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IMPROVED FRACTIONAL HARDY

INEQUALITIES FOR DUNKL GRADIENT

V. P. ANOOP ∗ AND SANJAY PARUI

(Communicated by I. Perić)

Abstract. We prove an improved fractional Hardy inequality in the Dunkl setting for the weighted
space Lp(RN ,dμk(x)) . Also we prove a similar inequality for half-space.

1. Introduction and main theorems

A classical Hardy inequality is of the form

∫
RN

|∇u|pdx �
( |N− p|

p

)p ∫
RN

|u(x)|p
|x|p dx,

for u∈C∞
0 (RN) or u∈C∞

0 (RN \{0}) respectively with respect to 1 � p < N or p > N .

It is known that the constant
( |N−p|

p

)p
is sharp and never attained in the corresponding

spaces Ẇ 1
p (RN) or Ẇ 1

p (RN \ {0}) respectively. In a remarkable paper [7], Frank and
Seiringer have proven the sharp Hardy inequality with a remainder term. Their result is
as follows: for p � 2 and 0 < s < 1 and for some positive constants CN,s,p and cp∫

RN

∫
RN

|u(x)−u(y)|p
|x− y|N+ps dxdy−CN,s,p

∫
RN

|u(x)|p
|x|ps dx

� cp

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+ps

dx

|x|(N−ps)/2

dy

|y|(N−ps)/2
, (1)

where v := |x|(N−ps)/pu . The result is true for all u ∈ C∞
0 (RN) if ps < N and for all

u ∈ C∞
0 (RN \ {0}) if ps > N . The same authors proved a similar fractional Hardy

inequality on half-space in [8], which states that: for p � 2, 0 < s < 1 and ps �= 1∫
RN

+

∫
RN

+

|u(x)−u(y)|p
|x− y|N+ps dxdy−DN,p,s

∫
RN

+

|u(x)|p
xps
N

dx

� cp

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+ps

dx

x(1−ps)/2
N

dy

y(1−ps)/2
N

, (2)
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where DN,p,s and cp are positive constants and v := x(1−ps)/p
N u . More generalized

version of (1) and (2) in the Dunkl setting are studied in [4]. Combining the results due
to Abdellaoui et al. in [1, 2, 3] we can get an improved fractional Hardy inequality for
1 < p < ∞ which is stated below.

Let 0 < s < 1, ps < N , 1 < q < p < ∞ and Ω ⊂ RN be a bounded domain. Then
we have ∫

RN

∫
RN

|u(x)−u(y)|p
|x− y|N+ps dxdy−CN,p,s

∫
RN

|u(x)|p
|x|ps dx

� C
∫

Ω

∫
Ω

|u(x)−u(y)|p
|x− y|N+qs dxdy (3)

for all functions u ∈C∞
0 (Ω) . The constant CN,p,s is the sharp constant in the fractional

Hardy inequality obtained by Frank et al. in [7] and the constant C is positive and
depends on N,q,s and the domain Ω . Unlike in [7] the result is true for all 1 < p < ∞
and the remainder term here is a p -norm of a fractional gradient.

In the proof of fractional Hardy inequalities mentioned in (1), (2) and (3), various
properties of the kernel of the form |x−y|−(N+δ ) with δ > −N play an important role.
When it comes to the Dunkl case we use a generalized kernel Φδ , δ > −dk which
is defined in (13). The kernel Φδ is defined through the Dunkl translation operator
defined in Section 3. The kernel Φδ , δ > −dk was introduced by Gorbachev et al.
in [9] to study Riesz potential and maximal function for Dunkl transform. Authors of
the article [4] proved certain generalized optimal fractional Hardy inequalities for RN ,
half-space and for the cone. Our main aims of this paper is to prove a generalized
version of (3) in the Dunkl setting. Our first main result is recorded in the following
theorem.

THEOREM 1. Let Ω⊂RN be a bounded G-invariant domain. Let 1 < q < p < ∞ ,
ps � dk and 0 < s < 1 . Then for all u ∈C∞

0 (Ω)

∫∫
RN×RN

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x),

� C
∫∫

Ω×Ω

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y), (4)

where

Λdk,s,p = 2
∫ 1

0
rps−1|1− r(dk−ps)/p|pΦ(r)dr, (5)

with

Φ(r) =

⎧⎪⎨
⎪⎩

Γ( dk
2 )

√
πΓ( dk−1)

2 )

∫ π
0

sindk−2 θ

(1−2rcosθ+r2)
dk+ps

2

dθ for N � 2(
τk
r (|.|−dk−ps)+ τk−r(|.|−dk−ps)

)
(1) for N = 1

and C is a positive constant depending on Ω,dk,q and s.
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We have adopted the ideas introduced in [1, 2, 3] and in [7] to prove Theorem
1. A slight modification of the techniques of the proof of Theorem 1 will lead to the
following improved fractional Hardy inequality for half-space.

THEOREM 2. Let Ω ⊂RN
+ be a bounded G-invariant domain. Let 1 < q < p < ∞

with ps < 1 and 0 < s < 1 . Then for all u ∈C∞
0 (Ω)

∫∫
RN

+×RN
+

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λ0
dk,s,p

∫
RN

+

|u(x)|p
xps
N

dμk(x)

� C
∫∫

Ω×Ω

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y), (6)

where Λ0
dk,s,p

is given as

Λ0
dk,s,p

:= c−1
k1

2−λk1
Γ((1+ ps)/2)
Γ((dk + ps)/2)

∫ 1

0
|1− r

ps−1
p |p dr

(1− r)1+ps . (7)

and C = C(Ω,dk,q,s) is a positive constant.

By choosing the multiplicity function k≡ 0 in Theorem 2 we obtain the following
corollary. As far as we know, this inequality is not known in the Euclidean setting.

COROLLARY 1. Let 0 < s < 1 and ps < 1 . Also let Ω be a bounded domain
of RN . Then for all 1 < q < p < ∞ and for all functions u ∈ C∞

0 (Ω) the following
inequality holds:

∫
RN

+

∫
RN

+

|u(x)−u(y)|p
|x− y|N+ps dxdy−DN,p,s

∫
RN

+

|u(x)|p
xps
N

dx

� C
∫

Ω

∫
Ω

|u(x)−u(y)|p
|x− y|N+qs dxdy. (8)

The constant DN,p,s is sharp and is given by

DN,p,s = cN−1
Γ( 1+ps

2 )

Γ(N+ps
2 )

∫ 1

0
|1− r

ps−1
p |p dr

(1− r)1+ps , (9)

with cN−1 = 2
N−3

2
∫
RN−1 e−|x′|2/2dx′ . The constant C is positive and depends on N,q,s

and the domain Ω .

The paper is organized as follows. In Section 2 we give a brief introduction to
the Dunkl theory. In Section 3 we prove Picone’s inequality and some lemmas on
weighted Sobolev spaces. Section 4 is devoted to the proof of improved fractional
Hardy inequality on Lp(RN ,dμk(x)) . We use a slight modification of this idea to prove
a similar Hardy inequality on the half-space in Section 5.
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2. Basics of the Dunkl theory

In this section we give some basics on Dunkl theory which we will be using in the
coming sections. The preliminaries of the Dunkl analysis can be found in [5, 11, 12, 13].
Let 〈·, ·〉 denote the standard inner product on R

N and | · | := √〈·, ·〉 . For a non-zero
element α in RN the reflection in the hyperplane 〈α〉⊥ is defined as

σα(x) = x−2
〈α,x〉
|α|2 α.

