter Walsh-Fourier series of f
diverge in measure on I2 .

2. Auxiliary results

THEOREM GGT. [3, 2] Let {Tm}∞
m=1 be a sequence of linear continuous oper-

ators, acting from Orlicz space Q(L) (I2) in to the space L0(I2) . Suppose that there
exists a sequence of functions {ξk}∞

k=1 from unit bull SQ(0,1) of space Q(L) (I2) and
an increasing to infinity sequences {mk}∞

k=1 and {λk}∞
k=1 such that

ε0 = inf
k

μ{(x1,x2) ∈ I2 : |Tmkξk
(
x1,x2) | > λk} > 0.

Then the set of functions f from space Q(L) (I2) , for which the sequence {Tm f}
converges in measure to an a. e. finite function is of first Baire category in space
Q(L) (I2) .

THEOREM GGT2. [3, 2] Let Φ(L)(I2) be an Orlicz space and let ϕ : [0,∞) →
[0,∞) be a measurable function with the condition ϕ (x) = o(Φ(x)) as x → ∞ . Then
there exists an Orlicz space ω (L)

(
I2
)

such that ω (x) = o(Φ(x)) as x → ∞ , and
ω (x) � ϕ (x) for x � c � 0 .

3. Proofs

Proof. Since t1 and t2 are dyadic irrational there exists two sequences of integers{
a(k)

i : i ∈ N
}

and
{

b(k)
i : i ∈ N

}
, k = 1,2 such that

0 � a(k)
1 � b(k)

1 < a(k)
2 � b(k)

2 < · · · < a(k)
A � b(k)

A < · · ·
and

tkj =

{
1, if a(k)

i � j � b(k)
i

0,b(k)
i < j < a(k)

i+1

, i = 1,2, . . . .

Set

Δ(k)
A := I

b
(k)
A +1

(
xk
0, . . . ,x

k

a(k)
1 −1

,0,xk

a(k)
1 +1

, . . . ,xk

b(k)
1 −1

,0,xk

b(k)
1 +1

, . . . ,

xk

a
(k)
A −1

,0,xk

a
(k)
A +1

, . . . ,xk

b
(k)
A −1

,0

)
.

Define the functions
h(k)

A (x) := 22Aχ
Δ(k)

A
(x) , k = 1,2
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and
fA
(
x1,x2) := h(1)

A

(
x1)h(2)

A

(
x2) ,

where χE is characteristic function of the set E .
Since

S̃
(t1,t2)
n1,n2

(
x1,x2; fA

)
= S̃

(t1)
n1

(
x1,h(1)

A

)
S̃
(t2)
n2

(
x1,h(2)

A

)
we obtain

σ̃(t1,t2)

22b
(1)
A +1

,22b
(2)
A +1

(
x1,x2; fA

)
= σ̃(t1)

22b
(1)
A +1

(
x1;h(1)

A

)
σ̃(t2)

22b
(2)
A +1

(
x2;h(2)

A

)
. (2)

Since for 2m−1 � k < 2m (S2−1 ( f ) = 0)

S̃(t)
k ( f ) = ρ0 (t) f̂ (0)w0 +

m−1

∑
l=1

rl (t)(S2l ( f )−S2l−1 ( f ))

+rm (t)(Sk ( f )−S2m−1 ( f ))

=
m−1

∑
l=0

rl (t)(S2l ( f )−S2l−1 ( f ))+ rm (t)(Sk ( f )−S2m−1 ( f ))

we have

σ̃ (t)
22bA+1 ( f ) =

1
22bA+1

2bA+1

∑
m=1

2m−1

∑
k=2m−1

S̃(t)
k ( f ) (3)

=
1

22bA+1

2bA+1

∑
m=1

2m−1S̃(t)
2m−1 ( f )

+
1

22bA+1

2bA+1

∑
m=1

rm (t)
(
2mσ2m ( f )−2m−1σ2m−1 ( f )

)
− 1

22bA+1

2bA+1

∑
m=1

rm (t)2m−1S2m−1 ( f ) .

Set

x1 ∈ Δ̃(1)
A := I

b(k)
A +1

(
x1
0, . . . ,x

1
a
(1)
1 −1

,0,x1
a
(1)
1 +1

, . . . ,x1
b
(1)
1 −1

,0,x1
b
(1)
1 +1

, . . . ,

x1
a(1)
A −1

,1,x1
a(1)
A +1

, . . . ,x1
b(1)
A −1

,1

)
.

