CONVERGENCE IN MEASURE OF FEJÉR MEANS OF TWO PARAMETER CONJUGATE WALSH TRANSFORMS

Ushangi Goginava* and Salem Ben Said

(Communicated by I. Perić)

Abstract

Weisz proved-among others - that for $f \in L \log L$ the Fejér means $\tilde{\sigma}_{n, m}^{(t, u)}$ of conjugate transform of two-parameter Walsh-Fourier series a. e. converges to $f^{(t, u)}$. The main aim of this paper is to prove that for any Orlicz space, which is not a subspace of $L \log L$, the set of functions for which Walsh-Fejér Means of two parameter Conjugate Transforms converge in measure is of first Baire category.

1. Definitions and notations

We shall denote the set of all non-negative integers by \mathbb{N}, the set of all integers by \mathbb{Z} and the set of dyadic rational numbers in the unit interval $\mathbb{I}:=[0,1)$ by \mathbb{Q}. In particular, each element of \mathbb{Q} has the form $\frac{p}{2^{n}}$ for some $p, n \in \mathbb{N}, 0 \leqslant p \leqslant 2^{n}$.

Denote the dyadic expension of $n \in \mathbb{N}$ and $x \in \mathbb{I}$ by

$$
n=\sum_{j=0}^{\infty} n_{j} 2^{j}, \quad n_{j}=0,1
$$

and

$$
x=\sum_{j=0}^{\infty} \frac{x_{j}}{2^{j+1}}, \quad x_{j}=0,1 .
$$

In the case of $x \in \mathbb{Q}$ chose the expension which terminates in zeros. n_{i}, x_{i} are the i-th coordinates of n, x, respectively. Define the dyadic addition $\dot{+}$ as

$$
x \dot{+} y=\sum_{k=0}^{\infty}\left|x_{k}-y_{k}\right| 2^{-(k+1)} .
$$

Denote by \oplus the dyadic (or logical) addition. That is,

$$
k \oplus n:=\sum_{i=0}^{\infty}\left|k_{i}-n_{i}\right| 2^{i},
$$

Keywords and phrases: Double Walsh-Fourier series, conjugate transform, convergence in measure. * Corresponding author.
where k_{i}, n_{i} are the i th coordinate of natural numbers k, n with respect to number system based 2 .

The sets $I_{n}(x):=\left\{y \in \mathbb{I}: y_{0}=x_{0}, \ldots, y_{n-1}=x_{n-1}\right\}$ for $x \in \mathbb{I}, I_{n}:=I_{n}(0)$ for $0<$ $n \in \mathbb{N}$ and $I_{0}(x):=\mathbb{I}$ are the dyadic intervals of \mathbb{I}. For $0<n \in \mathbb{N}$ denote by $|n|:=$ $\max \left\{j \in \mathbb{N}: n_{j} \neq 0\right\}$, that is, $2^{|n|} \leqslant n<2^{|n|+1}$. Set $e_{j}:=1 / 2^{j+1}$, the i th coordinate of e_{i} is 1 , the rest sre are zeros $(i \in \mathbb{N})$.

The Rademacher system is defined by

$$
r_{n}(x):=(-1)^{x_{n}} \quad(x \in \mathbb{I}, n \in \mathbb{N})
$$

The Walsh-Paley system is defined as the sequence of the Walsh-Paley functions:

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=(-1)^{\sum_{k=0}^{|n|} n_{k} x_{k}}, \quad(x \in \mathbb{I}, n \in \mathbb{N})
$$

The Walsh-Dirichlet kernel is defined by

$$
D_{n}(x)=\sum_{k=0}^{n-1} w_{k}(x)
$$

Recall that (see [12])

$$
D_{2^{n}}(x)= \begin{cases}2^{n}, & \text { if } x \in\left[0,2^{-n}\right) \tag{1}\\ 0, & \text { if } x \in\left[2^{-n}, 1\right)\end{cases}
$$

The σ-algebra generated by the dyadic intervals $\left\{I_{n}(x): x \in G\right\}$ is denoted by A^{n}, more precisely,

$$
A^{n}:=\sigma\left\{I_{n}(x): x \in G\right\}
$$

Denote by $f=\left(f_{n}, n \in \mathbb{N}\right)$ martingale with respect to ($A^{n}, n \in \mathbb{N}$) (for details see, e. g. $[16,17])$. For a martingale

$$
f \sim \sum_{n=0}^{\infty}\left(f_{n}-f_{n-1}\right), f_{-1}=0
$$

the conjugate transforms are defined by

$$
\widetilde{f}^{(t)} \sim \sum_{n=0}^{\infty} r_{n}(t)\left(f_{n}-f_{n-1}\right),
$$

where $t \in \mathbb{I}$ is fixed.
Note that $\widetilde{f}^{(0)}=f$. As is well known, if f is an integrable function, then conjugate transforms $\widetilde{f}^{(t)}$ do exist almost everywhere, but they are not integrable in general.

Let

$$
\rho_{0}(t):=r_{0}(t), \rho_{k}(t):=r_{n}(t) \text { if } 2^{n-1} \leqslant k<2^{n}
$$

Then the nth partial sums of the conjugate transforms is given by

$$
\widetilde{S}_{n}^{(t)}(x ; f):=\sum_{k=0}^{n-1} \rho_{k}(t) \widehat{f}(k) w_{k}(x) \quad(t \in \mathbb{I}, n \in \mathbb{P})
$$

The conjugate $(C, 1)$-means of a martingale f are introduced by

$$
\widetilde{\sigma}_{n}^{(t)}(x ; f):=\frac{1}{n} \sum_{k=0}^{n-1} \widetilde{S}_{k}^{(t)}(x ; f) \quad(t \in \mathbb{I}, n \in \mathbb{P})
$$

Set

$$
\tilde{\sigma}_{n}^{(0)}(x ; f):=\sigma_{n}(x ; f)=\frac{1}{n} \sum_{k=0}^{n-1} S_{k}(f) \quad(n \in \mathbb{P}) .
$$

We consider the double system $\left\{w_{n^{1}}\left(x^{1}\right) \times w_{n^{2}}\left(x^{2}\right): n^{1}, n^{2} \in \mathbb{N}\right\}$ on the unit square $\mathbb{I}^{2}=[0,1) \times[0,1)$.