DEFINITION 1. Let R ⊂ RN\{0} be a finite set. Then R is called a root system,
if

(1) R∩Rα = {±α} for all α ∈ R
(2) σα(R) = R for all α ∈ R .

A root system can be written as the disjoint union R+ ∪ (−R+) and this R+ and
(−R+) is separated by a hyper plane passing through the origin. Here R+ is the set
of positive roots of the root system R . The subgroup G = G(R) ⊆ O(N,R) which
is generated by reflections {σα : α ∈ R} is called reflection group (or Coxeter-group)
associated with R . For the convenience of the calculations we assume that R is normal-
ized, that is 〈α,α〉 = 2 for all α ∈ R . A G-invariant function k defined on R , that is
k(gα) = k(α) for all g∈G , is called a multiplicity function. An example of a root sys-
tem on RN is AN = {±ei} , where {ei : 1 � i � N} is the standard basis for RN . In this
case σei send ei to −ei leaving other vectors e j fixed and the corresponding Coxeter
group is ZN

2 . Given any function k′ defined on R we can always define a G-invariant
function k by k(x) = ∑

α∈R
k′(σαx) .

For j ∈ {1,2, . . . ,N} the differential-difference operators Tj (the Dunkl operators)
defined by

Tj f (x) = ∂ j f (x)+Ej f (x), f ∈C1(RN),

where Ej f (x) = ∑
α∈R+

k(α)α j
f (x)− f (σα x)

〈α ,x〉 and α = (α1,α2, . . . ,αN) . The Dunkl opera-

tors Tj ’s are a generalization of the partial differential operators in the classical analysis.
As in the classical case we can define the Dunkl gradient ∇k = (T1,T2, . . . ,TN) and the
Dunkl Laplacian Δk as Δk = ∑N

j=1 T 2
j .

One of the important properties of the Dunkl operators is that they commute, that
is TiTj = TjTi . Also for every f ,g ∈C1(RN) and for every 1 � j � N , one can see that
Tj( f g) = Tj( f )g+ f Tj(g) when at least one of the functions is G-invariant.

Fix a reflection group G and a multiplicity function k . We can define the G-inva-
riant homogeneous weight function h2

k(x) = ∏
α∈R+

|〈x,α〉|2k(α) of degree 2γk , where

γk := ∑
α∈R+

k(α) .

Throughout the paper we denote the weighted measure h2
k(x)dx as dμk(x) . Fur-

ther we use the notations dk := N +2γk and λk := dk−2
2 .
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If for g ∈ S (RN) , the space of Schwartz class functions, and a bounded f ∈
C1(RN) , then

∫
RN

Tj f (x)g(x)dμk(x) = −
∫

RN

f (x)Tjg(x)dμk(x).

For a fixed y ∈ RN , it is known that there exists a unique real analytic solution f (x) =
Ek(x,y) for the system Ti f = yi f , 1 � i � N, satisfying f (0) = 1. The kernel Ek(x,y)
is called the Dunkl kernel and it is clearly a generalization of the exponential functions
e〈x,〉y . Dunkl kernel enjoys many properties similar to classical exponential function.
We refer [11] and the references there in for further reading on Dunkl kernel.

Dunkl transform is defined as a generalization of Fourier transform. For u ∈
L1(RN ,dμk(x)) , its Dunkl transform is defined by

Fku(ξ ) = c−1
k

∫
RN

u(x)Ek(−iξ ,x)dμk(x),

where c−1
k :=

∫
RN e−‖x‖2/2dμk(x) . Dunkl translation operator is defined through the

Dunkl transform. The Dunkl translation τk
y f is defined by Fk(τk

y f )(ξ )= Ek(iy,ξ )Fk f (ξ )
and it makes sense for all f ∈ L2(RN ,dμk(x)) as Ek(iy,ξ ) is a bounded function. Dunkl
translation has the property τk

y f (x) = τk−x f (−y) .

3. Fractional Sobolev spaces and some auxiliary lemmas

We begin the section by stating three algebraic lemmas which we will use later to
prove the main theorems.

LEMMA 1. [7, Frank, Seiringer] Let p � 1 . Then for all 0 � t � 1 and a ∈ C

one has

|a− t|p � (1− t)p−1(|a|p−1). (10)

For p > 1 this inequality is strict unless a = 1 or t = 0 . Moreover, if p � 2 then for
all 0 � t � 1 and all a ∈ C one has

|a− t|p � (1− t)p−1(|a|p− t
)
+ cpt

p/2|a−1|p, (11)

with 0 < cp � 1 and cp is given by

cp := min
0<τ<1/2

(
(1− τ)p− τ p + pτ p−1). (12)

For p = 2 , (11) is an equality with c2 = 1 . For p > 2 , (11) is a strict equality unless
a = 1 or t = 0 .
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LEMMA 2. [10, P. Lindqvist] For any 1 < p < 2 there exist a positive constant c
depending on p such thar for all a,b ∈ RN we have:

|a|p−|b|p− p|b|p−2〈b,a−b〉� c
|a−b|2

(|a|+ |b|)2−p

and for p � 2

|a|p−|b|p− p|b|p−2〈b,a−b〉� |a−b|2
2p−1−1

.

LEMMA 3. [2, B. Abdellaoui, F. Mahmoudi] Let 1 � p � 2 and 0 � t � 1 and
a ∈ R . Then for some positive constant c depending only on p we have the following
inequality:

|a− t|p− (1− t)p−1(|a|p− t) � c
|a−1|2t

(|a− t|+ |1− t|)2−p .

3.1. Weighted Sobolev spaces

Define the kernel Φδ with δ > −dk

Φδ (x,y) :=
1

Γ((dk + δ )/2)

∫ ∞

0
s

dk+δ
2 −1τk

y

(
e−s|.|2)(x)ds, (x,y) �= (0,0). (13)

The kernel Φδ (·, ·) was first considered by Gorbachev et al. [9] in connection with the
study of Riesz potential and maximal function for Dunkl transform. If the multiplicity
function is identically zero, that is k ≡ 0, then dk = N and τk

y reduces to the Euclidean
translation operator and hence from the integral formula

1
|y|d−α =

1
Γ((d−α)/2)

∞∫
0

s(d−α)/2−1e−s|y|2ds

the kernel Φδ (x,y) becomes the kernel |x−y|−N−δ . From this understandingwe define
fractional Sobolev space in the Dunkl setting by using Φδ (x,y) .

Let Ω be an open subset of RN containing origin. Let s ∈ (0,1) and 1 < p < ∞ .
Then we define the fractional Sobolev space Ws,p

k (Ω) with the kernel Φps as

Ws,p
k (Ω) :=

{
u ∈ Lp(Ω,dμk(x)) :

∫∫
Ω×Ω

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y) < ∞
}

,

and the norm is given by

‖u‖Ws,p
k (Ω) =

(∫
Ω
|u|pdμk(x)

) 1
p

+
(∫∫

Ω×Ω

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)
) 1

p

.