Then from (1) we have

S2m−1

(
x1;h(1)

A

)
=

∫
I

h(1)
A (s)D2m−1

(
x1 � s

)
ds (4)

= 2m−1
∫

Im−1(x1)

h(1)
A (s)ds = 0
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if m > a(1)
A +1. It is well known that (see [12])

σ2m−1

(
x1;h(1)

A

)
=

∫
I

h(1)
A (s)K2m−1

(
x1 � s

)
ds,

where

K2n (x) =
1
2

(
2−nD2n (x)+

n

∑
j=0

2 j−nD2n (x� e j)

)
.

Let m > b(1)
i + 2. Then h(1)

A (s) �= 0 imply that there exists at least two coordinates in
x1 � s = (y0,y1, . . . ,) which are equal to 1. Consequently,

σ2m−1

(
x1;h(1)

A

)
= 0 (5)

when m > b(1)
i +2 and x1 ∈ Δ̃(1)

i .

Let x1 ∈ Δ̃(1)
i . Then Combining (3)–(5) we obtain∣∣∣∣σ̃(t1)

22b
(1)
A +1

(
x1;h(1)

A

)∣∣∣∣ (6)

� 1

22b(1)
A +1

∣∣∣∣∣∣∣
2b

(1)
A +1

∑
m=b

(1)
i +3

2m−1S̃
(t1)
2m−1

(
x1;h(1)

A

)∣∣∣∣∣∣∣
− 1

22b
(1)
A +1

∣∣∣∣∣∣
b(1)
i +2

∑
m=1

2m−1S̃
(t1)
2m−1

(
x1;h(1)

A

)∣∣∣∣∣∣
− 1

22b(1)
A +1

b(1)
i +2

∑
m=1

(
2m

∣∣∣σ2m

(
x1;h(1)

A

)∣∣∣+2m−1
∣∣∣σ2m−1

(
x1;h(1)

A

)∣∣∣)

− 1

22b
(1)
A +1

b(1)
i +2

∑
m=1

2m−1
∣∣∣S2m−1

(
x1;h(1)

A

)∣∣∣ .
Since ∣∣∣S2m−1

(
x1;h(1)

A

)∣∣∣ , ∣∣∣∣S̃(t1)
2m−1

(
x1;h(1)

A

)∣∣∣∣ , ∣∣∣σ2m

(
x1;h(1)

A

)∣∣∣� 2m

from (6) we have ∣∣∣∣σ̃(t1)

22b
(1)
A +1

(
x1;h(1)

A

)∣∣∣∣ (7)

�

∣∣∣∣∣∣∣
1

22b(1)
A +1

∣∣∣∣∣∣∣
2b

(1)
A +1

∑
m=b

(1)
i +3

2m−1S̃
(t1)
2m−1

(
x1;h(1)

A

)∣∣∣∣∣∣∣− c

∣∣∣∣∣∣∣ .
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Now, we estimate S̃
(t1)
2m

(
x1;h(1)

A

)
when m � b(1)

i +3. It is easy to see that

S̃
(t1)
2m

(
x1;h(1)

A

)
=

∫
I

h(1)
A (s) D̃

(t1)
2m−1

(
x1 � s

)
ds, (8)

where

D̃
(t1)
2m−1 (x) :=

m

∑
l=1

(−1)tl (D2l (x)−D2l−1 (x)) . (9)

We can write

D̃
(t1)
2m−1 (x) =

m

∑
l=1

(1−2tl)(D2l (x)−D2l−1 (x)) (10)

= (1−2tm)D2m (x)−2
m−2

∑
l=0

(tl − tl+1)D2l (x) .

Then from (1) and (8)–(10) we obtain

S̃
(t1)
2m−1

(
x1;h(1)

A

)
= −2

m−2

∑
l=0

(tl − tl+1)S2l

(
x1;h(1)

A

)
=

i−1

∑
k=1

[
2S

2a
(1)
k −1

(
x1;h(1)

A

)
−2S

2b
(1)
k

(
x1;h(1)

A

)]
+2S

2a
(1)
i −1

(
x1;h(1)

A

)
=

i−1

∑
k=1

[
2a

(1)
k +2Aμ

(
I
a
(1)
k −1

(
x1)∩Δ(1)

A

)
−2b

(1)
k +1+2Aμ

(
I
b
(1)
k

(
x1)∩Δ(1)

A

)]
+2a(1)

i +2Aμ
(

I
a
(1)
i −1

(
x1)∩Δ(1)

A

)
.

