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THE ORTHOGONAL PROJECTIONS AND SEVERAL INEQUALITIES

NICUŞOR MINCULETE AND MAREK NIEZGODA ∗

(Communicated by S. Varošanec)

Abstract. In this article we study several inequalities related to the orthogonal projections and we
established new results related to a pre-Hilbert space. Among these results we will mention the
inequality of Ostrowski. We present an improvement of the inequality between the numerical
radius of an operator and the norm of an operator and we also show other inequalities for a
bounded linear operator. Finally, we show Grüss type inequalities on double ice-cream cones.

1. Introduction

Let X be a linear space endowed with an inner product over the field K also
called pre-Hilbert space, where K is the set of the real or the complex numbers. For
every subspace U ⊂ X , we have the decomposition X =U

⊕
U⊥ . Every x ∈ X can be

uniquely written as x = x1 + u , where x1 ∈U and u ∈U⊥. We define the orthogonal
projection PU : X → X by PU (x) = x1 , which implies that P2

U = PU .
If X is an inner product space over the field K and {e1,e2, . . . ,en} is an or-

thonormal basis of U , then the linear operator PU is given by x = PU (x)+ u , where
PU (x) = 〈x,e1〉e1 + 〈x,e2〉e2 + . . .+ 〈x,en〉en .

It is easy to see that 〈u,x1〉 = 0, so we have 〈PU (x) ,u〉 = 0, which involves the
equality 〈x,u〉 = 〈u,u〉 = ‖u‖2, where the norm ‖ · ‖ is generated by the inner product
〈·, ·〉 . Sometimes, instead of PU(x) we use PUx .

The Cauchy-Schwarz inequality in the real case, |〈x,y〉|� ‖x‖·‖y‖ (see e.g. [17]),
can be obtained by the following identity, as in [18],

〈x,y〉 = ‖x‖‖y‖
(
1− 1

2

∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥2)

, (1)

for all x,y ∈ X , x,y 
= 0. Other inequalities in a pre-Hilbert space can be found in [3],
[6] and [14].

The quantity d(x,y) =
∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥ is called the angular distance of x and y [2].

In general, 0 � d(x,y) � 2, for any x,y ∈ X . It is easily seen that

d2(x,y) = 2−2

〈
x

‖x‖ ,
y

‖y‖
〉

� 2, (2)
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whenever 〈x,y〉 � 0 and ∣∣∣1− 1
2
d2(x,y)

∣∣∣� 1, (3)

for every x,y ∈ X , x,y 
= 0.
Let (X ,〈·, ·〉) be a complex Hilbert space. B(X) is the set of all bounded linear

operators on the Hilbert space X . For T ∈ B(X) , we have the operator norm of T
which is defined by ‖T‖ = sup‖x‖=1 ‖Tx‖ and the numerical radius of T is defined by
ω(T ) = sup‖x‖=1 |〈Tx,x〉| (see [25], [12]).

Gustafson and Rao, in [12], showed that for any T ∈ B(X) one has

ω(T ) � ‖T‖ � 2ω(T ). (4)

The purpose of this paper is to study several inequalities related to the orthogo-
nal projections, which involves the problem of minimization. Among these results we
established an inequality which characterizes Bessel’s inequality and we will mention
Ostrowski’s inequality as a consequence of our results. We present an improvement of
the inequality between the numerical radius of an operator and the norm of an operator
and we also show other inequalities for a bounded linear operator. Finally, we derive
and interpret Grüss type inequalities on double ice-cream cones in various inner product
spaces.

2. Some inequalities related to the orthogonal projections

THEOREM 1. Let U ⊂ X be a subspace of an inner product space X over the field
K ∈ {R,C} . If x ∈ X and x /∈U , then we have

‖x−PU (x)‖
‖x− y‖ = 1− 1

2

∥∥∥ x− y
‖x− y‖ −

x−PU (x)
‖x−PU (x)‖

∥∥∥2
= 1− 1

2
d2(x− y,x−PUx), (5)

for every y ∈U .

Proof. We know that x = PU (x)+u and 〈x,u〉= 〈u,u〉 , which implies the follow-
ing relations: ‖x−PU (x)‖2 = ‖u‖2 = 〈x,u〉 = 〈x− y,u〉 , for all y ∈U . For all x ∈ X ,
x /∈U and for all y ∈U , we have x− y 
= 0,x−PU (x) 
= 0 and using the identity (1),
we obtain

‖u‖2 = 〈x− y,u〉 = ‖x− y‖‖u‖
(
1− 1

2

∥∥∥ x− y
‖x− y‖ −

u
‖u‖

∥∥∥2)
,

which means that we obtain

‖u‖ = ‖x− y‖
(
1− 1

2

∥∥∥ x− y
‖x− y‖ −

u
‖u‖

∥∥∥2)
.