Let C∞
0 (Ω) be the set of compactly supported smooth functions on Ω . We define the

Sobolev space Ws,p
k,0 (Ω) as the completion of C∞

0 (Ω) with the norm ‖.‖Ws,p
k (Ω) .
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PROPOSITION 1. Let Ω ⊂ RN be open and G-invariant. Let u ∈ Ws,p
k (Ω) and

let A ⊂ Ω such that A is compact and u is supported in A. Define an extension ũ on
RN as ũ(x) = u(x) when x ∈ Ω and ũ(x) = 0 when x ∈ RN \Ω . Then ũ belongs to
Ws,p

k (RN) and
‖ũ‖Ws,p

k (RN ) � C(Ω,A,dk, p,s)‖u‖Ws,p
k (Ω).

Proof. By the definition of ũ it is clear that ũ ∈ Lp(RN ,dμk(x)) . Since Φps is
symmetric on x and y , we can write∫

RN

∫
RN

|ũ(x)− ũ(y)|pΦps(x,y)dμk(x)dμk(y)

=
∫

Ω

∫
Ω
|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)

+2
∫

Ω

(∫
RN\Ω

|u(x)|pΦps(x,y)dμk(y)
)

dμk(x). (14)

Since u ∈Ws,p
k (Ω)∫

Ω

∫
Ω
|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y) < ∞.

Also u is supported in A and hence for any y ∈ RN \Ω

|u(x)|pΦps(x,y) = |u(x)|pχA(x)Φps(x,y).

Now by [9, Lemma 2.3]

Φps(x,y) =
∫

RN

(
|x|2 + |y|2−2〈y,η〉

)− dk+ps
2

dμx
k (η),

where μx
k is a probability Borel measure whose support is contained in Co(G) , the

convex hull of G-orbit of x in R
N (see also [11]). It is easy to see that for any η ∈

Co(G) (
|x|2 + |y|2−2〈y,η〉

) 1
2 � min

σ∈G
|σy− x|.

Using this and the fact that μx
k is a probability measure we get

Φps(x,y) �
(

min
σ∈G

|σy− x|
)−(dk+ps)

.

Since Ω is G-invariant we find that y ∈ RN \Ω implies σy ∈ RN \Ω for any
σ ∈G . Using the fact that A is compact and and Ω is bounded we have dist(σy,∂A) �
dist(∂Ω,∂A) > 0 for all σ ∈ G and y ∈ RN \Ω .

But minσ∈G |σy− x|� minσ∈G(dist(σy,∂A)) and hence we can write∫
Ω

(∫
RN\Ω

|u(x)|pΦps(x,y)dμk(y)
)

dμk(x)

� ‖u‖p
Lp(Ω,dμk(x))

∫
RN\Ω

dμk(y)
dist(∂Ω,∂A)dk+ps .
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Since dist(∂Ω,∂A) > 0 and dk + ps > dk the integral∫
RN\Ω

1
dist(∂Ω,∂A)dk+ps dμk(y)

is finite. Finiteness of the above integral together with (14) we find that

‖ũ‖Ws,p
k (RN ) � C(dk, p,s,A,Ω)‖u‖Ws,p

k (Ω).

For 1 < p < ∞ and 0 < β < dk−ps
2 we define the kernel Kβ

p as

Kβ
p (x,y) =

Φps(x,y)
|x|β |y|β .

We also define the weighted fractional Sobolev space Ws,p,β
k (Ω) , with 0 ∈ Ω , as

Ws,p,β
k (Ω) :=

{
u ∈ Lp(Ω,

dμk(x)
|x|2β ) :

∫∫
Ω×Ω

|u(x)−u(y)|pKβ
p (x,y)dμk(x)dμk(y) < ∞

}

endowed with the norm

‖u‖
Ws,p,β

k (Ω)
:=

(∫
Ω
|u(x)|p dμk(x)

|x|2β

) 1
p

+
(∫∫

Ω×Ω

|u(x)−u(y)|pKβ
p (x,y)dμk(x)dμk(y)

) 1
p

.

For 1 < q < p and 0 < β < dk−qs
2 we define the space Ws,p,q,β

k (Ω) as follows:

Ws,p,q,β
k (Ω) :=

{
u ∈ Lp(Ω,

dμk(x)
|x|2β ) :

∫∫
Ω×Ω

|u(x)−u(y)|pKβ
q (x,y)dμk(x)dμk(y) < ∞

}
,

where the norm is given by

‖u‖
Ws,p,q,β

k (Ω)
:=

(∫
Ω
|u(x)|p dμk(x)

|x|2β

) 1
p

+
(∫∫

Ω×Ω

|u(x)−u(y)|pKβ
q (x,y)dμk(x)dμk(y)

) 1
p

. (15)

Let us denote Ws,p,q,β
k,0 (Ω) as the completion C∞

0 (Ω) with respect to the norm of

Ws,p,q,β
k (Ω) .

Let Ω ⊂ R
N be a bounded G-invariant domain with 0 ∈ Ω . Using similar ar-

guments used in Proposition 1 we can say that, if u ∈ C∞
0 (Ω) , with a compact sup-

port A ⊂ Ω , then there exists a function ũ , which is an extension of u , belongs to
Ws,p,q,β

k,0 (RN) such that

‖ũ‖
Ws,p,q,β

k (RN )
� C‖u‖

Ws,p,q,β
k (Ω)

, (16)
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where C = C(Ω,A,dk, p,q,s) is a positive constant.

REMARK 1. If Ω is a bounded G-invariant domain of RN , we can attach Ws,p
k,0 (Ω)

with an equivalent norm |||.|||Ws,p
k,0

|||u|||Ws,p
k,0 (Ω) :=

(∫∫
Ω×Ω

|u(x)−u(y)|pΦp(x,y)dμk(x)dμk(y)
) 1

p

. (17)

To prove the equivalence of the norms ‖.‖Ws,p
k (Ω) and |||.|||Ws,p

k,0 (Ω) , we need to prove

a Poincaré type inequality, ‖u‖p
Lp(Ω,dμk(x))

� C|||u|||Ws,p
k,0 (Ω) for u ∈ C∞

0 (Ω) and some

positive constant C . We denote the extension ũ of u to RN as u itself.
Let Br ⊂RN \Ω and let O(Br) be the G-orbit of Br . Since Ω is G-invariant and

bounded we have O(Br) ⊂ R
N \Ω . For x ∈ Ω and y ∈ O(Br) , write |u(x)|p = |u(x)−

u(y)|pΦps(x,y)Φ−1
ps (x,y) . Since Ω is G-invariant and Φps(x,y) � (maxσ∈G |σy −

x|)−(dk+ps) , we can write

μk(O(Br))|u(x)|p � sup
x∈Ω,y∈O(Br)

Φ−1
ps (x,y)

∫
O(Br)

u(x)−u(y)|pΦps(x,y)dμk(y)

� sup
x∈Ω, y∈O(Br)

(
max
σ∈G

|σy−x|
)dk+ps ∫

O(Br)
u(x)−u(y)|pΦps(x,y)dμk(y)

� sup
x∈Ω, y∈O(Br)

|x− y|dk+ps
∫

O(Br)
u(x)−u(y)|pΦps(x,y)dμk(y)

� diam(Ω∪O(Br))
∫

O(Br)
u(x)−u(y)|pΦps(x,y)dμk(y).

Now by integrating both sides over Ω with respect to x , we get the desired Poincaré
type inequality.