For a set $X \neq \varnothing$ let X^{2} be its Cartesian product $X \times X$ taken with itself. The Cartesian product of two dyaduc intervals is said to be a dyadic rectangle. Clearrly, the dyadic rectangle of area $2^{-n^{1}} \times 2^{-n^{2}}$ containing $\left(x^{1}, x^{2}\right) \in \mathbb{I}^{2}$ is given by $I_{n^{1}}\left(x^{1}\right) \times I_{n^{2}}\left(x^{2}\right)$ The σ-algebra generated by the dyadic rectangles $\left\{I_{n^{1}}\left(x^{1}\right) \times I_{n^{2}}\left(x^{2}\right): x^{1}, x^{2} \in \mathbb{I}\right\}$ will be denoted by $A^{n^{1}, n^{2}}\left(n^{1}, n^{2} \in \mathbb{N}\right)$. Let $\left(f_{n^{1}, n^{2}}: n^{1}, n^{2} \in \mathbb{N}\right)$ be two-parameter martingale with respect to $\left(A^{n^{1}, n^{2}}: n^{1}, n^{2} \in \mathbb{N}\right)$ (for details see, e. g. [16, 17]).

We denote by $L_{0}\left(\mathbb{I}^{2}\right)$ the Lebesgue space of functions that are measurable and finite almost everywhere on $\mathbb{I}^{2} . \mu(A)$ is the Lebesgue measure of the set $A \subset \mathbb{I}^{2}$.

We denote by $L_{p}\left(\mathbb{I}^{2}\right)$ the class of all measurable functions f that are 1 -periodic with respect to all variable and satisfy

$$
\|f\|_{p}:=\left(\int_{\mathbb{I}^{2}}|f|^{p}\right)^{1 / p}<\infty
$$

Let $L_{Q}=L_{Q}\left(\mathbb{I}^{2}\right)$ be the Orlicz space [13] generated by Young function Q, i.e. Q is convex continuous even function such that $Q(0)=0$ and

$$
\lim _{u \rightarrow+\infty} \frac{Q(u)}{u}=+\infty, \quad \lim _{u \rightarrow 0} \frac{Q(u)}{u}=0
$$

This space is endowed with the norm

$$
\|f\|_{L_{Q}\left(\mathbb{I}^{2}\right)}=\inf \left\{k>0: \int_{\mathbb{I}^{2}} Q(|f| / k) \leqslant 1\right\} .
$$

In particular, if $Q(u)=u \log (1+u), u>0$, then the corresponding space will be denoted by $L \log L$.

For a martingale

$$
f \sim \sum_{n^{1}, n^{2}=0}^{\infty}\left(f_{n^{1}, n^{2}}-f_{n^{1}-1, n^{2}}-f_{n^{1}, n^{2}-1}+f_{n^{1}-1, n^{2}-1}\right), f_{-1, n^{2}}=f_{n^{1},-1}=f_{-1,-1}=0
$$

the conjugate transform is defined by the martingale

$$
\widetilde{f}^{\left(t^{1}, t^{2}\right)} \sim \sum_{n^{1}, n^{2}=0}^{\infty} r_{n^{1}}\left(t^{1}\right) r_{n^{2}}\left(t^{2}\right)\left(f_{n^{1}, n^{2}}-f_{n^{1}-1, n^{2}}-f_{n^{1}, n^{2}-1}+f_{n^{1}-1, n^{2}-1}\right)
$$

where $t^{1}, t^{2} \in \mathbb{I}$ are fixed. Note that $\widetilde{f}^{(0,0)}=f$. As is well known, if $f \in L \log L\left(\mathbb{I}^{2}\right)$ then the conjugate transforms $\widetilde{f}\left(t^{1}, t^{2}\right)$ do exists almost everywhere, but they are not integrable in general.

If $f \in L_{1}\left(\mathbb{I}^{2}\right)$, then

$$
\hat{f}\left(n^{1}, n^{2}\right)=\int_{\mathbb{I}^{2}} f\left(y^{1}, y^{2}\right) w_{n^{1}}\left(y^{1}\right) w_{n^{2}}\left(y^{2}\right) d y^{1} d y^{2}
$$

is the $\left(n^{1}, n^{2}\right)$-th Fourier coefficient of f.
The rectangular partial sums of double Fourier series with respect to the Walsh system are defined by

$$
S_{N^{1}, N^{2}}\left(x^{1}, x^{2} ; f\right)=\sum_{n^{1}=0}^{N^{1}-1} \sum_{n^{2}=0}^{N^{2}-1} \hat{f}\left(n^{1}, n^{2}\right) w_{n^{1}}\left(x^{1}\right) w_{n^{2}}\left(x^{2}\right)
$$

It is easy to see that the sequence $\left\{S_{2^{n^{1}}, 2^{n^{2}}}(f)=f_{n^{1}, n^{2}}: n^{1}, n^{2} \in \mathbb{N}\right\}$ is two-parameter martingale.

Then the $\left(n^{1}, n^{2}\right)$ th partial sum of the conjugate transforms is given by

$$
\widetilde{S}_{n^{1}, n^{2}}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; f\right):=\sum_{v^{1}=0}^{n^{1}-1} \sum_{v^{2}=0}^{n^{2}-1} \rho_{v^{1}}\left(t^{1}\right) \rho_{v^{2}}\left(t^{2}\right) \widehat{f}\left(v^{1}, v^{2}\right) w_{v^{1}}\left(x^{1}\right) w_{v^{2}}\left(x^{2}\right)
$$

The conjugate $(C, 1,1)$ means of the function f are introduced by

$$
\tilde{\sigma}_{n^{1}, n^{2}}^{\left(t^{1}, 2^{2}\right)}\left(x^{1}, x^{2} ; f\right):=\frac{1}{n^{1} n^{2}} \sum_{v^{1}=1}^{n^{1}} \sum_{v^{2}=1}^{n^{2}} \widetilde{S}_{v^{1}, v^{2}}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; f\right)
$$

The rectangular partial sums of the Walsh-Fourier series $S_{n^{1}, n^{2}}(f)$, of the function $f \in L_{p}\left(\mathbb{I}^{2}\right), 1<p<\infty$ converge in L^{p} norm to the function f as $n^{1}, n^{2} \rightarrow \infty,[11,19]$. In the case $L_{1}\left(\mathbb{I}^{2}\right)$ this result does not hold [6, 12]. But in the one-dimensional case the operators S_{n} are of weak type $(1,1)$ [15], that is the analogue of the estimate of Kolmogorov for conjugate function [8]. This estimate implies the convergence of $S_{n}(f)$ in measure on \mathbb{I} to the function $f \in L_{1}(\mathbb{I})$. However, for double Walsh-Fourier series this result [5, 14] fails to hold.

