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Abstract. We present new upper and lower bounds for the numerical radius of a bounded linear
operator defined on a complex Hilbert space, which improve on the existing bounds. Among
many other inequalities proved in this article, we show that for a non-zero bounded linear oper-
ator T on a complex Hilbert space H,

w(T ) � ‖T‖
2

+
m(T 2)
2‖T‖ ,

where w(T ) is the numerical radius of T and m(T 2) is the Crawford number of T 2 . This sub-

stantially improves on the existing inequality w(T ) � ‖T‖
2 . We also obtain some upper and lower

bounds for the numerical radius of operator matrices and illustrate with numerical examples that
these bounds are better than the existing bounds.

1. Introduction

Computation of the numerical radius of a bounded linear operator defined on a
complex Hilbert space is an interesting embroiled problem. Till date one can compute
the exact numerical radius for certain special class of operators and for this reason es-
timation of bounds for the numerical radius is a very important problem. Our aim in
this article to present better estimation of the numerical radius of bounded linear opera-
tors and operator matrices. The following notations and terminologies are necessary to
begin with.

Let H1 and H2 be two complex Hilbert spaces with inner product 〈., .〉. Let
B(H1,H2) denote the set of all bounded linear operators from H1 to H2, if H1 =
H2 = H (say), then we write B(H1,H2) = B(H). For T ∈ B(H) , let ‖T‖ and c(T )
denote the usual operator norm and the minimum norm of T , respectively, defined as

‖T‖ = sup{‖Tx‖ : x ∈ H,‖x‖ = 1}
and

c(T ) = inf{‖Tx‖ : x ∈ H,‖x‖ = 1} ,
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where ‖.‖ is the norm on H induced from the inner product 〈., .〉. Let σ(T ) denote
the spectrum of T , and r(T ) , the spectral radius of T , defined as

r(T ) = sup{|λ | : λ ∈ σ(T )} .

The numerical range of T, denoted as W (T ) , is defined as

W (T ) = {〈Tx,x〉 : x ∈ H,‖x‖ = 1} .

Let w(T ) and m(T ) denote the numerical radius and the Crawford number of T , re-
spectively, defined as

w(T ) = sup{|λ | : λ ∈W (T )}

and

m(T ) = inf{|λ | : λ ∈W (T )} .

It is well-known that the numerical range is a convex subset of the scalar field and
closure of the numerical range contains the spectrum, i.e., σ(T ) ⊆ W (T ) , so r(T ) �
w(T ). The numerical radius w(.) acts as a norm on B(H) and is equivalent to the usual
operator norm ‖.‖ , satisfying the following inequality

‖T‖
2

� max

{
r(T ),

‖T‖
2

}
� w(T ) � ‖T‖.

The weak unitarily invariance property of the numerical radius states that

w(U∗TU) = w(T ), for all unitary operators U ∈ B(H),

which will be used repeatedly in this article. For further properties of the numerical
range and the numerical radius, we refer the interested readers to [3, 8].

Over the years many eminent mathematicians have studied and improved on the
above inequality, to cite a few of them are [6, 7, 9, 11, 12, 15, 16]. Recently we [1, 4,
5, 13, 14] have developed some bounds for the numerical radius and applied them to
estimate zeros of polynomials. In 1963, Bernau and Smithies [2] gave an elegant proof
of the inequality w(T ) � 1

2‖T‖ using parallelogram law. In this paper we improve on
this inequality to prove that

w(T ) � 1
2
‖T‖+

m(T 2)
2‖T‖ .

We generalize the inequality [2, Lemma 3] substantially to obtain new inequalities for
the numerical radius. Further we obtain bounds for the numerical radius of n× n
operator matrices defined on the complex Hilbert space H1 ⊕H2 ⊕ . . .⊕Hn. Here
H1,H2, . . . ,Hn are complex Hilbert spaces. We show that the bounds obtained here
generalize and improve on the existing bounds given in [9, 11].
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2. Inequalities for the numerical radius of product operators

We begin this section with the following inequality proved in [2, Lemma 3].

LEMMA 1. Let T ∈ B(H). Then

‖Tx‖2 + |〈T 2x,x〉| � 2w(T )‖Tx‖‖x‖, (1)

for all x ∈ H .

We generalize the inequality (1) in the following lemma.

