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Abstract. In this paper we introduce the weighted Hellinger distance for matrices which is an
interpolating between the Euclidean distance and the Hellinger distance. We show the equiva-
lence of the weighted Hellinger distance and the Alpha Procrustes distance. As a consequence,
we prove that the matrix power mean μp(t,A,B) = (tAp +(1−t)Bp)1/p satisfies in-betweenness
property in the weighted Hellinger and Alpha Procrustes distances.

1. Introduction

Let Mn be the algebra of n×n matrices over C and Dn denote the cone of positive
definite elements in Mn . Denote by I the identity matrix of Mn . For a real-valued
function f and a Hermitian matrix A ∈ Mn , the matrix f (A) is understood by means
of the functional calculus. The space of density matrices or quantum states is as

D1
n = {ρ ∈ Dn : Trρ = 1}.

In recent years, many researchers have paid attention to different distance func-
tions on the set Dn of positive definite matrices. Along with the traditional Rieman-

nian metric dR(A,B) =
(
∑n

i=1 log2 λi(A−1B)
)1/2

(where λi(A−1B) are eigenvalues of
the matrix A−1/2BA−1/2 ), there are other important functions. Two of them are the
Bures-Wasserstein distance, which are adapted from the theory of optimal transport [2]

db(A,B) =
(
Tr(A+B)−2Tr((A1/2BA1/2)1/2)

)1/2
,

and the Hellinger metric or Bhattacharya metric in quantum information [13]

dh(A,B) =
(
Tr(A+B)−2Tr(A1/2B1/2)

)1/2
.

Notice that the metric dh is the same as the Euclidean distance between A1/2 and B1/2,
i.e., ‖A1/2−B1/2‖F .
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Recently, Ha [11] introduced the Alpha Procrustes distance as follows: For α > 0
and for positive semidefinite matrices A and B ,

db,α =
1
α

db(A2α ,B2α).

He showed that the Alpha Procrustes distances are the Riemannian distances corre-
sponding to a family of Riemannian metrics on the manifold of positive definite ma-
trices, which encompass both the Log-Euclidean and Wasserstein Riemannian metrics.
Since the Alpha Procrustes distances are defined based on the Bures-Wasserstein dis-
tance, we also call them the weighted Bures-Wasserstein distances. In that flow, one
can define the weighted Hellinger metric for two positive semidefinite matrices as

dh,α(A,B) =
1
α

dh(A2α ,B2α). (1)

It turns out that dh,α(A,B) is an interpolating metric between the Log-Euclidean and
the Hellinger metrics (Proposition 1).

In 2016, Audenaert introduced the in-betweenness property of matrix means [1].
We say that a matrix mean σ satisfies the in-betweenness property with respect to the
metric d if for any pair of positive definite operators A and B ,

d(A,AσB) � d(A,B).

In [10] the first and the third authors, together with their coauthors, introduced and stud-
ied the in-sphere property of matrix means. Dinh, Franco and Dumitru also published
several papers [7]-[9] on geometric properties of the matrix power mean μp(t;A,B) :=
(tAp +(1− t)Bp)1/p with respect to different distance functions. They also considered
the case of the matrix power mean in the sense of Kubo-Ando [12] which is defined as

Pp(t,A,B) = A1/2
(
tI +(1− t)(A−1/2BA−1/2)p

)1/p
A1/2.

In this paper, we focus our study on the monotonicity and in-betweenness prop-
erties of the matrix power means with respect to the weighted Bures-Wasserstein and
weighted Hellinger distances.

The paper is organized as follows: We start the next section by showing that the
limit of the weighted Hellinger distance as α tends to 0 is the Log-Euclidean distance.
We also show that the weighted Bures-Wasserstein and weighted Hellinger distances
are equivalent (Proposition 2). As a consequence of the equivalence, using the oper-
ator convexity and concavity of the power functions, we show that the matrix power
mean satisfies the in-betweenness property with respect to dh,α (Theorem 3) and db,α
(Theorem 4). We also show that among symmetric means, the arithmetic mean is the
only one that satisfies the in-betweenness property in the weighted Bures-Wasserstein
and weighted Hellinger distances. Finally, we prove an inequality for the weighted
quantum fidelity involving the matrix power mean.
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2. Main results

PROPOSITION 1. For positive semidefinite matrices A and B ,

lim
α→0

d2
h,α(A,B) = || log(A)− log(B)||2F .

Proof. We rewrite the expression of dh,α(A,B) as

d2
h,α(A,B) =

1
α2 d2

h(A
2αB2α)

=
1

α2

[
Tr

(
A2α +B2α −2AαBα

)]

=
||Aα − I||2F

α2 +
||Bα − I||2F

α2 − 2
α2 Tr

(
AαBα −Aα −Bα + I

)
.

We have

lim
α→0

||Aα − I||2F
α2 = || logA||2F , lim

α→0

||Bα − I||2F
α2 = || logB||2F .

Since

Aα = exp(α logA) = I + α logA+
α2

2!
(logA)2 + . . . ,

Bα = exp(α logB) = I + α logB+
α2

2!
(logB)2 + . . . ,

we have

AαBα = I + α(logA+ logB)+
α2

2

(
(logA)2 +(logB)2 +2logA. logB

)
+ . . . .