Classical regular summation methods often improve the convergence of WalshFourier series. For instance, the Fejér means $\sigma_{n^{1}, n^{2}}(f):=\tilde{\sigma}_{n^{1}, n^{2}}^{(0,0)}(f)$ of the WalshFourier series of the function $f \in L_{1}\left(\mathbb{I}^{2}\right)$, converge in norm $L_{1}\left(\mathbb{I}^{2}\right)$ to the function f, as $n^{1}, n^{2} \rightarrow \infty[9,19,7]$.

In 1992 Móricz, Schipp and Wade [10] proved with respect to the Walsh-Paley system that

$$
\sigma_{n^{1}, n^{2}}(f)=\frac{1}{n^{1} n^{2}} \sum_{v^{1}=0}^{n^{1}-1} \sum_{v^{2}=0}^{n^{2}-1} S_{v^{1}, v^{2}}(f) \rightarrow f
$$

a.e. for each $f \in L \log ^{+} L\left(\mathbb{I}^{2}\right)$, when $\min \left\{n^{1}, n^{2}\right\} \rightarrow \infty$. In 2000 Gát proved [4] that the theorem of Möricz, Schipp and Wade above can not be improved. Namely, let $\delta:[0,+\infty) \rightarrow[0,+\infty)$ be a measurable function with property $\lim _{t \rightarrow \infty} \delta(t)=0$. Gát proved [4] the existence of a function $f \in L_{1}\left(\mathbb{I}^{2}\right)$ such that $f \in L \log L \delta(L)$, and $\sigma_{n^{1}, n^{2}}(f)$ does not converge to f a.e. as $\min \left\{n^{1}, n^{2}\right\} \rightarrow \infty$. That is, the maximal convergence space for the $(C, 1,1)$ means of two-dimensional partial sums is $L \log L\left(\mathbb{I}^{2}\right)$. On the othar hand, the $(C, 1,1)$ means of two-dimensional partial sums of the function $f \in L_{1}\left(\mathbb{I}^{2}\right)$, converge in norm $L_{1}\left(\mathbb{I}^{2}\right)$ to the function f, as $n^{1}, n^{2} \rightarrow \infty$ which imply converge in measure of the $(C, 1,1)$ means for all functions $f \in L_{1}\left(\mathbb{I}^{2}\right)$.

Almost everywhere convergence of conjugate $(C, 1,1)$ means of two-parameter Walsh-Fourier series was investigated by Weisz [18]. In particular, he proved the following theorem.

THEOREM W. Let $t^{1}, t^{2} \in \mathbb{I}$ and $f \in L \log L\left(\mathbb{I}^{2}\right)$. Then

$$
\widetilde{\sigma}_{n^{1}, n^{2}}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; f\right) \rightarrow \widetilde{f}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2}\right)
$$

a. e. as $n^{1}, n^{2} \rightarrow \infty$.

The main aim of this paper is to prove that when t^{1}, t^{2} are dyadic irational then the Walsh-Fejér Means of two parameter Conjugate Transforms does not improve the convergence in measure. In particular, we prove the following

Theorem 1. Let $t^{1}, t^{2} \notin \mathbb{Q}$ and $Q(L)\left(\mathbb{I}^{2}\right)$ be an Orlicz space such that

$$
Q(L)\left(\mathbb{I}^{2}\right) \nsubseteq L \log L\left(\mathbb{I}^{2}\right)
$$

Then the set of function from the Orlicz space $Q(L)\left(\mathbb{I}^{2}\right)$ with Fejér means of conjugate transform $\widetilde{\sigma}_{n^{1}, n^{2}}^{\left(t^{1}, t^{2}\right)}(f)$ of two-parameter Walsh-Fourier series converges in measure on \mathbb{I}^{2} is of first Bairy category in $Q(L)\left(\mathbb{I}^{2}\right)$.

Corollary 1. Let $t^{1}, t^{2} \notin \mathbb{Q}$ and $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing function satisfying for $x \rightarrow \infty$, the condition

$$
\varphi(x)=o(x \log x) .
$$

Then there exists a function $f \in L_{1}\left(\mathbb{I}^{2}\right)$ such that
a) $\int_{\mathbb{I}^{2}} \varphi\left(\left|f\left(x^{1}, x^{2}\right)\right|\right) d x^{1} d x^{2}<\infty$;
b) Fejér means of conjugate transform of two-parameter Walsh-Fourier series of f diverge in measure on \mathbb{I}^{2}.

2. Auxiliary results

THEOREM GGT. [3, 2] Let $\left\{T_{m}\right\}_{m=1}^{\infty}$ be a sequence of linear continuous operators, acting from Orlicz space $Q(L)\left(\mathbb{I}^{2}\right)$ in to the space $L_{0}\left(\mathbb{I}^{2}\right)$. Suppose that there exists a sequence of functions $\left\{\xi_{k}\right\}_{k=1}^{\infty}$ from unit bull $S_{Q}(0,1)$ of space $Q(L)\left(\mathbb{I}^{2}\right)$ and an increasing to infinity sequences $\left\{m_{k}\right\}_{k=1}^{\infty}$ and $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ such that

$$
\varepsilon_{0}=\inf _{k} \mu\left\{\left(x^{1}, x^{2}\right) \in \mathbb{I}^{2}:\left|T_{m_{k}} \xi_{k}\left(x^{1}, x^{2}\right)\right|>\lambda_{k}\right\}>0 .
$$

Then the set of functions f from space $Q(L)\left(\mathbb{I}^{2}\right)$, for which the sequence $\left\{T_{m} f\right\}$ converges in measure to an a. e. finite function is of first Baire category in space $Q(L)\left(\mathbb{I}^{2}\right)$.