LEMMA 2. Let A,T,B ∈ B(H). Then

|〈A∗TBx,x〉|+ |〈B∗TAx,x〉| � 2w(T )‖Ax‖‖Bx‖, (2)

for all x ∈ H .

Proof. Let x∈H and θ ,φ be real numbers such that eiφ 〈B∗TAx,x〉= |〈B∗TAx,x〉| ,
e2iθ 〈e−iφ A∗TBx,x〉= |〈e−iφA∗TBx,x〉|= |〈A∗TBx,x〉|. Then for any non-zero real num-
ber λ , we have

2e2iθ 〈TBx,eiφ Ax〉+2eiφ 〈TAx,Bx〉
=
〈

eiθ T

(
λeiθ Bx+

1
λ

eiφ Ax

)
,λeiθ Bx+

1
λ

eiφ Ax

〉

−
〈

eiθ T

(
λeiθ Bx− 1

λ
eiφ Ax

)
,λeiθ Bx− 1

λ
eiφ Ax

〉
⇒ 2e2iθ 〈e−iφ A∗TBx,x〉+2eiφ〈B∗TAx,x〉

=
〈

eiθ T

(
λeiθ Bx+

1
λ

eiφ Ax

)
,λeiθ Bx+

1
λ

eiφ Ax

〉

−
〈

eiθ T

(
λeiθ Bx− 1

λ
eiφ Ax

)
,λeiθ Bx− 1

λ
eiφ Ax

〉
⇒ 2 |〈A∗TBx,x〉|+2 |〈B∗TAx,x〉|

=
〈

eiθ T

(
λeiθ Bx+

1
λ

eiφ Ax

)
,λeiθ Bx+

1
λ

eiφ Ax

〉

−
〈

eiθ T

(
λeiθ Bx− 1

λ
eiφ Ax

)
,λeiθ Bx− 1

λ
eiφ Ax

〉
⇒ 2 |〈A∗TBx,x〉|+2 |〈B∗TAx,x〉|

�
∣∣∣∣
〈

eiθ T

(
λeiθ Bx+

1
λ

eiφ Ax

)
,λeiθ Bx+

1
λ

eiφ Ax

〉∣∣∣∣
+
∣∣∣∣
〈

eiθ T

(
λeiθ Bx− 1

λ
eiφ Ax

)
,λeiθ Bx− 1

λ
eiφ Ax

〉∣∣∣∣
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⇒ 2 |〈A∗TBx,x〉|+2 |〈B∗TAx,x〉|

� w(T )

(∥∥∥∥λeiθBx+
1
λ

eiφ Ax

∥∥∥∥
2

+
∥∥∥∥λeiθ Bx− 1

λ
eiφ Ax

∥∥∥∥
2
)

⇒ |〈A∗TBx,x〉|+ |〈B∗TAx,x〉| � w(T )
(

λ 2‖Bx‖2 +
1

λ 2 ‖Ax‖2
)

.

This holds for all non-zero real λ . If ‖Bx‖ 
= 0, then we choose λ 2 = ‖Ax‖
‖Bx‖ . So, we get

|〈A∗TBx,x〉|+ |〈B∗TAx,x〉| � 2w(T )‖Ax‖‖Bx‖.
Clearly, this inequality holds also when ‖Bx‖ = 0. This completes the proof of the

lemma.

REMARK 1. If we take A = T and B = I in Lemma 2, then we get the inequality
[2, Lemma 3].

Now using the inequality in Lemma 2, we obtain the following inequalities involv-
ing the numerical radius, the Crawford number and the usual operator norm of bounded
linear operators.

THEOREM 1. Let A,T,B ∈ B(H). Then the following inequalities hold:

m(A∗TB)+w(B∗TA) � 2w(T )‖A‖‖B‖,
w(A∗TB)+m(B∗TA) � 2w(T )‖A‖‖B‖.

Proof. Taking ‖x‖ = 1 in the inequality (2), we get

|〈A∗TBx,x〉|+ |〈B∗TAx,x〉| � 2w(T )‖A‖‖B‖
⇒ m(A∗TB)+ |〈B∗TAx,x〉| � 2w(T )‖A‖‖B‖.

Taking supremum over ‖x‖ = 1, we get

m(A∗TB)+w(B∗TA) � 2w(T )‖A‖‖B‖.
Again taking ‖x‖ = 1 in the inequality (2), we get

|〈A∗TBx,x〉|+ |〈B∗TAx,x〉| � 2w(T )‖A‖‖B‖
⇒ |〈A∗TBx,x〉|+m(B∗TA)+ � 2w(T )‖A‖‖B‖.