Therefore,
AαBα −Aα −Bα + I = α2 logA · logB+ . . . .

Consequently,

d2
h,α(A,B) =

||Aα − I||2F
α2 +

||Bα − I||2F
α2 −2Tr(logA. logB)

=
||Aα − I||2F

α2 +
||Bα − I||2F

α2 −2
〈

logA, logB
〉

F
.

Tending α to zero, we obtain

d2
h,α(A,B) = || logA||2F + || logB||2B −2

〈
logA, logB

〉
F

= || logA− logB||2F .

This completes the proof.
It is interesting to note that the weighted Bures-Wasserstein and weighted Hellinger

distances are equivalent.
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PROPOSITION 2. Let A,B ∈ Dn . Then

db,α(A,B) � dh,α(A,B) �
√

2db,α(A,B).

Proof. According the Araki-Lieb-Thirring inequality [11], we have

Tr(A1/2BA1/2)r � Tr(ArBr), |r| � 1.

Replacing A with A2α , B with B2α and r with
1
2

we obtain the following

Tr(AαB2αAα)1/2 � Tr(AαBα).

Thus,

1
α2 Tr

(
A2α +B2α −2(AαB2αAα)1/2

)
� 1

α2 Tr
(
A2α +B2α −2AαBα

)
.

In other words,
db,α(A,B) � dh,α(A,B).

With ρ ,σ ∈ D1
n , we have

d2
h(ρ ,σ) = 2−2Tr(ρ1/2σ1/2) � 4−4Tr((ρ1/2σρ1/2)1/2) = 2d2

b(ρ ,σ),

or
2Tr((ρ1/2σρ1/2)1/2) � 1+Tr(ρ1/2σ1/2).

In the above inequality replace ρ with
A2α

Tr(A2α)
and σ with

B2α

Tr(B2α)
we have

2Tr
[
(AαB2αAα)1/2

]
� Tr(A2α)1/2Tr(B2α)1/2 +Tr(AαBα)

� 1
2
Tr(A2α +B2α)+Tr(AαBα).

It follows that

4Tr[(AαB2αAα)1/2] � Tr(A2α +B2α)+2Tr(AαBα).

The above inequality is equivalent to

2[Tr(A2α +B2α −2Tr(AαB2αAα)1/2] � Tr(A2α +B2α −2AαBα),

or,
d2

h,α(A,B) � 2d2
b,α(A,B).

Consequently,
dh,α(A,B) �

√
2db,α(A,B).

Now we are ready to show that the matrix power means μp(t;A,B) satisfy the
in-betweenness property in dh,α and db,α .
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THEOREM 3. Let A,B ∈ Dn , p/2 � α � p and 0 � t � 1 . Then

dh,α(A,μp(t;A,B)) � dh,α(A,B).

Proof. We have

d2
h,α(A,μp(t;A,B)) =

1
α2 Tr

(
A2α + μ2α

p −2Aα μα
p (t;A,B)

)
,

and

d2
h,α(A,B) =

1
α2 Tr

(
A2α +B2α −2AαBα

)
.

Therefore, the above result follows if

Tr
(

μ2α
p (t;A,B)−2Aα μα

p (t;A,B)
)

� Tr
(
B2α −2AαBα

)
.

By the operator convexity of the map x �→ x2α/p , when
p
2

� α � p ,

μ2α
p (t;A,B) =

(
tAp +(1− t)Bp

)2α/p
� tA2α +(1− t)B2α.

Thus, the desired result follows if

Tr
[
t
(
A2α −B2α

)
−2Aα μα

p (t;A,B)
]

� −2Tr(AαBα).

By the operator concavity of the map x �→ xα/p , when
p
2

� α � p ,

μα
p (t;A,B) =

(
tAp +(1− t)Bp

)α/p
� tAα +(1− t)Bα.

Therefore, the distance monotonicity follows if

Tr
[
t(A2α −B2α)−2Aα

(
tAα +(1− t)Bα

)]
� −2Tr(AαBα),

or
tTr

(
A2α +B2α −2AαBα

)
� 0,

which is from AM-GM inequality.

THEOREM 4. Let A,B ∈ Dn , p/2 � α � p and 1/2 � t � 1 . Then,

db,α(A,μp(t;A,B)) � db,α(A,B).

Proof. Firstly, we show that for any positive semidefinite matrices A and B , for
p/2 � α � p and 1/2 � t � 1,

db,α(A,μp(t;A,B)) � dh,α(A,μp(t;A,B)) �
√

1− tdh,α(A,B).
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By the Araki-Lieb-Thirring inequality, we have

Tr
(
AαB2αAα

)1/2
� Tr

(
AαBα

)
.

Therefore,

d2
b,α(A,μp(t;A,B)) =

1
α2 db(A2α ,μ2α

p (t;A,B))

=
1

α2 Tr
(
A2α + μ2α

p (t;A,B)−2(Aα μ2α
p (t;A,B)Aα)1/2

)

� 1
α2 Tr

(
A2α + μ2α

p (t;A,B)−2Aα μα
p (t;A,B)

)
.