THEOREM GGT2. [3, 2] Let $\Phi(L)\left(\mathbb{I}^{2}\right)$ be an Orlicz space and let $\varphi:[0, \infty) \rightarrow$ $[0, \infty)$ be a measurable function with the condition $\varphi(x)=o(\Phi(x))$ as $x \rightarrow \infty$. Then there exists an Orlicz space $\omega(L)\left(\mathbb{1}^{2}\right)$ such that $\omega(x)=o(\Phi(x))$ as $x \rightarrow \infty$, and $\omega(x) \geqslant \varphi(x)$ for $x \geqslant c \geqslant 0$.

3. Proofs

Proof. Since t^{1} and t^{2} are dyadic irrational there exists two sequences of integers $\left\{a_{i}^{(k)}: i \in \mathbb{N}\right\}$ and $\left\{b_{i}^{(k)}: i \in \mathbb{N}\right\}, k=1,2$ such that

$$
0 \leqslant a_{1}^{(k)} \leqslant b_{1}^{(k)}<a_{2}^{(k)} \leqslant b_{2}^{(k)}<\cdots<a_{A}^{(k)} \leqslant b_{A}^{(k)}<\cdots
$$

and

$$
t_{j}^{k}=\left\{\begin{array}{l}
1, \text { if } a_{i}^{(k)} \leqslant j \leqslant b_{i}^{(k)} \\
0, b_{i}^{(k)}<j<a_{i+1}^{(k)}
\end{array}, \quad i=1,2, \ldots\right.
$$

Set

$$
\begin{aligned}
\Delta_{A}^{(k)}:= & I_{b_{A}^{(k)}+1}\left(x_{0}^{k}, \ldots, x_{a_{1}^{(k)}-1}^{k}, 0, x_{a_{1}^{k()+1}}^{k}, \ldots, x_{b_{1}^{k()-1}}^{k}, 0, x_{b_{1}^{k(k)+1}}^{k}, \ldots,\right. \\
& \left.x_{a_{A}^{k}-1}^{k}, 0, x_{a_{A}^{k}+1}^{k}, \ldots, x_{b_{A}^{k}-1}^{k}, 0\right)
\end{aligned}
$$

Define the functions

$$
h_{A}^{(k)}(x):=2^{2 A} \chi_{\Delta_{A}^{(k)}}(x), \quad k=1,2
$$

and

$$
f_{A}\left(x^{1}, x^{2}\right):=h_{A}^{(1)}\left(x^{1}\right) h_{A}^{(2)}\left(x^{2}\right),
$$

where χ_{E} is characteristic function of the set E.
Since

$$
\widetilde{S}_{n^{1}, n^{2}}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; f_{A}\right)=\widetilde{S}_{n^{1}}^{\left(t^{1}\right)}\left(x^{1}, h_{A}^{(1)}\right) \widetilde{S}_{n^{2}}^{\left(t^{2}\right)}\left(x^{1}, h_{A}^{(2)}\right)
$$

we obtain

$$
\begin{equation*}
\tilde{\sigma}_{2^{2 b_{A}^{(1)}+1}, 2^{2 b_{A}^{(2)}+1}}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; f_{A}\right)=\widetilde{\sigma}_{2^{2 b_{A}^{(1)}+1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right) \tilde{\sigma}_{2^{2 b_{A}^{(2)}+1}}^{\left(t^{2}\right)}\left(x^{2} ; h_{A}^{(2)}\right) . \tag{2}
\end{equation*}
$$

Since for $2^{m-1} \leqslant k<2^{m} \quad\left(S_{2-1}(f)=0\right)$

$$
\begin{aligned}
\widetilde{S}_{k}^{(t)}(f)= & \rho_{0}(t) \widehat{f}(0) w_{0}+\sum_{l=1}^{m-1} r_{l}(t)\left(S_{2^{l}}(f)-S_{2^{l-1}}(f)\right) \\
& +r_{m}(t)\left(S_{k}(f)-S_{2^{m-1}}(f)\right) \\
= & \sum_{l=0}^{m-1} r_{l}(t)\left(S_{2^{l}}(f)-S_{2^{l-1}}(f)\right)+r_{m}(t)\left(S_{k}(f)-S_{2^{m-1}}(f)\right)
\end{aligned}
$$

we have

$$
\begin{align*}
\widetilde{\sigma}_{2^{2 b_{A}+1}}^{(t)}(f)= & \frac{1}{2^{2 b_{A}+1}} \sum_{m=1}^{2 b_{A}+1} \sum_{k=2^{m-1}}^{2^{m}-1} \widetilde{S}_{k}^{(t)}(f) \tag{3}\\
= & \frac{1}{2^{2 b_{A}+1}} \sum_{m=1}^{2 b_{A}+1} 2^{m-1} \widetilde{S}_{2^{m-1}}^{(t)}(f) \\
& +\frac{1}{2^{2 b_{A}+1}} \sum_{m=1}^{2 b_{A}+1} r_{m}(t)\left(2^{m} \sigma_{2^{m}}(f)-2^{m-1} \sigma_{2^{m-1}}(f)\right) \\
& -\frac{1}{2^{2 b_{A}+1}} \sum_{m=1}^{2 b_{A}+1} r_{m}(t) 2^{m-1} S_{2^{m-1}}(f)
\end{align*}
$$

Set

$$
\begin{aligned}
x^{1} \in \widetilde{\Delta}_{A}^{(1)}:= & I_{b_{A}^{(k)+1}}\left(x_{0}^{1}, \ldots, x_{a_{1}^{(1)}-1}^{1}, 0, x_{a_{1}^{(1)}+1}^{1}, \ldots, x_{b_{1}^{(1)}-1}^{1}, 0, x_{b_{1}^{(1)}+1}^{1}, \ldots,\right. \\
& \left.x_{a_{A}^{(1)}-1}^{1}, 1, x_{a_{A}^{(1)}+1}^{1}, \ldots, x_{b_{A}^{(1)}-1}^{1}, 1\right)
\end{aligned}
$$