It is easy to calculate that

μ
(

I
a(1)
k −1

(
x1)∩Δ(1)

A

)
=

2b(1)
A −a(1)

k +2−2(A−k+1)

2b
(1)
A +1

= 2−a
(1)
k −2(A−k)−1

and

μ
(

I
b
(1)
k

(
x1)∩Δ(1)

A

)
=

2
b(1)
A −

(
b(1)
k −1

)
−[2(A−k)+1]

2b
(1)
A +1

= 2−b
(1)
k −2(A−k)−1.
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Hence

S̃
(t1)
2m−1

(
x1;h(1)

A

)
=

i−1

∑
k=1

[
2a(1)

k +2A2−a(1)
k −2(A−k)−1−2b(1)

k +1+2A2−b(1)
k −2(A−k)−1

]
+2a(1)

i +2A2−a(1)
i −2(A−i)−1

=
22i +2

3
,

when
m � b(1)

i +3 and x1 ∈ Δ̃(1)
i , i = 1,2, . . . ,A.

Consequently, from (7) we get∣∣∣∣σ̃(t1)

22b
(1)
A +1

(
x1;h(1)

A

)∣∣∣∣� c12
2i, when x1 ∈ Δ̃(1)

i , i = 1,2, . . . ,A. (11)

Analogously, we can prove∣∣∣∣σ̃(t2)

22b
(2)
A +1

(
x2;h(2)

A

)∣∣∣∣� c12
2 j, when x1 ∈ Δ̃(2)

j , j = 1,2, . . . ,A. (12)

Combining (2), (11) and (12) we have∣∣∣∣∣σ̃(t1,t2)

22b
(1)
A +1

,22b
(2)
A +1

(
x1,x2; fA

)∣∣∣∣∣� c02
2i+2 j

when
(
x1,x2

) ∈ Δ̃(1)
i × Δ̃(2)

j , i, j = 1,2, . . . ,A.
Set

ΩA :=
A⋃

i, j=1

Δ̃(1)
i × Δ̃(2)

j .

Now, we prove that

μ

({(
x1,x2) ∈ I2 :

∣∣∣∣∣σ̃(t1,t2)

22b
(1)
A +1

,22b
(2)
A +1

(
x1,x2; fA

)∣∣∣∣∣> 22A

})
� cA

22A . (13)

Indeed,

μ

({(
x1,x2) ∈ I2 :

∣∣∣∣∣σ̃(t1,t2)

22b
(1)
A +1

,22b
(2)
A +1

(
x1,x2; fA

)∣∣∣∣∣> 22A

})

� μ

({(
x1,x2) ∈ ΩA :

∣∣∣∣∣σ̃(t1,t2)

22b
(1)
A +1

,22b
(2)
A +1

(
x1,x2; fA

)∣∣∣∣∣> 22A

})

=
A

∑
i, j=1

μ

({(
x1,x2) ∈ Δ̃(1)

i × Δ̃(2)
j :

∣∣∣∣∣σ̃(t1,t2)

22b
(1)
A +1

,22b
(2)
A +1

(
x1,x2; fA

)∣∣∣∣∣> 22A

})

� c
A

∑
i=1

A

∑
j=A−i

1
22i+2 j � c2A

22A .
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Hence (13) is proved.

Next, we prove that there exists
(
y1
1,y

2
1

)
, . . . ,

(
y1

p(A),y
2
p(A)

)
∈ I2 , p(A) :=

[
22A/c2A

]
+1, such that

μ

⎛⎝p(A)⋃
j=1

(
ΩA �

(
y1

j ,y
2
j

))⎞⎠� 1
2
. (14)

Indeed,

μ

⎛⎝p(A)⋃
j=1

(
ΩA �

(
y1

j ,y
2
j

))⎞⎠ (15)

= 1− μ

⎛⎝p(A)⋂
j=1

(
ΩA �

(
y1

j ,y
2
j

))⎞⎠
= 1−

∫
I2

IΩA

(
s1 � y1

1,s
2 � y2

1

) · · · IΩA

(
s1 � y1

p(A),s
2 � y2

p(A)

)
ds1ds2.