Taking supremum over ‖x‖ = 1, we get

w(A∗TB)+m(B∗TA) � 2w(T )‖A‖‖B‖.
This completes the proof of the theorem.

Taking B = I,T = A and A = B in the inequalities in Theorem 1, we get the
following upper bounds for the numerical radius of product of two operators, which
improve on the existing bounds.
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COROLLARY 1. Let A,B ∈ B(H). Then the following inequalities hold:

w(AB) � 2w(A)‖B‖−m(B∗A),
w(AB) � 2w(B)‖A‖−m(BA∗).

REMARK 2. It is clear that both the inequalities obtained in Corollary 1 improve
on the existing inequalities, namely, w(AB) � 2w(A)‖B‖ � 4w(A)w(B) and w(AB) �
2w(B)‖A‖ � 4w(A)w(B) , respectively, (see [8, Th. 2.5-2]).

Next using Lemma 1, we establish some new inequalities for the numerical radius
of 2×2 operator matrices with the zero operator as main diagonal entries.

THEOREM 2. Let A,B ∈ B(H). Then the following inequalities hold:

(i) ‖A‖2 +m(BA) � 2w

(
0 A
B 0

)
‖A‖,

(ii) c2(A)+w(BA) � 2w

(
0 A
B 0

)
‖A‖,

(iii) ‖B‖2 +m(AB) � 2w

(
0 A
B 0

)
‖B‖,

(iv) c2(B)+w(AB) � 2w

(
0 A
B 0

)
‖B‖.

Proof. Putting T =
(

0 A
B 0

)
∈ B(H⊕H) and x =

(
x1

x2

)
∈ H⊕H with ‖x‖ = 1,

i.e., ‖x1‖2 +‖x2‖2 = 1 in the inequality (1), we get

‖Ax2‖2 +‖Bx1‖2 + |〈ABx1,x1〉+ 〈BAx2,x2〉| � 2w(T )
(‖Ax2‖2 +‖Bx1‖2) 1

2 . (3)

Taking x1 = 0 in (3), we get

‖Ax2‖2 + |〈BAx2,x2〉| � 2w

(
0 A
B 0

)
‖Ax2‖

⇒ ‖Ax2‖2 + |〈BAx2,x2〉| � 2w

(
0 A
B 0

)
‖A‖

⇒ ‖Ax2‖2 +m(BA) � 2w

(
0 A
B 0

)
‖A‖

Taking supremum over ‖x2‖ = 1, we get the inequality (i), i.e.,

‖A‖2 +m(BA) � 2w

(
0 A
B 0

)
‖A‖.

Again from the inequality

‖Ax2‖2 + |〈BAx2,x2〉| � 2w

(
0 A
B 0

)
‖A‖,
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we get

c2(A)+ |〈BAx2,x2〉| � 2w

(
0 A
B 0

)
‖A‖.

Taking supremum over ‖x2‖ = 1, we get the inequality (ii), i.e.,

c2(A)+w(BA) � 2w

(
0 A
B 0

)
‖A‖.

Similarly, considering x2 = 0 in (3), we can prove the remaining inequalities of the
theorem.

Considering A = B = T in Theorem 2 and using the fact that w

(
0 A
A 0

)
= w(A) ,

we get the following lower bounds for the numerical radius of non-zero bounded linear
operators.

THEOREM 3. Let T ∈ B(H) be non-zero. Then the following inequalities hold:

w(T ) � ‖T‖
2

+
m(T 2)
2‖T‖ , (4)

w(T ) � c2(T )
2‖T‖ +

w(T 2)
2‖T‖ . (5)

REMARK 3. The inequality (4) improves on the existing inequality w(T ) � ‖T‖
2

substantially. Also from the inequality (4), it follows that if w(T ) = ‖T‖
2 then m(T 2) =

0. There are operators for which m(T 2) = 0 but w(T ) 
= ‖T‖
2 .

Next, we prove a necessary and sufficient condition for w(T ) = ‖T‖
2 , where T is

an n×n complex matrix.

THEOREM 4. Let T be an n×n complex matrix. Then w(T ) = ‖T‖
2 if and only if

T is unitarily similar to a matrix of the form

(
0 ‖T‖
0 0

)
⊕‖T‖B, where B is a matrix

of order n−2 and w(B) � 1
2 .