Then from (1) we have

$$
\begin{align*}
S_{2^{m-1}}\left(x^{1} ; h_{A}^{(1)}\right) & =\int_{\mathbb{I}} h_{A}^{(1)}(s) D_{2^{m-1}}\left(x^{1}+\dot{+}\right) d s \tag{4}\\
& =2^{m-1} \int_{I_{m-1}\left(x^{1}\right)} h_{A}^{(1)}(s) d s=0
\end{align*}
$$

if $m>a_{A}^{(1)}+1$. It is well known that (see [12])

$$
\sigma_{2^{m-1}}\left(x^{1} ; h_{A}^{(1)}\right)=\int_{\mathbb{I}} h_{A}^{(1)}(s) K_{2^{m-1}}\left(x^{1}+\dot{+}\right) d s
$$

where

$$
K_{2^{n}}(x)=\frac{1}{2}\left(2^{-n} D_{2^{n}}(x)+\sum_{j=0}^{n} 2^{j-n} D_{2^{n}}\left(x+e_{j}\right)\right)
$$

Let $m>b_{i}^{(1)}+2$. Then $h_{A}^{(1)}(s) \neq 0$ imply that there exists at least two coordinates in $x^{1} \dot{+} s=\left(y_{0}, y_{1}, \ldots,\right)$ which are equal to 1 . Consequently,

$$
\begin{equation*}
\sigma_{2^{m-1}}\left(x^{1} ; h_{A}^{(1)}\right)=0 \tag{5}
\end{equation*}
$$

when $m>b_{i}^{(1)}+2$ and $x^{1} \in \widetilde{\Delta}_{i}^{(1)}$.
Let $x^{1} \in \widetilde{\Delta}_{i}^{(1)}$. Then Combining (3)-(5) we obtain

$$
\begin{align*}
& \left|\widetilde{\sigma}_{2^{2 b_{A}^{(1)}+1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right)\right| \tag{6}\\
\geqslant & \frac{1}{2^{2 b_{A}^{(1)}+1}}\left|\sum_{m=b_{i}^{(1)}+3}^{2 b_{A}^{(1)}+1} 2^{m-1} \widetilde{S}_{2^{m-1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right)\right| \\
& -\frac{1}{2^{2 b_{A}^{(1)}+1}}\left|\sum_{m=1}^{b_{i}^{(1)}+2} 2^{m-1} \widetilde{S}_{2^{m-1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right)\right| \\
& -\frac{1}{2^{2 b_{A}^{(1)}+1}} \sum_{m=1}^{b_{i}^{(1)}+2}\left(2^{m}\left|\sigma_{2^{m}}\left(x^{1} ; h_{A}^{(1)}\right)\right|+2^{m-1}\left|\sigma_{2^{m-1}}\left(x^{1} ; h_{A}^{(1)}\right)\right|\right) \\
& -\frac{1}{2^{2 b_{A}^{(1)}+1}} \sum_{m=1}^{b_{i}^{(1)}+2} 2^{m-1}\left|S_{2^{m-1}}\left(x^{1} ; h_{A}^{(1)}\right)\right| .
\end{align*}
$$

Since

$$
\left|S_{2^{m-1}}\left(x^{1} ; h_{A}^{(1)}\right)\right|,\left|\widetilde{S}_{2^{m-1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right)\right|,\left|\sigma_{2^{m}}\left(x^{1} ; h_{A}^{(1)}\right)\right| \leqslant 2^{m}
$$

from (6) we have

$$
\begin{align*}
& \left|\widetilde{\sigma}_{2^{2 b_{A}^{(1)}+1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right)\right| \tag{7}\\
\geqslant & \left|\frac{1}{2^{2 b_{A}^{(1)}+1}}\right| \sum_{m=b_{i}^{(1)}+3}^{2 b_{A}^{(1)}+1} 2^{m-1} \widetilde{S}_{2^{m-1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right)|-c| .
\end{align*}
$$

Now, we estimate $\widetilde{S}_{2^{m}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right)$ when $m \geqslant b_{i}^{(1)}+3$. It is easy to see that

$$
\begin{equation*}
\widetilde{S}_{2^{m}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right)=\int_{\mathbb{I}} h_{A}^{(1)}(s) \widetilde{D}_{2^{m-1}}^{\left(t^{1}\right)}\left(x^{1}+s\right) d s \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{D}_{2^{m-1}}^{\left(t^{1}\right)}(x):=\sum_{l=1}^{m}(-1)^{t_{l}}\left(D_{2^{l}}(x)-D_{2^{l-1}}(x)\right) \tag{9}
\end{equation*}
$$

We can write

$$
\begin{align*}
\widetilde{D}_{2^{m-1}}^{\left(t^{1}\right)}(x) & =\sum_{l=1}^{m}\left(1-2 t_{l}\right)\left(D_{2^{l}}(x)-D_{2^{l-1}}(x)\right) \tag{10}\\
& =\left(1-2 t_{m}\right) D_{2^{m}}(x)-2 \sum_{l=0}^{m-2}\left(t_{l}-t_{l+1}\right) D_{2^{l}}(x) .
\end{align*}
$$

Then from (1) and (8)-(10) we obtain

$$
\begin{aligned}
& \widetilde{S}_{2^{m-1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right) \\
= & -2 \sum_{l=0}^{m-2}\left(t_{l}-t_{l+1}\right) S_{2^{l}}\left(x^{1} ; h_{A}^{(1)}\right) \\
= & \sum_{k=1}^{i-1}\left[2 S_{2^{a_{k}^{(1)}-1}}\left(x^{1} ; h_{A}^{(1)}\right)-2 S_{2^{b_{k}^{(1)}}}\left(x^{1} ; h_{A}^{(1)}\right)\right] \\
& +2 S_{2^{a_{i}^{(1)}-1}}\left(x^{1} ; h_{A}^{(1)}\right) \\
= & \sum_{k=1}^{i-1}\left[2^{a_{k}^{(1)}+2 A} \mu\left(I_{a_{k}^{(1)}-1}\left(x^{1}\right) \cap \Delta_{A}^{(1)}\right)-2^{b_{k}^{(1)}+1+2 A} \mu\left(I_{b_{k}^{(1)}}\left(x^{1}\right) \cap \Delta_{A}^{(1)}\right)\right] \\
& +2^{a_{i}^{(1)}+2 A} \mu\left(I_{a_{i}^{(1)}-1}\left(x^{1}\right) \cap \Delta_{A}^{(1)}\right) .
\end{aligned}
$$