Interpreting IΩA

(
s1 � y1

1,s
2 � y2

1

) · · ·IΩA

(
s1 � y1

p(A),s
2 � y2

p(A)

)
as a function of the 2p(A)

+2 variables s1,s2,
(
y1
1,y

2
1

)
, . . . ,

(
y1

p(A),y
2
p(A)

)
and integrating over all variables, each

over I2 , we note that∫
I2

· · ·
∫
I2

∫
I2

IΩA

(
s1 � y1

1,s
2 � y2

1

) · · · IΩA

(
s1 � y1

p(A),s
2 � y2

p(A)

)
ds1ds2dy1

1dy2
1 · · ·dy1

p(A)dy2
p(A)

=
∫
I2

⎛⎝∫
I2

IΩA

(
s1 � y1

1,s
2 � y2

1

)
dy1

1dy2
1

⎞⎠
· · ·

⎛⎝∫
I2

IΩA

(
s1 � y1

p(A),s
2 � y2

p(A)

)
dy1

p(A)dy2
p(A)

⎞⎠ds1ds2

=
(
μ
(
ΩA

))p(A) = (1− μ (ΩA))p(A)

�
(

1− 1
p(A)

)p(A)

� 1
2
.

Consequently, there exists
(
y1
1,y

2
1

)
, . . . ,

(
y1

p(A),y
2
p(A)

)
∈ I2 such that

∫
I2

IΩA

(
s1 � y1

1,s
2 � y2

1

) · · ·IΩA

(
s1 � y1

p(A),s
2 � y2

p(A)

)
ds1ds2 � 1

2
. (16)
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Combining (15) and (16) we conclude that

μ

⎛⎝p(A)⋃
j=1

(
ΩA �

(
y1

j ,y
2
j

))⎞⎠� 1− 1
2

=
1
2
.

Hence (14) is proved.
Set

(
s := s1 � s2 ∈ I

)
FA

(
x1,x2,s

)
:=

1
p(A)

p(A)

∑
j=1

r j
(
s1 � s2) fA

(
x1 � y1

j ,x
2 � y2

j

)
=

1
p(A)

p(A)

∑
j=1

r j (s) fA
(
x1 � y1

j ,x
2 � y2

j

)
.

Then it is proved in ([1], pp. 7–12) that there exists s0 ∈ I , such that∫
I

∣∣FA
(
x1,x2,s0

)∣∣dx1dx2 � 1 (17)

and

μ

{(
x1,x2) ∈ I2 :

∣∣∣∣∣σ̃(t1,t2)

22b
(1)
A +1

,22b
(2)
A +1

(
x1,x2;FA

)∣∣∣∣∣> cA

}
� 1

8
. (18)

From the condition of the Theorem 1 we write

liminf
u→∞

Q(u)
u logu

= 0.

Consequently, there exists a sequence of integers {Ak : k � 1} icreasing to infinity, such
that

lim
k→∞

Q
(
24Ak

)
24AkAk

= 0 (19)

and
Q
(
24Ak

)
24Ak

� 1. (20)

Set

ξk
(
x1,x2) :=

24Ak−1

Q(24Ak)
FAk

(
x1,x2;s0

)
.

Now, we prove that
‖ξk‖Q(L) � 1. (21)

Indeed, since ∥∥ fAk

∥∥
∞ � 24Ak ,

Q(u) � Q(u′)
u′

u
(
0 < u < u′

)
,
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24Ak

Q(24Ak)
‖Fk‖∞ � 24Ak

and

‖ξk‖Q(L) � 1
2

⎡⎣∫
I2

Q
(
2
∣∣ξk

(
x1,x2)∣∣)dx1dx2 +1

⎤⎦
we can write

‖ξk‖Q(L) � 1
2

⎡⎣∫
I2

Q

(
24Ak

Q(24Ak)

∣∣FAk

(
x1,x2;s0

)∣∣)dx1dx2 +1

⎤⎦
� 1

2

⎡⎣∫
I2

Q
(
24Ak

)
24Ak

24Ak

Q(24Ak)

∣∣FAk

(
x1,x2;s0

)∣∣dx1dx2 +1

⎤⎦
� 1.

Hence (21) is proved.
On the other hand, from (18) we have

μ

{(
x1,x2) ∈ I2 :

∣∣∣∣∣σ̃(t1,t2)

2
2b

(1)
Ak

+1
,2

2b
(2)
Ak

+1

(
x1,x2;ξk

)∣∣∣∣∣> cAk24Ak

Q(24Ak)

}
� 1

8
. (22)

Combine (19), (21) and (22), from Theorem GGT we complete the proof of The-
orem 1.

The validity of Corollary 1 follows immediately from Theorem 1 and Lemma
GGT2.
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