Proof. The necessary part follows from [8, Th. 1.3-5] and the sufficient part is
obvious.

REMARK 4. The inequalities (4) and (5) obtained by us in Theorem 3 are incom-

parable. Consider T =
(

0 1
0 0

)
, then it is easy to see that , (4) gives w(T ) � 1

2 and (5)

gives w(T ) � 0, whereas if we consider T =
(

i 0
0 1

)
, then (4) gives w(T ) � 1

2 and (5)

gives w(T ) � 1.



SHARP INEQUALITIES FOR THE NUMERICAL RADIUS 173

Using Theorem 3 and noting the Remark 4, we obtain the following lower bound
for the numerical radius of non-zero bounded linear operators.

COROLLARY 2. Let T ∈ B(H) be non-zero. Then

w(T ) � 1
2‖T‖ max

{‖T‖2 +m(T 2),c2(T )+w(T 2)
}
.

In the next theorem we prove another inequality for the numerical radius of sum
of product operators.

THEOREM 5. Let A,T,B ∈ B(H). Then

w(A∗TB±B∗TA) � 2w(T )‖A‖‖B‖.

Proof. Using Lemma 2, we get

|〈(A∗TB±B∗TA)x,x〉| � |〈A∗TBx,x〉|+ |〈B∗TAx,x〉| � 2w(T )‖Ax‖‖Bx‖,
for all x ∈ H . Therefore,

|〈(A∗TB±B∗TA)x,x〉| � 2w(T )‖A‖‖B‖.
Taking supremum over ‖x‖ = 1, we get the required inequality.

REMARK 5. The inequality in Theorem 5 was already proved by Hirzallah et al.
in [9] using different technique. If we consider B = I in Theorem 5, then we get
the well-known inequality, namely, w(A∗T ±TA) � 2w(T )‖A‖ , i.e., w(AT ±TA∗) �
2w(T )‖A‖ .

Our final result in this section is to compute an upper bound for the numerical
radius of a bounded linear operator T in terms of ‖Re(T )‖,‖Im(T )‖,m(Re(T )) and
m(Im(T )) .

THEOREM 6. Let T ∈ B(H). Then

w4(T ) � max
{∣∣‖Re(T )‖2−m2(Im(T ))

∣∣2, ∣∣‖Im(T )‖2−m2(Re(T ))
∣∣2}

+4‖Re(T )‖2‖Im(T )‖2.

Proof. Let x ∈H with ‖x‖= 1. Then from the Cartesian decomposition of T , we
have

〈Tx,x〉 = 〈Re(T )x,x〉+ i〈Im(T )x,x〉
⇒ 〈Tx,x〉2 = 〈Re(T )x,x〉2 −〈Im(T )x,x〉2 +2i〈Re(T )x,x〉〈Im(T )x,x〉

⇒ ∣∣〈Tx,x〉2∣∣2 =
∣∣〈Re(T )x,x〉2 −〈Im(T )x,x〉2∣∣2 +4〈Re(T )x,x〉2〈Im(T )x,x〉2

⇒ ∣∣〈Tx,x〉∣∣4 � max
{∣∣‖Re(T )‖2−m2(Im(T ))

∣∣2, ∣∣‖Im(T )‖2−m2(Re(T ))
∣∣2}

+4‖Re(T )‖2‖Im(T )‖2.

Taking supremum over x,‖x‖ = 1, we get the desired inequality.
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3. Upper bounds for the numerical radius of operator matrices

In this section we obtain bounds for the numerical radius of n× n operator ma-
trices. We begin with the estimation of an upper bound for the n× n operator matrix
for which entires of all rows are zero operators except first row. For this we need the
following inequality [4, Remark 2.8], which gives an upper bound for the numeri-
cal radius of a bounded linear operator T in terms of ‖Re(T )‖ and ‖Im(T )‖, where
Re(T ) = 1

2(T +T∗) and Im(T ) = 1
2i (T −T ∗).

LEMMA 3. Let T ∈ B(H) . Then

w2(T ) � ‖Re(T )‖2 +‖Im(T )‖2.

Also we need the following lemma, proof of which can be found in [10, Th. 1.1].

LEMMA 4. Let Ai j ∈B(H j,Hi) and A =
(
Ai j
)

be an n×n operator matrix. Then

‖A‖ �
(‖Ai j‖

)
.