3.2. Picone’s inequality

Picone’s inequality (Lemma 2.3) for the Sobolev space on R
N was proved in

[2]. We need to prove Picone’s Inequality for the Sobolev space Ws,p,q,β
k (Ω) defined

through the fynction Φps . Now for w ∈Ws,p,q,β
k,0 (RN) , we define

L(w)(x) = P.V.

∫
RN

|w(x)−w(y)|p−2(w(x)−w(y))Kβ
q (x,y)dμk(x)dμk(y)

and for v,w ∈Ws,p,q,β
k,0 (RN) , we have

〈L(w),v〉 =
∫

RN

∫
RN

|w(x)−w(y)|p−2(w(x)−w(y))(v(x)− v(y))Kβ
q (x,y)dμk(x)dμk(y).
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THEOREM 3. Let Q = RN ×RN \ (C Ω×C Ω) and w be a positive function in

Ws,p,q,β
k,0 (Ω) with L(w)(x) � 0 for all x in Ω . Then for all u ∈ C∞

0 (Ω) the following
Picone’s inequality holds:

1
2

∫∫
Q

|u(x)−u(y)|pΦqs(x,y)
dμk(x)dμk(y)

|x|β |y|β �
〈

L(w),
|u|p
wp−1

〉
.

Proof. Let v(x) = |u(x)|p
|w(x)|p−1 ,

〈L(w),v〉 =
∫

Ω
v(x)

∫
RN

|w(x)−w(y)|p−2(w(x)−w(y))Kβ
q (x,y)dμk(x)dμk(y)

=
∫

Ω

|u(x)|p
|w(x)|p−1

∫
RN

|w(x)−w(y)|p−2(w(x)−w(y))Kβ
q (x,y)dμk(x)dμk(y).

Since Kβ
q (x,y) = Kβ

q (y,x) , we can write

〈L(w),v〉 =
∫∫
Q

( |u(x)|p
|w(x)|p−1 −

|u(y)|p
|w(y)|p−1

)

×|w(x)−w(y)|p−2(w(x)−w(y))Kβ
q (x,y)dμk(x)dμk(y).

Define the function g = u/w and obtain

〈L(w),v〉 =
1
2

(|g(x)|pw(x)−|g(y)|pw(y)
)

×|w(x)−w(y)|p−2(w(x)−w(y))Kβ
q (x,y)dμk(x)dμk(y)

=
1
2

∫∫
Q

[|u(x)−u(y)|p−φ(x,y)
]
Kβ

q (x,y)dμk(x)dμk(y),

where

φ(x,y) = |u(x)−u(y)|p− (|g(x)|pw(x)−|g(y)|pw(y))|w(x)−w(y)|p−2(w(x)−w(y)).

It is enough to prove φ � 0 to get the desired inequality

〈L(w),v〉 � 1
2

∫∫
Q

|u(x)−u(y)|pKβ
q (x,y)dμk(x)dμk(y).

Since φ is symmetric we can assume that w(x) � w(y) . Putting t = w(y)/w(x) , a =
u(x)/u(y) and applying the inequality (10) we see that φ � 0.

LEMMA 4. Let 0 < β < dk−qs
2 , 1 < q < p < ∞ , 0 < s < 1 and let 0 < α <

dk−qs−2β
p−1 . For w(x) = |x|−α we have the following equality for a.e. non zero x in RN

L(w) = Λ(α)
wp−1

|x|qs+2β ,

where Λ(α) is a positive constant.
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Proof. For w given in the statement, we have

L(w)(x) = P.V.

∫
RN

|w(x)−w(y)|p−2(w(x)−w(y))Kβ
q (x,y)dμk(y).

Let r = |x| and ρ = |y| . Also let x = rx′ and y = ρy′ with x′,y′ ∈ S
N−1 . With this

setting, we can write

L(w)(x) =
∫ ∞

0

∫
SN−1

|r−α −ρ−α |p−2(r−α −ρ−α)Φqs(rx′ −ρy′)
rβ ρβ ρ2λk+1dσk(y′)dρ .

Let t = ρ/r . Using [9, Lemma 2.3] we have the following properties for Φδ

Φδ (rx′,ρy′) = r−dk−δ Φδ (x′, ty′) (18)

and

P(t) :=
∫

SN−1
Φqs(x′,ty′)dσk(y′) =

Γ( dk
2 )√

πΓ( dk−1
2 )

∫ π

0

sindk−2 θ

(1−2t cosθ + t2)
dk+qs

2

dθ .

With these properties, we can write

L(w)(x) =
r−α(p−1)

r2β+qs

∫ ∞

0
|1− t−α|p−2(1− t−α)t2λk+1−βP(t)dt = Λ(α)

wp−1(x)
|x|2β+qs

,

where Λ(α) =
∫ ∞
0 ϕ(t)dt with ϕ(t) = |1− t−α |p−2(1− t−α)t2λk+1−β P(t) . Now we

need to check the convergence of the integral
∫ ∞
0 ϕ(t)dt . With the change of variable

t → 1
t and using the fact that P( 1

t ) = tdk+qsP(t) we can write

∫ 1

0
ϕ(t)dt = −

∫ ∞

1
(tα −1)p−1tβ+ps−1P(t)dt

and with this, Λ(α) becomes

Λ(α) =
∫ ∞

1
(tα −1)p−1P(t)

(
tdk−1−β−α(p−1)− tβ+qs−1)dt. (19)

Observe that P(t) is similar to 1
tdk+qs as t tends to ∞ and P(t) is dominated by a

constant multiple of 1
|t−1|1+qs as t tends to 1. Together with this understanding and

using the assumption on α and β , as t → ∞ we have

(tα −1)p−1P(t)
(
tdk−1−β−α(p−1)− tβ+qs−1) � 1

t1+β+qs
(20)

and as t → 1 we have

(tα −1)p−1P(t)
(
tdk−1−β−α(p−1)− tβ+qs−1) � (t−1)p−1−qs. (21)
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One can easily see that the similar function written on the right-hand side of (20) and
(21) are integrable on the intervals (2,∞) and (1,2) respectively. This gives Λ(α) is
finite. Now since 0 < α(p−1) < dk −qs−2β ,

(
tdk−1−β−α(p−1)− tβ+qs−1) > 0

and hence from the expression of Λ(α) in (19) we conclude Λ(α) > 0.
We have just proved above that under the given assumptions

L(w) = Λ(α)
wp−1

|x|qs+2β .

Now Picone’s inequality proved in Theorem 3 for this w gives that

2Λ(α)
∫

RN

|u(x)|p
|x|qs+2β dμk(x) =

〈
L(w),

|u|p
wp−1

〉

�
∫∫

RN×RN

|u(x)−u(y)|pKβ
q (x,y)dμk(x)dμk(y). (22)

REMARK 2. Now choose Ω to be a bounded G-invariant domain containing ori-
gin and let u ∈C∞

0 (Ω) . Then as we described earlier we have an extension function ũ

of u ∈Ws,p,q,β
k (Ω) . Using (22) for ũ together with the equations (15) and (16) we find

2Λ(α)
∫

RN

|ũ(x)|p
|x|qs+2β dμk(x) �

∫∫
RN×RN

|ũ(x)− ũ(y)|pKβ
q (x,y)dμk(x)dμk(y)

� ‖ũ‖
Ws,p,q,β

k (RN )
� C‖u‖

Ws,p,q,β
k (Ω)

.