It is easy to calculate that

$$
\mu\left(I_{a_{k}^{(1)}-1}\left(x^{1}\right) \cap \Delta_{A}^{(1)}\right)=\frac{2^{b_{A}^{(1)}-a_{k}^{(1)}+2-2(A-k+1)}}{2^{b_{A}^{(1)}+1}}=2^{-a_{k}^{(1)}-2(A-k)-1}
$$

and

$$
\mu\left(I_{b_{k}^{(1)}}\left(x^{1}\right) \cap \Delta_{A}^{(1)}\right)=\frac{2^{b_{A}^{(1)}-\left(b_{k}^{(1)}-1\right)-[2(A-k)+1]}}{2^{b_{A}^{(1)}+1}}=2^{-b_{k}^{(1)}-2(A-k)-1} .
$$

Hence

$$
\begin{aligned}
& \widetilde{S}_{2^{m-1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right) \\
= & \sum_{k=1}^{i-1}\left[2^{a_{k}^{(1)}+2 A} 2^{-a_{k}^{(1)}-2(A-k)-1}-2^{b_{k}^{(1)}+1+2 A} 2^{-b_{k}^{(1)}-2(A-k)-1}\right] \\
& +2^{a_{i}^{(1)}}+2 A 2^{-a_{i}^{(1)}-2(A-i)-1} \\
= & \frac{2^{2 i}+2}{3},
\end{aligned}
$$

when

$$
m \geqslant b_{i}^{(1)}+3 \text { and } x^{1} \in \widetilde{\Delta}_{i}^{(1)}, \quad i=1,2, \ldots, A
$$

Consequently, from (7) we get

$$
\begin{equation*}
\left|\widetilde{\sigma}_{2^{2 b_{A}^{(1)}+1}}^{\left(t^{1}\right)}\left(x^{1} ; h_{A}^{(1)}\right)\right| \geqslant c_{1} 2^{2 i}, \text { when } x^{1} \in \widetilde{\Delta}_{i}^{(1)}, \quad i=1,2, \ldots, A . \tag{11}
\end{equation*}
$$

Analogously, we can prove

$$
\begin{equation*}
\left.\mid \widetilde{\sigma}_{2^{2 b} A}^{\left(t^{2}\right)}(2)+1 x^{2} ; h_{A}^{(2)}\right) \mid \geqslant c_{1} 2^{2 j}, \text { when } x^{1} \in \widetilde{\Delta}_{j}^{(2)}, j=1,2, \ldots, A . \tag{12}
\end{equation*}
$$

Combining (2), (11) and (12) we have

$$
\left|\widetilde{\sigma}_{2^{2 b}{ }_{A}^{(1)}+1,2^{2 b} A}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; f_{A}\right)\right| \geqslant c_{0} 2^{2 i+2 j}
$$

when $\left(x^{1}, x^{2}\right) \in \widetilde{\Delta}_{i}^{(1)} \times \widetilde{\Delta}_{j}^{(2)}, i, j=1,2, \ldots, A$.
Set

$$
\Omega_{A}:=\bigcup_{i, j=1}^{A} \widetilde{\Delta}_{i}^{(1)} \times \widetilde{\Delta}_{j}^{(2)}
$$

Now, we prove that

$$
\begin{equation*}
\mu\left(\left\{\left(x^{1}, x^{2}\right) \in \mathbb{I}^{2}:\left|\tilde{\sigma}_{2^{2 b_{A}^{(1)}+1}, 2^{2 b_{A}^{(2)}+1}}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; f_{A}\right)\right|>2^{2 A}\right\}\right) \geqslant \frac{c A}{2^{2 A}} \tag{13}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& \mu\left(\left\{\left(x^{1}, x^{2}\right) \in \mathbb{I}^{2}:\left|\widetilde{\sigma}_{2^{2 b_{A}^{(1)}+1}, 2^{2 b_{A}^{(2)}+1}}^{\left(t^{2}, t^{2}\right)}\left(x^{1}, x^{2} ; f_{A}\right)\right|>2^{2 A}\right\}\right) \\
& \geqslant \mu\left(\left\{\left(x^{1}, x^{2}\right) \in \Omega_{A}:\left|\widetilde{\sigma}_{2^{2 b_{A}^{(1)}+1}, 2^{2 b_{A}^{(2)}+1}}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; f_{A}\right)\right|>2^{2 A}\right\}\right) \\
& =\sum_{i, j=1}^{A} \mu\left(\left\{\left(x^{1}, x^{2}\right) \in \widetilde{\Delta}_{i}^{(1)} \times \widetilde{\Delta}_{j}^{(2)}:\left|\widetilde{\sigma}_{2^{2 b_{A}^{(1)}+1}, 2^{2 b_{A}^{(2)}+1}}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; f_{A}\right)\right|>2^{2 A}\right\}\right) \\
& \geqslant c \sum_{i=1}^{A} \sum_{j=A-i}^{A} \frac{1}{2^{2 i+2 j}} \geqslant \frac{c_{2} A}{2^{2 A}} \text {. }
\end{aligned}
$$

Hence (13) is proved.
Next, we prove that there exists $\left(y_{1}^{1}, y_{1}^{2}\right), \ldots,\left(y_{p(A)}^{1}, y_{p(A)}^{2}\right) \in \mathbb{I}^{2}, p(A):=\left[2^{2 A} / c_{2} A\right]$ +1 , such that

$$
\begin{equation*}
\mu\left(\bigcup_{j=1}^{p(A)}\left(\Omega_{A} \dot{+}\left(y_{j}^{1}, y_{j}^{2}\right)\right)\right) \geqslant \frac{1}{2} \tag{14}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
& \mu\left(\bigcup_{j=1}^{p(A)}\left(\Omega_{A} \dot{+}\left(y_{j}^{1}, y_{j}^{2}\right)\right)\right) \tag{15}\\
= & 1-\mu\left(\bigcap_{j=1}^{p(A)}\left(\overline{\Omega_{A}+\left(y_{j}^{1}, y_{j}^{2}\right)}\right)\right) \\
= & 1-\int_{\mathbb{I}^{2}} \mathbb{I}_{\bar{\Omega}_{A}}\left(s^{1}+y_{1}^{1}, s^{2}+y_{1}^{2}\right) \cdots \mathbb{I}_{\bar{\Omega}_{A}}\left(s^{1}+y_{p(A)}^{1}, s^{2}+y_{p(A)}^{2}\right) d s^{1} d s^{2} .
\end{align*}
$$