THEOREM 7. Let A11 ∈ B(H1,H1),A12 ∈ B(H2,H1), . . . ,A1n ∈ B(Hn,H1). Then

w

⎛
⎜⎜⎜⎝

A11 A12 . . . A1n

0 0 . . . 0
...

...
...

0 0 . . . 0

⎞
⎟⎟⎟⎠ � 1

2

√
α2 + β 2,

where

α = ‖Re(A11)‖+

√
‖Re(A11)‖2 +

n

∑
j=2

‖A1 j‖2,

β = ‖Im(A11)‖+

√
‖Im(A11)‖2 +

n

∑
j=2

‖A1 j‖2.

Proof. Let

T =

⎛
⎜⎜⎜⎝

A11 A12 . . . A1n

0 0 . . . 0
...

...
...

0 0 . . . 0

⎞
⎟⎟⎟⎠ .

Then

Re(T ) =

⎛
⎜⎜⎜⎜⎝

Re(A11)
A12
2 . . . A1n

2
A∗

12
2 0 . . . 0
...

...
...

A∗
1n
2 0 . . . 0

⎞
⎟⎟⎟⎟⎠ and Im(T ) =

⎛
⎜⎜⎜⎜⎝

Im(A11)
A12
2i . . . A1n

2i

−A∗
12
2i 0 . . . 0
...

...
...

−A∗
1n
2i 0 . . . 0

⎞
⎟⎟⎟⎟⎠ .
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Consider

S =

⎛
⎜⎜⎜⎜⎝

‖Re(A11)‖ ‖A12‖
2 . . . ‖A1n‖

2‖A12‖
2 0 . . . 0
...

...
...

‖A1n‖
2 0 . . . 0

⎞
⎟⎟⎟⎟⎠ .

Then S is an n×n Hermitian matrix with non-negative real entries. Note that r(S) =
max{|λ | : λ is an eigenvalue of S} and so finding the eigenvalues of S we get

r(S) =
1
2

(
‖Re(A11)‖+

√
‖Re(A11)‖2 +

n

∑
j=2

‖A1 j‖2

)
.

Now S being a Hermitian matrix, we have ‖S‖ = r(S) and using Lemma 4 we get
‖Re(T )‖ � ‖S‖. Thus we have,

‖Re(T )‖ � 1
2

(
‖Re(A11)‖+

√
‖Re(A11)‖2 +

n

∑
j=2

‖A1 j‖2

)
. (6)

Proceeding in the same way we can show that,

‖Im(T )‖ � 1
2

(
‖Im(A11)‖+

√
‖Im(A11)‖2 +

n

∑
j=2

‖A1 j‖2

)
. (7)

Now using the inequalities (6) and (7) in Lemma 3, we get the desired inequality.
In the next theorem we compute an upper bound for the numerical radius of n×n

operator matrices.

THEOREM 8. Let T = (Ai j) be an n×n operator matrix with Ai j ∈ B(H) . Then

w(T ) � 1
2

n

∑
k=1

√
α2

k + β 2
k ,

where

αk = ‖Re(Akk)‖+

√
‖Re(Akk)‖2 +

n

∑
j=1, j 
=k

‖Ak j‖2,

βk = ‖Im(Akk)‖+

√
‖Im(Akk)‖2 +

n

∑
j=1, j 
=k

‖Ak j‖2.

Proof. Let T = T1 +T2 + . . .+Tn, where

T1 =

⎛
⎜⎜⎜⎝

A11 A12 . . . A1n

0 0 . . . 0
...

...
...

0 0 . . . 0

⎞
⎟⎟⎟⎠ , T2 =

⎛
⎜⎜⎜⎝

0 0 . . . 0
A21 A22 . . . A2n
...

...
...

0 0 0

⎞
⎟⎟⎟⎠ , . . . ,Tn =

⎛
⎜⎜⎜⎝

0 0 . . . 0
0 0 . . . 0
...

...
...

An1 An2 . . . Ann

⎞
⎟⎟⎟⎠ .
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So by the triangle inequality, we get

w(T ) � w(T1)+w(T2)+ . . .+w(Tn). (8)

For each i = 2,3, . . . ,n , let Ui be the n× n permutation operator matrix obtained by
interchanging the 1st and the i th rows of the identity operator matrix. Then Ui is a
unitary operator and so using the weak unitarily invariance property of the numerical
radius it follows from (8) that

w(T ) � w(T1)+w(U∗
2 T2U2)+w(U∗

3 T3U3)+ . . .+w(U∗
n TnUn)

= w

⎛
⎜⎜⎜⎝

A11 A12 . . . A1n

0 0 . . . 0
...