4. Hardy inequality on RN

In this section we give the proof of Theorem 1. The following lemma is needed
for proving Theorem 1.

LEMMA 5. Fix α = dk−ps
p ,β = dk−ps

2 and let w(x) = |x|−α . Let u∈C∞
0 (RN) and

define v(x) = u(x)/w(x) . Then for all 1 < q < p < ∞ and for a given positive constant
C the following inequality holds:

∫∫
RN×RN

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y)

� C
∫∫

RN×RN

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y).
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Proof. Let

f1(x,y) := |v(x)− v(y)|pKβ
q (x,y)

=
|w(y)u(x)−w(x)u(y)|p(

w(x)w(y)
) p

2
Φqs(x,y)

=
∣∣∣∣((u(y)−u(x)

)− u(y)
w(y)

(
w(x)−w(y)

)∣∣∣∣
p(w(y)

w(x)

) p
2

Φqs(x,y).

Observing the symmetry of f1(x,y) we define f2(x,y) in the following way

f2(x,y) :=
∣∣∣∣((u(x)−u(y)

)− u(x)
w(x)

(
w(y)−w(x)

)∣∣∣∣
p(w(x)

w(y)

) p
2

Φqs(x,y).

Now the integral

Hk(v) :=
∫∫

RN×RN

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y)

can be written as

Hk(v) =
1
2

∫∫
RN×RN

( f1(x,y)+ f2(x,y))dμk(x)dμk(y).

Also let

Q(x,y) =

(
w(x)w(y)

) p
2

w(x)p +w(y)p and D(x,y) =
(

w(x)
w(y)

) p
2

+
(

w(y)
w(x)

) p
2

.

It is clear that Q(x,y) �C and Q(x,y)D(x,y) = 1 for all x and y . So for p � 2 we can
apply the Lemma 2 to obtain the following inequality

f1(x,y) � CQ(x,y)
(

w(y)
w(x)

) p
2
[
|u(x)−u(y)|pΦqs(x,y)

− p|u(x)−u(y)|p−2Φqs(x,y)〈u(x)−u(y),
u(y)
w(y)

(w(x)−w(y))〉

+ c(p)| u(y)
w(y)

(w(x)−w(y))|pΦqs(x,y)
]

(23)

and for 1 < p < 2, again by using Lemma 2, we can write

f1(x,y) � CQ(x,y)
(

w(y)
w(x)

) p
2
[
|u(x)−u(y)|pΦqs(x,y)

+ p|u(x)−u(y)|p−2Φqs(x,y)〈u(x)−u(y),
u(y)
w(y)

(w(x)−w(y))
]
. (24)
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Now combining equations (23) and (24), we can write for 1 < p < ∞ ,

f1(x,y) �
[
CQ(x,y)

(
w(y)
w(x)

) p
2

|u(x)−u(y)|pΦqs(x,y)
]

− pCQ(x,y)
(

w(y)
w(x)

) p
2

|u(x)−u(y)|p−1Φqs(x,y)
∣∣∣∣ u(y)
w(y)

∣∣∣∣|w(x)−w(y)|
]
.

Similarly, we can calculate

f2(x,y) �
[
CQ(x,y)

(
w(x)
w(y)

) p
2

|u(x)−u(y)|pΦqs(x,y)
]

− pCQ(x,y)
(

w(x)
w(y)

) p
2

|u(x)−u(y)|p−1Φqs(x,y)
∣∣∣∣ u(x)
w(x)

∣∣∣∣|w(x)−w(y)|
]
.

Now by using the estimates of f1 and f2 we obtain

Hk(v) � C
∫∫

RN×RN

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y)

−C1

∫∫
RN×RN

(
h1(x,y)+h2(x,y)

)
dμk(x)dμk(y), (25)

where

h1(x,y) = Q(x,y)
(

w(y)
w(x)

) p
2

|u(x)−u(y)|p−1Φqs(x,y)
∣∣∣∣ u(y)
w(y)

∣∣∣∣|w(x)−w(y)|

and

h2(x,y) = Q(x,y)
(

w(x)
w(y)

) p
2

|u(x)−u(y)|p−1Φqs(x,y)
∣∣∣∣ u(x)
w(x)

∣∣∣∣|w(x)−w(y)|.

Since h1(x,y) = h2(y,x) we have∫∫
RN×RN

h1(x,y)dμk(x)dμk(y) =
∫∫

RN×RN

h2(x,y)dμk(x)dμk(y). (26)

Therefore, it is sufficient to estimate one of the integral. Now by Young’s inequality we
can write∫∫

RN×RN

h2(x,y)dμk(x)dμk(y) � ε
∫∫

RN×RN

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y)

+C(ε)
∫∫

RN×RN

G(x,y)dμk(x)dμk(y), (27)
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where

G(x,y) = Q(x,y)p
(

w(x)
w(y)

) p
2
∣∣∣∣ u(x)
w(x)

∣∣∣∣
p

|w(x)−w(y)|pΦqs(x,y).

The proof will be completed if we can establish∫∫
RN×RN

G(x,y)dμk(x)dμk(y) � C
∫∫

RN×RN

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y). (28)

Let us calculate∫∫
RN×RN

G(x,y)dμk(x)dμk(y)

=
∫∫

RN×RN

u(x)pw(x)p(p−1)|w(x)−w(y)|p(
w(x)p +w(y)p

)p Φqs(x,y)dμk(x)dμk(y)

=
∫

RN
u(x)p

∫
RN

||x|α −|y|α |p|y|α p(p−1)

(|x|α p + |y|α p)p Φqs(x,y)dμk(y)dμk(x).

Let |x| = r and |y| = ρ with x = rx′ and y = ρy′ . Also write t = ρ/r and dσk(y′) =
h2

k(y
′)dσ(y′) with dσ(y′) as the Eulidean surface measure on the sphere SN−1 . Then

we have∫∫
RN×RN

G(x,y)dμk(x)dμk(y)

=
∫

RN
u(x)p

∫ ∞

0

|rα −ρα |pρα p(p−1)+2λk+1

(rpα + ρ pα)p

∫
SN−1

Φqs(rx′,ρy′)dσk(y′)dρdμk(x)

=
∫

RN

u(x)p

|x|qs

∫ ∞

0

|1− tα |ptα p(p−1)+2λk+1

(1+ tα p)p

∫
SN−1

Φqs(x′,ty′)dσk(y′)dtdx

= I
∫

RN

u(x)p

|x|qs dμk(x),

with

I =
∫ ∞

0

|1− tα|ptα p(p−1)+2λk+1

(1+ tα p)p P(t)dt.

Here we set
P(t) =

∫
SN−1

Φqs(x′,ty′)dσk(y′)

and used the property of the kernel Φqs(rx′,ρy′) = r−dk−qsΦqs(x′,ty′) (see [9, Lemma
2.3] for a proof). By proceeding with the similar steps used in Lemma 4 we get I is

finite. Since we chose w(x) = |x|−
dk−ps

p and u = vw we have
∫∫

RN×RN

G(x,y)dμk(x)dμk(y) = I
∫

RN

|v(x)|p
|x|qs+(dk−ps) dμk(x).