Interpreting $\mathbb{I}_{\Omega_{A}}\left(s^{1}+y_{1}^{1}, s^{2}+y_{1}^{2}\right) \cdots \mathbb{I}_{\Omega_{A}}\left(s^{1} \dot{+} y_{p(A)}^{1}, s^{2} \dot{+} y_{p(A)}^{2}\right)$ as a function of the $2 p(A)$ +2 variables $s^{1}, s^{2},\left(y_{1}^{1}, y_{1}^{2}\right), \ldots,\left(y_{p(A)}^{1}, y_{p(A)}^{2}\right)$ and integrating over all variables, each over \mathbb{I}^{2}, we note that

$$
\begin{aligned}
& \int_{\mathbb{I}^{2}} \cdots \int_{\mathbb{I}^{2}} \int_{\mathbb{I}^{2}} \mathbb{I}_{\bar{\Omega}_{A}}\left(s^{1}+y_{1}^{1}, s^{2}+y_{1}^{2}\right) \cdots \mathbb{I}_{\Omega_{A}}\left(s^{1}+y_{p(A)}^{1}, s^{2}+y_{p(A)}^{2}\right) \\
& d s^{1} d s^{2} d y_{1}^{1} d y_{1}^{2} \cdots d y_{p(A)}^{1} d y_{p(A)}^{2} \\
= & \int_{\mathbb{I}^{2}}\left(\int_{\mathbb{I}^{2}} \mathbb{I}_{\bar{\Omega}_{A}}\left(s^{1} \dot{+} y_{1}^{1}, s^{2}+y_{1}^{2}\right) d y_{1}^{1} d y_{1}^{2}\right) \\
& \ldots\left(\int_{\mathbb{I}^{2}} \mathbb{I}_{\bar{\Omega}_{A}}\left(s^{1} \dot{+} y_{p(A)}^{1}, s^{2}+y_{p(A)}^{2}\right) d y_{p(A)}^{1} d y_{p(A)}^{2}\right) d s^{1} d s^{2} \\
= & \left(\mu\left(\bar{\Omega}_{A}\right)\right)^{p(A)}=\left(1-\mu\left(\Omega_{A}\right)\right)^{p(A)} \\
\leqslant & \left(1-\frac{1}{p(A)}\right)^{p(A)} \leqslant \frac{1}{2} .
\end{aligned}
$$

Consequently, there exists $\left(y_{1}^{1}, y_{1}^{2}\right), \ldots,\left(y_{p(A)}^{1}, y_{p(A)}^{2}\right) \in \mathbb{I}^{2}$ such that

$$
\begin{equation*}
\int_{\mathbb{I}^{2}} \mathbb{I}_{\overline{\Omega_{A}}}\left(s^{1}+y_{1}^{1}, s^{2}+y_{1}^{2}\right) \cdots \mathbb{I}_{\Omega_{A}}\left(s^{1}+y_{p(A)}^{1}, s^{2}+y_{p(A)}^{2}\right) d s^{1} d s^{2} \leqslant \frac{1}{2} \tag{16}
\end{equation*}
$$

Combining (15) and (16) we conclude that

$$
\mu\left(\bigcup_{j=1}^{p(A)}\left(\Omega_{A}+\left(y_{j}^{1}, y_{j}^{2}\right)\right)\right) \geqslant 1-\frac{1}{2}=\frac{1}{2}
$$

Hence (14) is proved.
Set $\left(s:=s^{1}+s^{2} \in \mathbb{I}\right)$

$$
\begin{aligned}
F_{A}\left(x^{1}, x^{2}, s\right) & :=\frac{1}{p(A)} \sum_{j=1}^{p(A)} r_{j}\left(s^{1}+s^{2}\right) f_{A}\left(x^{1}+y_{j}^{1}, x^{2}+y_{j}^{2}\right) \\
& =\frac{1}{p(A)} \sum_{j=1}^{p(A)} r_{j}(s) f_{A}\left(x^{1}+y_{j}^{1}, x^{2}+y_{j}^{2}\right)
\end{aligned}
$$

Then it is proved in ([1], pp. 7-12) that there exists $s_{0} \in \mathbb{I}$, such that

$$
\begin{equation*}
\int_{\mathbb{I}}\left|F_{A}\left(x^{1}, x^{2}, s_{0}\right)\right| d x^{1} d x^{2} \leqslant 1 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu\left\{\left(x^{1}, x^{2}\right) \in \mathbb{I}^{2}:\left|\widetilde{\sigma}_{2^{2 b_{A}^{(1)}+1}, 2^{2 b_{A}^{(2)}+1}}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; F_{A}\right)\right|>c A\right\} \geqslant \frac{1}{8} . \tag{18}
\end{equation*}
$$

From the condition of the Theorem 1 we write

$$
\liminf _{u \rightarrow \infty} \frac{Q(u)}{u \log u}=0 .
$$

Consequently, there exists a sequence of integers $\left\{A_{k}: k \geqslant 1\right\}$ icreasing to infinity, such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{Q\left(2^{4 A_{k}}\right)}{2^{4 A_{k}} A_{k}}=0 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{Q\left(2^{4 A_{k}}\right)}{2^{4 A_{k}}} \geqslant 1 . \tag{20}
\end{equation*}
$$

Set

$$
\xi_{k}\left(x^{1}, x^{2}\right):=\frac{2^{4 A_{k}-1}}{Q\left(2^{4 A_{k}}\right)} F_{A_{k}}\left(x^{1}, x^{2} ; s_{0}\right)
$$