...
...

0 0 . . . 0

⎞
⎟⎟⎟⎠+w

⎛
⎜⎜⎜⎝

A22 A21 . . . A2n

0 0 . . . 0
...

...
...

0 0 . . . 0

⎞
⎟⎟⎟⎠

+ . . .+w

⎛
⎜⎜⎜⎝

Ann An2 . . . An1

0 0 . . . 0
...

...
...

0 0 . . . 0

⎞
⎟⎟⎟⎠ .

Now using Theorem 7, we get the desired inequality and this completes the proof of the
theorem.

Next we obtain new upper bounds for the numerical radius of 2×2 operator ma-
trices. For this we need the following lemma.

LEMMA 5. Let T ∈ B(H) , then

w(T ) = sup
θ∈R

∥∥∥Re(eiθ T )
∥∥∥ .

By replacing T by iT in the above equality, also we have

w(T ) = sup
θ∈R

∥∥∥Im(eiθ T )
∥∥∥ .

THEOREM 9. Let T =
(

A B
0 0

)
, where A ∈ B(H1),B ∈ B(H2,H1). Then

w(T ) �
√

w2(A)+
1
2
‖B‖

(
w(A)+

1
2
‖B‖

)
.

Proof. By elementary calculations we have, for every θ ∈ R

Re(eiθ T ) =
(

Re(eiθ A) 1
2eiθ B

1
2e−iθ B∗ 0

)

=
(

Re(eiθ A) 0
0 0

)
+
(

0 1
2eiθ B

1
2e−iθ B∗ 0

)
.
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This implies that

(
Re(eiθ T )

)2 =
(

(Re(eiθ A))2 0
0 0

)
+
( 1

4BB∗ 0
0 1

4B∗B

)

+
(

0 1
2eiθ Re(eiθ A)B

0 0

)
+
(

0 0
1
2e−iθ B∗Re(eiθ A) 0

)
.

Therefore,

‖Re(eiθ T )‖2 � ‖Re(eiθ A)‖2 +
1
4
‖B‖2 +

1
2
‖Re(eiθ A)‖‖B‖

� w2(A)+
1
4
‖B‖2 +

1
2
w(A)‖B‖.

Taking supremum over θ , we get

w2(T ) � w2(A)+
1
4
‖B‖2 +

1
2
w(A)‖B‖.

This completes the proof of the theorem.
Now using Theorem 9, we give an upper bound for the numerical radius of 2×2

operator matrices.

COROLLARY 3. Let T =
(

A B
C D

)
, where A,B,C,D ∈ B(H). Then

w(T ) �
√

w2(A)+
1
2
‖B‖

(
w(A)+

1
2
‖B‖

)
+

√
w2(D)+

1
2
‖C‖

(
w(D)+

1
2
‖C‖

)
.

Proof. Let us consider an operator matrix U =
(

0 I
I 0

)
. Then U is an unitary

operator, so using weak unitarily invariance property of the numerical radius we get,

w(T ) � w

(
A B
0 0

)
+w

(
0 0
C D

)

= w

(
A B
0 0

)
+w

(
U∗
(

0 0
C D

)
U

)

= w

(
A B
0 0

)
+w

(
D C
0 0

)
.

Therefore, using Theorem 9, we get the required inequality of the theorem.
In the following theorem we provide a new upper bound for 2×2 operator matri-

ces, in which the entries in second row are all the zero operator.

THEOREM 10. Let T =
(

A B
0 0

)
, where A ∈ B(H1),B ∈ B(H2,H1). Then

w(T ) �
√

2w2(A)+
1
2

(‖A∗B‖+‖B‖2).
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Proof. For θ ∈ R, it is easy to see that Re(eiθ T ) =
(

Re(eiθ A) 1
2eiθ B

1
2e−iθ B∗ 0

)
and

Im(eiθ T ) = −i

(
iIm(eiθ A) 1

2eiθ B
− 1

2e−iθ B∗ 0

)
.