144 V. P. ANOOP AND S. PARUI

Set β0 = dk−ps
2 < dk−qs

2 and apply (22) for v , to get

∫∫
RN×RN

G(x,y)dμk(x)dμk(y)

� C
∫∫

RN×RN

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y). (29)

Thus we proved our claim in (28). Now by considering the inequalities (25), (26), (27)
and (29) we get the desired inequality∫∫

RN×RN

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y)

� C
∫∫

RN×RN

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y).

Let Ω be a bounded G-invariant domain on R
N containing origin. Also let u ∈

C∞
0 (Ω) and ũ be its extension to RN as explained earlier (see Proposition 1). As u = vw

we let the extension of v as ṽ and ũ = ṽw . Now using (16) and Lemma 5 together, we
get ∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y)

� C
∫∫

RN×RN

|ṽ(x)− ṽ(y)|pKβ
q (x,y)dμk(x)dμk(y)

� C
∫∫

RN×RN

|ũ(x)− ũ(y)|pΦqs(x,y)dμk(x)dμk(y)

� C
∫∫

Ω×Ω

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y). (30)

4.1. Proof of Theorem 1

The main idea of the proof is to show that

∫∫
RN×RN

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x)

� C
∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y), (31)

for some positive constant C . Then by using Lemma 5 we reach the desired inequality.
In order to prove (31) we need to consider two different cases p � 2 and 1 < p < 2.
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Case 1: p � 2
From [4], we have

∫
RN

∫
RN

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Cdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x)

� cp

∫
RN

∫
RN

|v(x)− v(y)|pΦps(x,y)
dμk(x)

|x|(dk−ps)/2

dμk(y)
|y|(dk−ps)/2

.

But for Ω ⊂ RN bounded, we have Φps(x,y) � C(Ω)Φqs(x,y) on Ω . Using this we
can write

∫
RN

∫
RN

|v(x)− v(y)|pΦps(x,y)
dμk(x)

|x|(dk−ps)/2

dμk(y)
|y|(dk−ps)/2

� C(Ω)
∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y)

and it gives the claim given in (31) for p � 2.
Case 2: 1 < p < 2
We define f1 and f2 same as described in the proof of Lemma 5. We split the

domain Ω×Ω in accordance with the values of w(x) and w(y) as

D1 = {(x,y) ∈ Ω×Ω : w(y) � w(x)} and D2 = {(x,y) ∈ Ω×Ω : w(x) < w(y)}. (32)

Now

C(Ω)HΩ(v) :=
∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y)

=
∫∫

Ω×Ω

f1(x,y)dμk(x)dμk(y)

=
∫∫
D1

f1(x,y)dμk(x)dμk(y)+
∫∫
D2

f2(x,y)dμk(x)dμk(y)

= I1 + I2.

We will first estimate the integral in I1 . We can write

J1(x,y) :=
∣∣((u(y)−u(x)

)− u(y)
w(y)

(
w(x)−w(y)

)∣∣p
(

w(y)
w(x)

) p
2

=

∣∣((u(y)−u(x)
)− u(y)

w(y)

(
w(x)−w(y)

)∣∣p

∣∣u(x)−u(y)
∣∣+ ∣∣ u(y)

w(x)

(
w(x)−w(y)

)∣∣(2−p) p
2

(
w(y)
w(x)

) p
2

× ∣∣u(x)−u(y)
∣∣+ ∣∣ u(y)

w(x)
(
w(x)−w(y)

)∣∣(2−p) p
2 .
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Now applying Hölder’s inequality, we obtain

I1 � I1,1× I1,2. (33)

Here we denote

I1,1 =
(∫∫

D1

∣∣((u(y)−u(x)
)− u(y)

w(y)

(
w(x)−w(y)

)∣∣2∣∣u(x)−u(y)
∣∣+ ∣∣ u(y)

w(x)

(
w(x)−w(y)

)∣∣(2−p)
w(y)
w(x)

Φqs(x,y)dμk(x)dμk(y)
) p

2

and

I1,2 =
(∫∫

D1

∣∣((u(y)−u(x)
)− u(y)

w(y)
(
w(x)−w(y)

)∣∣pΦqs(x,y)dμk(x)dμk(y)
) 2−p

p

.

From (30), we get

I
2

2−p
1,2 � C1

∫∫
Ω×Ω

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y)

+
∫∫

Ω×Ω

| u(y)
w(y)

(w(x)−w(y))|pΦqs(x,y)dμk(x)dμk(y)

�
∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y) =C(Ω)HΩ(v). (34)

Thus we arrive at

I1,2 � C(Ω)H
2−p

2
(Ω) (v). (35)

An application of Lemma 3 with t = w(y)
w(x) , a = v(x)

v(y) we find for (x,y) ∈ D1

∣∣((u(y)−u(x)
)− u(y)

w(y)

(
w(x)−w(y)

)∣∣2∣∣u(x)−u(y)
∣∣+ ∣∣ u(y)

w(x)

(
w(x)−w(y)

)∣∣(2−p)
w(y)
w(x)

=
w(x)p|v(y)|p|a−1|2t
(|a− t|+ |1− t|2−p)

� w(x)p|v(y)|p(|a− t|p− (1− t)p−1(|a|p− t)
)

= w(x)p|v(y)|p
(∣∣∣v(x)

v(y)
− w(y)

w(x)

∣∣∣p−
(
1− w(y)

w(x)

)p−1(∣∣∣v(x)
v(y)

∣∣∣p− w(y)
w(x)

))

= |u(x)u(y)|p−
(
(w(x)−w(y))p−2(w(x)−w(y))

)( |u(x)|p
w(x)p−1 −

|u(y)|p
w(y)p−1

)
. (36)
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Further using (34) and (36) the first integral I1,1 in (33) becomes

C(Ω)I2/p
1,1

�
∫∫

RN×RN

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y)

−
∫∫

RN×RN

( |u(x)|p
w(x)p−1 − |u(y)|p

w(y)p−1

)
|w(x)−w(y)|p−2(w(x)−w(y))Φqs(x,y)dμk(x)dμk(y)

=
∫∫

RN×RN

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x). (37)

This gives that

I1 =
∫∫
D1

f1(x,y)dμk(x)dμk(y)

� C(Ω)H
2−p

2
Ω (v)

×
( ∫∫
RN×RN

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x)

) p
2

.

(38)

The same arguments allow us to write

I2 =
∫∫
D2

f2(x,y)dμk(x)dμk(y)

� C(Ω)H
2−p

2
Ω (v)

×
( ∫∫
RN×RN

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x)

) p
2

.

(39)

Now put (38) and (39) together with the fact C(Ω)HΩ(v) = I1 + I2 to get

HΩ(v) � C(Ω)H
2−p

2
Ω (v)

×
( ∫∫
RN×RN

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x)

) p
2

and hence

HΩ(v) � C(Ω)
∫∫

RN×RN

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)

−Λdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x).
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Now the case 1 and case 2 together provide the claim∫∫
RN×RN

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λdk,s,p

∫
RN

|u(x)|p
|x|ps dμk(x)

� C(Ω)
∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y). (40)

for all 1 � q < p < ∞ . Hence the desired inequality (1.4) stated in the Theorem 1
follows from (40) together with Lemma 5.