By the operator convexity of the function x �→ x2α/p and the operator concavity of the
function x �→ xα/p , we obtain

d2
b,α(A,μp(t;A,B)) � 1

α2 Tr
[
A2α + tA2α +(1− t)B2α −2Aα

(
tAα +(1− t)Bα

)]

=
1− t
α2 Tr

(
A2α +B2α −2AαBα

)

= (1− t)d2
h,α(A,B).

From here, applying the square root function to both sides with t ∈ [1/2,1] , we have

db,α(A,μp(t;A,B)) �
√

1− tdh,α(A,B) � 1√
2
dh,α(A,B) � db,α(A,B).

This completes the proof.
In [9, Theorem 2] the authors proved that the matrix Kubo-Ando power mean

Pp(t,A,B) satisfies the in-betweenness property which follows from the fact that the
function g(t) = Tr(A1/2Pp(t;A,B)1/2) is concave. Note that Pt(A,B) �= Pt(B,A) , i.e.,
Pt is not symmetric. However, for the symmetric means we may have the following
result whose proof is adapted from [6].

THEOREM 5. Let σ be a symmetric mean and assume that one of the following
inequalities holds for any pair of positive definite matrices A and B:

dh,α(A,AσB) � dh,α(A,B) (2)

or
db,α(A,AσB) � db,α(A,B). (3)

Then σ is the arithmetic mean.

Proof. By [12, Theorem 4.4], the symmetric operator mean σ is represented as
follows:

AσB =
δ
2

(A+B)+
∫
(0,∞)

λ +1
λ

{(λA) : B+A : (λB)}dμ(λ ), (4)
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where A,B � 0, λ � 0 and μ is a positive measure on (0,∞) with δ + μ((0,∞)) = 1,
and the parallel sum A : B is given by A : B = (A−1 + B−1)−1 , where A and B are
invertible.

For two orthogonal projections P,Q acting on a Hilbert space H , let us denote by
P∧Q their infimum which is the orthogonal projection on the subspace P(H)∩Q(H) .
If P∧Q = 0, then by [12, Theorem 3.7],

(λP) : Q = P : (λQ) =
λ

λ +1
P∧Q.

Consequently, from (4) we get

PσQ =
δ
2

(P+Q).

Let us consider the following orthogonal projections

P =
(

1 0
0 0

)
, Qθ =

(
cos2 θ cosθ sinθ

cosθ sinθ sin2 θ

)
.

Notice that Qθ → P as θ → 0 and Qθ ∧P = 0. From the projections above, it is easy
to see that the inequality (2) becomes

dh,α(P,δ (P+Qθ )/2) � dh,α(P,Qθ ).

Since this is true for all θ > 0, we can take a limit as θ → 0+ to obtain

dh,α(P,δP) � dh,α(P,P)

whose equality occurs if and only if δ = 1. This shows that μ = 0 and σ is the
arithmetic mean.

The statement for dh,α can be proved similarly.
To finish the paper, in relation to the matrix power mean, we prove an inequality

which is called a parameterized version of quantum fidelity which was introduced by
Bhatia, Jain, and Lim [14].

Let A,B ∈ Dn , a parameterized version of fidelity defined as

Fα(A,B) = Tr
(
A

1−α
2α BA

1−α
2α

)α
,α ∈ (0,∞),

where A,B ∈ Dn .

PROPOSITION 6. Let A,B ∈ D1
n , p � 1 and 0 � t � 1,0 < α < 1. Then

Fα(A,μp(t;A,B)) � Fα(A,B)

and
Fα(A,Pp(t;A,B)) � Fα(A,B).
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Proof. Let p = 1. Notice that the function xα (0 < α < 1) is operator concave,

and that 0 � Fα(A,B) � Tr
(
tA+(1− t)B

)
= t +1− t = 1 [14, Theorem 11]. We have

Fα(A,μ1(t;A,B)) = Tr
(
A

1−α
2α

(
tA+(1− t)B

)
A

1−α
2α

)α

= Tr
(
tA

1
α +(1− t)A

1−α
2α BA

1−α
2α

)α

� Tr
(
tA+(1− t)

(
A

1−α
2α BA

1−α
2α

)α)
= t +(1− t)Fα(A,B)
� Fα(A,B).

Now, let us consider the case where p > 1. In this case, the function x �→ x1/p is
operator concave, hence

μp(t;A,B) =
(
tAp +(t−1)Bp

)1/p
� tA+(1− t)B = μ1(t;A,B).

This implies
Fα(A,μp(t;A,B)) � Fα(A,μ1(t;A,B)),

from which the result for μp(t;A,B) follows.
The proof for Pp(t;A,B) is similar to P1(t;A,B) = μ1(t;A,B) and

(
tI +(1− t)(A−1/2BA−1/2)p

)1/p
� tI +(1− t)(A−1/2BA−1/2),

which implies
Fα(A,Pp(t;A,B)) � Fα(A,P1(t;A,B)).
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