Therefore, by elementary calculations, we get

Re2(eiθ T )+ Im2(eiθ T ) =
(

Re2(eiθ T )+ Im2(eiθ T ) 0
0 0

)
+
(

0 A∗B
2

B∗A
2 0

)

+
(

BB∗
2 0
0 B∗B

2

)
.

Since Im2(eiθ T ) � 0, so we get,

Re2(eiθ T ) �
(

Re2(eiθ T )+ Im2(eiθ T ) 0
0 0

)
+
(

0 A∗B
2

B∗A
2 0

)

+
(

BB∗
2 0
0 B∗B

2

)
.

Taking norm on both sides, we get

‖Re(eiθ T )‖2 � ‖Re2(eiθ A)+ Im2(eiθ A)‖+
1
2
‖A∗B‖+

1
2
‖B‖2

� 2w2(A)+
1
2

(‖A∗B‖+‖B‖2) .
Taking supremum over θ ∈ R , we get

w2(T ) � 2w2(A)+
1
2

(‖A∗B‖+‖B‖2) .
This completes the proof.

Now, using Theorem 10 and using the same technique as in the proof of Corollary
3, we can obtain the following bound for numerical radius of 2×2 operator matrices.

COROLLARY 4. Let T =
(

A B
C D

)
, where A,B,C,D ∈ B(H). Then

w(T ) �
√

2w2(A)+
1
2

(‖A∗B‖+‖B‖2)+

√
2w2(D)+

1
2

(‖D∗C‖+‖C‖2).

REMARK 6. Considering the operator T =
(

A B
0 0

)
, where A =

(
0 0
3 1

)
and B =(

1 2
0 0

)
, it is easy to see that Theorem 10 gives w(T ) �

√
8+

√
10 whereas the bound

obtained by Shebrawi in [15, Th. 3.2] gives w(T ) � 1
4 (12+

√
10). This indicates that

for this operator the bound obtained by us is better than that obtained by Shebrawi.
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4. Lower bounds for the numerical radius of operator matrices

In this section we first obtain a new lower bound for the numerical radius of a
special class of n×n operator matrices.

THEOREM 11. Let

T =

⎛
⎜⎜⎜⎝

0 0 . . . 0 A1

0 0 . . . A2 0
...

...
...

...
An 0 . . . 0 0

⎞
⎟⎟⎟⎠ ,

where Ai ∈ B(H) for each i = 1,2, . . . ,n. Then

w(T ) � 1√
2

max
1�i�n

{√
w(AiAn−i+1 +An−i+1Ai),

√
w(AiAn−i+1−An−i+1Ai)

}
.

Proof. Consider the unitary operator U =

⎛
⎜⎜⎜⎝

0 0 . . . 0 I
0 0 . . . I 0
...

...
...

...
I 0 . . . 0 0

⎞
⎟⎟⎟⎠ .

Then it is easy to see that,

T 2 +(U∗TU)2

=

⎛
⎜⎜⎜⎝

A1An +AnA1 0 . . . 0 0
0 A2An−1 +An−1A2 . . . 0 0
...

...
...

...
0 0 . . . 0 AnA1 +A1An

⎞
⎟⎟⎟⎠= D1 (say).

Therefore,

w(D1) = w(T 2 +(U∗TU)2)
� w(T 2)+w

(
(U∗TU)2)

)
� w2(T )+w2(U∗TU)
= 2w2(T )

This shows that

max{w(AiAn−i+1 +An−i+1Ai) : 1 � i � n} � 2w2(T ).

Now, we calculate T 2− (U∗TU)2 and then using the same arguments as above we can
prove that

max{w(AiAn−i+1−An−i+1Ai) : 1 � i � n} � 2w2(T ).

Therefore we conclude that

w(T ) � 1√
2

max
1�i�n

{√
w(AiAn−i+1 +An−i+1Ai),

√
w(AiAn−i+1−An−i+1Ai)

}
.
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Now using Theorem 11 and the pinching inequalities (see [3, p. 107]),

w

(
A B
C D

)
� w

(
A 0
0 D

)
and w

(
A B
C D

)
� w

(
0 B
C 0

)
,

where A,B,C,D ∈ B(H) , we obtain the following lower bound for the numerical radius
of arbitrary 2×2 operator matrices.

COROLLARY 5. Let T =
(

A B
C D

)
, where A,B,C,D ∈ B(H) . Then

w(T ) � max

{
w(A),w(D),

√
1
2
w(BC+CB),

√
1
2
w(BC−CB)

}
.