Now, we prove that

$$
\begin{equation*}
\left\|\xi_{k}\right\|_{Q(L)} \leqslant 1 \tag{21}
\end{equation*}
$$

Indeed, since

$$
\begin{gathered}
\left\|f_{A_{k}}\right\|_{\infty} \leqslant 2^{4 A_{k}} \\
Q(u) \leqslant \frac{Q\left(u^{\prime}\right)}{u^{\prime}} u \quad\left(0<u<u^{\prime}\right),
\end{gathered}
$$

$$
\frac{2^{4 A_{k}}}{Q\left(2^{4 A_{k}}\right)}\left\|F_{k}\right\|_{\infty} \leqslant 2^{4 A_{k}}
$$

and

$$
\left\|\xi_{k}\right\|_{Q(L)} \leqslant \frac{1}{2}\left[\int_{\mathbb{T}^{2}} Q\left(2\left|\xi_{k}\left(x^{1}, x^{2}\right)\right|\right) d x^{1} d x^{2}+1\right]
$$

we can write

$$
\begin{aligned}
\left\|\xi_{k}\right\|_{Q(L)} & \leqslant \frac{1}{2}\left[\int_{\mathbb{T}^{2}} Q\left(\frac{2^{4 A_{k}}}{Q\left(2^{4 A_{k}}\right)}\left|F_{A_{k}}\left(x^{1}, x^{2} ; s_{0}\right)\right|\right) d x^{1} d x^{2}+1\right] \\
& \leqslant \frac{1}{2}\left[\int_{\mathbb{I}^{2}} \frac{Q\left(2^{4 A_{k}}\right)}{2^{4 A_{k}}} \frac{2^{4 A_{k}}}{Q\left(2^{4 A_{k}}\right)}\left|F_{A_{k}}\left(x^{1}, x^{2} ; s_{0}\right)\right| d x^{1} d x^{2}+1\right] \\
& \leqslant 1
\end{aligned}
$$

Hence (21) is proved.
On the other hand, from (18) we have

$$
\begin{equation*}
\mu\left\{\left(x^{1}, x^{2}\right) \in \mathbb{I}^{2}:\left|\widetilde{\sigma}_{2^{2 b_{A_{k}}^{(1)}+1}, 2^{2 b_{A_{k}}}(2)}^{\left(t^{1}, t^{2}\right)}\left(x^{1}, x^{2} ; \xi_{k}\right)\right|>\frac{c A_{k} 2^{4 A_{k}}}{Q\left(2^{4 A_{k}}\right)}\right\} \geqslant \frac{1}{8} . \tag{22}
\end{equation*}
$$

Combine (19), (21) and (22), from Theorem GGT we complete the proof of Theorem 1.

The validity of Corollary 1 follows immediately from Theorem 1 and Lemma GGT2.

Acknowledgement. The authors are thankful United Arab Emirates University for financial support through the Start-up Grant No. G00002950.

REFERENCES

[1] A. Garsia, Topics in almost everywhere convergence. Lectures in Advanced Mathematics, 4 Markham Publishing Co., Chicago, 1970.
[2] G. GÁt, U. Goginava and G. Tkebuchava, Convergence in measure of logarithmic means of double Walsh-Fourier series, Georgian Math. J. 12, 4 (2005), 607-618.
[3] G. GÁt, U. Goginava and G. Tkebuchava, Convergence in measure of logarithmic means of quadratical partial sums of double Walsh-Fourier series, J. Math. Anal. Appl. 323, 1 (2006), 535549.
[4] G. GÁt, On the divergence of the $(C, 1)$ means of double Walsh-Fourier series, Proc. Amer. Math. Soc. 128, 6 (2000), 1711-1720.
[5] R. Getsadze, On the divergence in measure of multiple Fourier seties, Some problems of functions theory 4, 1 (1988), 84-117.
[6] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, Series and transformations of Walsh, Nauka, 1987 (Russian); English transl.: Kluwer Acad. publ, Moscow, 1991.
[7] S. A. Konjagin, On subsequences of partial Fourier-Walsh series, Mat. Notes, 54, 4 (1993), 69-75.
[8] A. N. Kolmogorov, Sur les functions harmoniques conjugees and les series de Fouries, Fund. Math. 7, 1 (1925), 23-28.
[9] G. Morgenthaller, Walsh-Fourier series, Trans. Amer. Math. Soc. 84, 2 (1957), 472-507.
[10] F. MÖRICZ, F. SChipp and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans Amer. Math. Soc. 329, 1 (1992), 131-140.
[11] A. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 3, 4 (1932), 241279.
[12] F. Schipp, W. R. WADE, P. Simon and J. PÁL, Walsh series: an introduction to dyadic harmonic analysis, Adam Hilger, Bristol and New York, 1990.
[13] M. A. Krasnosel'skii and Ya. B. Rutickil, Convex functions and Orlicz space (English translation), P. Noordhoff Ltd., Groningen, 1961.
[14] G. Tkebuchava, On multiple Fourier, Fourier-Walsh and Fourier-Haar series in nonreflexive separable Orlicz space, Bull. Georg. Acad. Sci. 149, 2 (1994), 1-3.
[15] C. Watary, On generalized Fourier-Walsh series, Tōhoku Math. J. vol 10, 3 (1968), 211-241.
[16] F. Weisz, Martingale Hardy spaces and their Applications in Fourier analysis, Springer, Berlin-Heidelberg-New York, 1994.
[17] F. WEISZ, Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht, 2002.
[18] F. Weisz, The maximal (C, α, β) operator of two-parameter Walsh-Fourier series, J. Fourier Anal. Appl. 6, 4 (2000), 389-401.
[19] L. V. ZhizhiashVili, Some problems of multidimensional harmonic analysis, TGU, Tbilisi, 1996.

Ushangi Goginava
Department of Mathematical Sciences
United Arab Emirates University P.O. Box No. 15551, Al Ain, Abu Dhabi, UAE
e-mail: zazagoginava@gmail.com
Salem Ben Said
Department of Mathematical Sciences
United Arab Emirates University
P.O. Box No. 15551, Al Ain, Abu Dhabi, UAE
e-mail: salem.bensaid@uaeu.ac.ae