5. Fractional Hardy inequality on half-space

Let R be a root system on RN−1 and k be a multiplicity function from R to (0,∞) .
Define the root system R1 on RN

+ as R1 := R×{0} . We use the same notation G for
the corresponding Coxeter group. Also extend the multiplicity function k to k1 by
defining k1(x,0) = k(x) where x ∈ R . With the root system R1 and the multiplicity
function k1 on RN

+ we can write the kernel Φqs on RN
+ with 1 < q < ∞ and 0 < s < 1

as

Φqs(x,y) =
1

Γ((dk1 +qs)/2)

∫ ∞

0
s

dk+qs
2 −1e−s|xN−yN |2τk

y′(e
−s|.|2)(x′)ds.

For an element x ∈ RN
+ we write x = (x′,xN) where x′ ∈ RN−1 and xN > 0. Using

the properties of Dunkl translation and gamma function we can perform the following
calculations∫

RN−1
Φqs(x,y)dμk(y′)

=
1

Γ((dk1 +qs)/2)

∫
RN−1

∫ ∞

0
s

dk1
+qs

2 −1e−s|xN−yN |2τk
y′(e

−s|.|2)(x′)ds dμk(y′)

=
1

Γ((dk1 +qs)/2)

∫
RN−1

∫ ∞

0
s

dk1
+qs

2 −1e−s(|xN−yN |2+|x′−y′|2)ds dμk(y′)

=
∫

RN−1

dμk(y′)

(|xn − yN|2 + |x′ − y′|2)
dk1

+qs

2

= ‖S
N−2‖k

∫ ∞

0

1

(|xN − yN |2 + r2)
dk1

+qs

2

rdk−2dr

= ‖S
N−2‖k

1
|xN − yN |1+qs

∫ ∞

0

tdk−2

(1+ t2)
dk1

+qs

2

dt

= ‖S
N−2‖k

1
|xN − yN |1+qs

Γ((dk1 −1)/2)Γ((1+qs)/2)
Γ((dk1 +qs)/2)

. (41)

The constant ‖SN−2‖k in (41) is given as

‖S
N−2‖k =

∫
SN−2

dμk(x) =
c−1
k

2λkΓ( dk
2 )

.
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Let Ω ⊂ R
N
+ be an open G-invariant subset and let w0 ∈Ws,p,q,β

k,0 (Ω) . Define

L0(w0)(x) := P.V.

∫
RN

+

|w0(x)−w0(y)|p−2(w0(x)−w0(y))K
β
q,0(x,y)dμk(x)dμk(y),

where

Kβ
q,0(x,y) =

Φqs(x,y)

xβ
Nyβ

N

.

Also let Ω ⊂ RN
+ be bounded and we denote Q0 = RN

+ ×RN
+ \ (C Ω×C Ω) . Then by

the same arguments as in the proof of Theorem 3 we can conclude a Picone’s inequality
for half-space, that is

1
2

∫∫
Q0

|u(x)−u(y)|pΦqs(x,y)
dμk(x)dμk(y)

xβ
Nyβ

N

�
〈

L0(w0),
|u|p
wp−1

0

〉
, (42)

for all functions u ∈C∞
0 (Ω) and for all positive function w ∈Ws,p,q,β

k,0 (Ω) .

Let 0 < β < 1−qs
2 , 0 < α < 1−qs−2β

p−1 and w0(x) = x−α
N . Then for almost every

non zero x ∈ RN we have

L0(w0) = Λ0(α)
wp−1

0

xqs+2β
N

(43)

for a positive constant Λ0(α) . The proof of this can be done with similar steps of the
proof of the Lemma 4. Denoting r = xN , ρ = yN and using the calculations in (41), we
get

L0(w0)(x) = ‖S
N−2‖k

Γ((dk1 −1)/2)Γ((1+qs)/2)
Γ((dk1 +qs)/2)

×
∫ ∞

0

|r−α −ρ−α |p−2(r−α −ρ−α)Φqs(rx′,ρy′)
rβ ρβ |r−ρ |1+qs

dρ .

Set t = r/ρ ,

L0(w0)(x) = ‖S
N−2‖k

Γ((dk1 −1)/2)Γ((1+qs)/2)
Γ((dk1 +qs)/2)

r−α(p−1)

r2β

∫ ∞

0

|1− t−α |p−2(1− t−α)
tβ |1− t|1+qs

dt

= Λ0(α)
wp−1(x)

x2β+qs
N

,

where the constant

Λ0(α) = ‖S
N−2‖k

Γ((dk1 −1)/2)Γ((1+qs)/2)
Γ((dk1 +qs)/2)

∫ ∞

0

|1− t−α|p−2(1− t−α)
tβ |1− t|1+qs

dt.

It remains to show that Λ0(α) is positive. Splitting the integral in to two domains;
(0,1) and (1,∞) and use the change of variable t → 1/t on (0,1) we can write Λ0(α)
as

Λ0(α) =
∫ ∞

1

(tα −1)p−1

|1− t|1+qs

(
t−β−α(p−1)− tβ+qs−1)dt.
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A repetition of same arguments in the proof of Lemma 4 will show that Λ0(α) is
positive.

Use the identity (43) and the Picone’s inequality for half-space given in (42) to-
gether to see that

2Λ0(α)
∫

RN
+

|u(x)|p
xqs+2β
N

dμk(x) =

〈
L0(w0),

|u|p
wp−1

0

〉

�
∫∫

RN
+×RN

+

|u(x)−u(y)|pKβ
q,0(x,y)dμk(x)dμk(y).

LEMMA 6. Fix α = β = 1−ps
p and let w0(x) = x−α

N . Let u ∈C∞
0 (RN) and define

v(x) := u(x)/w(x) . Then for all 1 < q < p < ∞ and for a given positive constant C the
following inequality holds∫∫

RN
+×RN

+

|v(x)− v(y)|pKβ
q,0(x,y)dμk(x)dμk(y)

� C
∫∫

RN
+×RN

+

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y).

Proof. We will prove the lemma by following the proof of Lemma 5. Replacing
K and w by K0 and w0 we can define the functions f1 and f2 as:

f1(x,y) := |v(x)− v(y)|pKβ
q,0(x,y)

=
|w0(y)u(x)−w0(x)u(y)|p(

w0(x)w0(y)
) p

2
Φqs(x,y)

=
∣∣∣∣((u(y)−u(x)

)− u(y)
w0(y)

(
w0(x)−w0(y)

)∣∣∣∣
p(w0(y)

w0(x)

) p
2

Φqs(x,y);

f2(x,y) :=
∣∣∣∣((u(x)−u(y)

)− u(x)
w0(x)

(
w0(y)−w0(x)

)∣∣∣∣
p(w0(x)

w0(y)

) p
2

Φqs(x,y).

Proceeding with similar steps of the proof of Lemma 5 we arrive at∫∫
RN

+×RN
+

G(x,y)dμk(x)dμk(y)

=
∫∫

RN
+×RN

+

u(x)pw0(x)p(p−1)|w0(x)−w0(y)|p(
w0(x)p +w0(y)p

)p Φqs(x,y)dμk(x)dμk(y)

=
∫

RN
+

u(x)p
∫

RN
+

|xα
N − yα

N |pyα p(p−1)
N

(xα p
N + yα p

N )p
Φqs(x,y)dμk(y)dμk(x), (44)
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where

G(x,y) = Q(x,y)p
(

w0(x)
w0(y)

) p
2
∣∣∣∣ u(x)
w0(x)

∣∣∣∣
p

|w0(x)−w0(y)|pΦqs(x,y).