REMARK 7. The inequality obtained in Corollary 5 and the first inequality in [9,

Th. 3.7] obtained by Hirzallah et al. are incomparable. Consider T =
(

A B
C D

)
, where

A = D = (0),B = (1),C = (2). Then Corollary 5 gives w(T ) �
√

2 and [9, Th. 3.7]

gives w(T ) � 3
2 . Again, if we consider T =

(
A B
C D

)
, where A = D =

(
0 0
0 0

)
, B =(−1 3

0 1

)
, C =

(
1 3
0 −1

)
, then Corollary 5 gives w(T ) �

√
3 and [9, Th. 3.7] gives

w(T ) � 3
2 .

We next prove an inequality which gives a lower bound for the numerical radius of

2×2 operator matrices of the form

(
A B
0 0

)
, where A,B∈ B(H). To do so we need the

following lemma, proof of which follows from the weak unitarily invariance property
of the numerical radius.

LEMMA 6. Let T =
(

A B
B A

)
, where A,B ∈ B(H) . Then

w(T ) = max{w(A+B),w(A−B)} .

Now we prove the theorem.

THEOREM 12. Let A,B ∈ B(H). Then

w

(
A B
0 0

)
� 1

2
max{w(A+B),w(A−B)} .
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Proof. Let T =
(

A B
0 0

)
. We consider an unitary operator matrix U =

(
0 I
I 0

)
.

Then we get, (
A B
B A

)
= T +U∗TU

⇒ w

(
A B
B A

)
� w(T )+w(U∗TU)

= 2w(T )
⇒ max{w(A+B),w(A−B)} � 2w(T ), using Lemma 6.

This completes the proof.
We end this section with the following theorem, in which we obtain an inequality

for the lower bound of numerical radius of 2×2 operator matrix, which generalizes the
inequality w(T ) � ‖Re(T )‖ and w(T ) � ‖Im(T )‖, obtained by Kittaneh et al. [11].

THEOREM 13. Let T =
(

0 A
B 0

)
, where A,B ∈ B(H) . Then

w(T ) � 1
2

sup
θ∈R

∥∥∥Re(eiθ A)±Re(eiθ B)
∥∥∥ ,

w(T ) � 1
2

sup
θ∈R

∥∥∥Im(eiθ A)± Im(eiθ B)
∥∥∥ .

Proof. Let θ ∈R and let Hθ = Re(eiθ T ) . Let U =
(

0 I
I 0

)
be an unitary operator.

Then we get,

Hθ +U∗HθU =
(

0 Re(eiθ A)+Re(eiθ B)
Re(eiθ A)+Re(eiθ B) 0

)
.

Taking norm on both sides we get,

‖Re(eiθ A)+Re(eiθ B)‖ = ‖Hθ +U∗HθU‖
� ‖Hθ‖+‖U∗HθU‖
= 2‖Hθ‖
� 2w(T ).

Since this holds for all θ ∈ R , so we have

w(T ) � 1
2

sup
θ∈R

∥∥∥Re(eiθ A)+Re(eiθ B)
∥∥∥ .

Next we consider Kθ = Im(eiθ T ). Then we get,

Kθ +U∗KθU =
(

0 Im(eiθ A)+ Im(eiθ B)
Im(eiθ A)+ Im(eiθ B) 0

)
.
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Taking norm on both sides we get,

‖Im(eiθ A)+ Im(eiθ B)‖ = ‖Kθ +U∗KθU‖
� ‖Kθ‖+‖U∗KθU‖
= 2‖Kθ‖
� 2w(T ).

Since this holds for all θ ∈ R , so we have

w(T ) � 1
2

sup
θ∈R

∥∥∥Im(eiθ A)+ Im(eiθ B)
∥∥∥ .

Considering Hθ −U∗HθU and Kθ −U∗KθU and using similar arguments as above we
can prove the remaining inequalities.

REMARK 8. If we take A = B and θ = 0 in Theorem 13, then we get, w(A) �
‖Re(A)‖ and w(A) � ‖Im(A)‖.

REMARK 9. There was a minor error in the calculation of bound in Remark 2.4
of [4], the estimation of bound obtained there should be 1.86317171 instead of 1.784.
This was pointed out by the reviewer while reviewing the paper for Mathematical Re-
views (MR3933295), we thank him/her for that.
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