By the definition of the root system we can write

Φqs(x,y) =
1

Γ( dk+qs
2 )

∫ ∞

0
s

dk+qs
2 −1e−s|xN−yN |2τk1

y′ (e
−s|.|2)(x′)ds.

Using this and the properties of Dunkl translation(see [13, Proposition 2.4]), the integral
become

∫
RN

+

|xα
N − yα

N |pyα p(p−1)
N

(xα p
N + yα p

N )p
Φqs(x,y)dμk(y)

=
1

Γ( dk+qs
2 )

∫ ∞

0

|xα
N − yα

N |pyα p(p−1)
N

(xα p
N + yα p

N )p

×
∫

RN−1

∫ ∞

0
s

dk+qs
2 −1e−s|xN−yN |2τk1

y′ (e−s|.|2)(x′)dsdμk1(y
′)dyN

=
1

Γ( dk+qs
2 )

∫ ∞

0

|xα
N − yα

N |pyα p(p−1)
N

(xα p
N + yα p

N )p

×
∫

RN−1

∫ ∞

0
s

dk+qs
2 −1e−s|xN−yN |2+|y′|2dsdμk1(y

′)dyN . (45)

Using the polar coordinates and integrating, we have∫
RN−1

1

(|xN − yN |2 + |y′|2) dk+qs
2

dμk(y′)

= ‖S
N−2‖k

∫ ∞

0

1

(|xN − yN |2 + r2)
dk+qs

2

rdk−2dr

= ‖S
N−2‖k

1
|xN − yN |1+qs

∫ ∞

0

tdk−2

(1+ t2)
dk+qs

2

dt

= ‖S
N−2‖k

1
|xN − yN |1+qs

Γ((dk −1)/2)Γ((1+qs)/2)
Γ((dk +qs)/2)

. (46)

Here the quantity ‖SN−2‖k is the volume of the unit sphere in RN−1 with respect to the
weighted measure dμk restricted to the sphere. Also by using the gamma function we
obtain

1
Γ((dk +qs)/2)

∫ ∞

0
s

dk+qs
2 −1e−s(|xN−yN |2+|x′−y′|2)ds

=
1

(|xN − yN |2 + |x′ − y′|2) dk+qs
2

. (47)
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Substitute the equations (45), (46) and (47) in (44) we get the integral∫∫
RN

+×RN
+

G(x,y)dμk(x)dμk(y) = ‖S
N−2‖k

Γ((dk −1)/2)Γ((1+qs)/2)
Γ((dk +qs)/2)

.

×
∫

RN
+

u(x)p
∫ ∞

0

|xα
N − yα

N |pyα p(p−1)
N

(xα p
N + yα p

N )p

dyNdμk(x)
|xN − yN |1+qs .

Set t = yN/xN , then∫∫
RN

+×RN
+

G(x,y)dμk(x)dμk(y) = ‖S
N−2‖k

Γ((dk −1)/2)Γ((1+qs)/2)
Γ((dk +qs)/2)

×
∫

RN
+

u(x)p
∫ ∞

0

|xα
N − yα

N |pyα p(p−1)
N

(xα p
N + yα p

N )p

dyNdμk(x)
|xN − yN |1+qs

= I
∫

RN
+

u(x)p

xqs
N

dμk(x),

where

I = ‖S
N−2‖k

Γ((dk −1)/2)Γ((1+qs)/2)
Γ((dk +qs)/2)

∫ ∞

0

|1− tα |ptα p(p−1)+2λk+1

(1+ tα p)p|1− t|1+qs dt.

Following the similar steps used in proving Lemma 4 we get∫∫
RN

+×RN
+

G(x,y)dμk(x)dμk(y) = I
∫

RN
+

|v(x)|p
xqs+1−ps
N

= C
∫∫

RN×RN

|v(x)− v(y)|pKβ
q,0(x,y)dμk(x)dμk(y)

and the inequality (see the proof of Lemma 4 and the beginning of Section 5 for more
understanding)∫∫

RN×RN

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y) � C
∫∫

RN×RN

Kβ
q,0(x,y)dμk(x)dμk(y).

5.1. Proof of Theorem 2

We follow the similar steps of the proof of Theorem 1. As in that case we have
two cases p � 2 and p < 2.

Case 1: p � 2
From [4], we have∫

RN
+

∫
RN

+

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Cdk,s,p

∫
RN

+

|u(x)|p
xps
N

dμk(x)

+cp

∫
RN

+

∫
RN

+

|v(x)− v(y)|pΦps(x,y)
dμk(x)

x(1−ps)/2
N

dμk(y)

y(1−ps)/2
N

.
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But since Ω ⊂ RN
+ bounded, we have Φps(x,y) � C(Ω)Φqs(x,y) on Ω , and

∫
RN

+

∫
RN

+

|v(x)− v(y)|pΦps(x,y)
dμk(x)

x(dk−ps)/2
N

dμk(y)

y(dk−ps)/2
N

� C(Ω)
∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q,0(x,y)dμk(x)dμk(y).

The proof of Theorem 2 for p � 2 will be completed by applying Lemma 6.
Case 2: 1 < p < 2
Let f1 and f2 be as in the proof of Lemma 6 and define D1 and D2 as in (32) just

by replacing w by w0 . Now we have

∫∫
D1

f1(x,y)dμk(x)dμk(y)+
∫∫
D2

f2(x,y)dμk(x)dμk(y)

= C(Ω)
∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q (x,y)dμk(x)dμk(y)

:= C(Ω)HΩ,0(v).

A similar calculations from (33) to (37) yield

∫∫
D1

f1(x,y)dμk(x)dμk(y)

� C(Ω)H
2−p

2
Ω,0 (v)

×
( ∫∫
RN

+×RN
+

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λ0
dk,s,p

∫
RN

|u(x)|p
xps
N

dμk(x)
) p

2

.

(48)

Similarly for f2
∫∫
D1

f2(x,y)dμk(x)dμk(y)

� C(Ω)H
2−p

2
Ω,0 (v)

×
( ∫∫
RN

+×RN
+

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λ0
dk,s,p

∫
RN

|u(x)|p
xps
N

dμk(x)
) p

2

.

(49)
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Combining (48) and (49) we arrive at

HΩ,0(v) � C(Ω)
∫∫

RN
+×RN

+

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)

×−Λ0
dk,s,p

∫
RN

+

|u(x)|p
xps
N

dμk(x).

Putting both cases together we can write

∫∫
RN

+×RN
+

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λ0
dk,s,p

∫
RN

+

|u(x)|p
xps
N

dμk(x)

� C(Ω)
∫∫

Ω×Ω

|v(x)− v(y)|pKβ
q,0(x,y)dμk(x)dμk(y). (50)

A direct application of Lemma 6 and (50) we get the desired improved farctional Hardy
inequality

∫∫
RN

+×RN
+

|u(x)−u(y)|pΦps(x,y)dμk(x)dμk(y)−Λ0
dk,s,p

∫
RN

+

|u(x)|p
xps
N

dμk(x)

� C
∫∫

Ω×Ω

|u(x)−u(y)|pΦqs(x,y)dμk(x)dμk(y).
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