Therefore, we proved the statement. �

REMARK 1. (The Best Approximation Theorem.) Let U ⊂ X be a subspace of an
inner product space X and x ∈ X . Then we have

‖x−PU (x)‖ � ‖x− y‖, (6)
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for every y ∈U . This can be easily proved, thus: if x ∈U , then PU (x) = x and relation
(6) is true. For all x ∈ X , x /∈U , we apply the relation from Theorem 1 and we deduce
inequality (6).

THEOREM 2. Let U ⊂ X be a subspace of an inner product space X and x,y∈X .
Then we have

|〈x,y〉− 〈PU (x) ,PU (y)〉|2 �
(‖x‖2−‖PU (x)‖2)(‖y‖2−‖PU (y)‖2)

� (‖x‖ · ‖y‖−‖PU (x)‖ · ‖PU (y)‖)2 . (7)

Proof. If x,y ∈ X , then we have the decompositions x = PU (x) + u and y =
PU (y)+ v , with 〈PU (x) ,u〉 = 0, 〈PU (y) ,v〉 = 0, 〈PU (x) ,v〉 = 0 and 〈PU (y) ,u〉 = 0.
Therefore, we deduce 〈x,PU (y)〉 = 〈PU (x) ,y〉 = 〈PU (x) ,PU (y)〉 . Consequently, we
find the following equality:

〈x−PU (x) ,y−PU (y)〉 = 〈x,y〉− 〈PU (x) ,PU (y)〉,
which involves, for x = y , the identity

‖x−PU (x)‖2 = ‖x‖2−‖PU (x)‖2.

But, using above equality and the inequality Cauchy-Schwarz, we obtain

|〈x,y〉− 〈PU (x) ,PU (y)〉|2 = |〈x−PU (x) ,y−PU (y)〉|2

� ‖x−PU (x)‖2 · ‖y−PU (y)‖2 =
(‖x‖2−‖PU (x)‖2)(‖y‖2−‖PU (y)‖2) .

Next, we apply a simple inequality
(
a2−b2

)(
c2−d2

)
� (ac−bd)2 , for a = ‖x‖ ,

b = ‖PU (x)‖ , c = ‖y‖ and d = ‖PU (y)‖ and we find the inequality on the right side.
Therefore, the statement is true. �

COROLLARY 1. Let U ⊂ X be a subspace of an inner product space X and x,y∈
X . Then we have

|〈x,y〉− 〈PU (x) ,PU (y)〉| � ‖x‖ · ‖y‖−‖PU (x)‖ · ‖PU (y)‖, (8)

for all vectors x and y in X .

Proof. I. From inequality (7) we obtain the statement.
II. Next, we give another proof of inequality (8).
If we take x,y ∈ X , then we have the decompositions x = PU (x) + u and y =

PU (y)+ v , which involves 〈x,y〉 = 〈PU (x) ,PU (y)〉+ 〈u,v〉 . Therefore, for x = y , we
find the following equality:

‖x‖2 = ‖PU (x)‖2 +‖u‖2.

From this, we obtain ‖x‖2 · ‖y‖2 =
(‖PU (x)‖2 +‖u‖2

) ·(‖PU (y)‖2 +‖v‖2
)
. Using the

Cauchy-Buniakowski-Schwarz inequality, we have(‖PU (x)‖2 +‖u‖2) · (‖PU (y)‖2 +‖v‖2)� (‖PU (x)‖ · ‖PU (y)‖+‖u‖ · ‖v‖)2 ,
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so, we deduce ‖x‖ · ‖y‖ � ‖PU (x)‖ · ‖PU (y)‖+ ‖u‖ · ‖v‖. Taking into account that
‖u‖ · ‖v‖ � |〈u,v〉| , from the Cauchy-Schwarz inequality, it follows that ‖x‖ · ‖y‖−
‖PU (x)‖ · ‖PU (y)‖ � ‖u‖ · ‖v‖� |〈u,v〉| = |〈x,y〉− 〈PU (x) ,PU (y)〉|. �

REMARK 2. If X is an inner product space over the field K , where K ∈ {R,C}
and {e1,e2, . . . ,en} is an orthonormal basis of U , then we have PU (x) = 〈x,e1〉e1 +
〈x,e2〉e2 + . . . + 〈x,en〉en and PU (y) = 〈y,e1〉e1 + 〈y,e2〉e2 + . . . + 〈y,en〉en and from
the first part of inequality (7), we obtain(

‖x‖2−
n

∑
i=1

|〈x,ei〉|2
)
·
(
‖y‖2−

n

∑
i=1

|〈y,ei〉|2
)

�
(
〈x,y〉−

n

∑
i=1

〈x,ei〉〈y,ei〉
)2

, (9)

for all vectors x and y in X . This inequality represents a refinement of Bessel’s in-
equality [5].

REMARK 3. From inequality (8) and using the inequality |〈x,y〉−〈PU (x) ,PU (y)〉|�
|〈x,y〉|− |〈PU (x) ,PU (y)〉| , we find the following inequality:

0 � ‖PU (x)‖ · ‖PU (y)‖− |〈PU (x) ,PU (y)〉| � ‖x‖ · ‖y‖− |〈x,y〉|, (10)

for all vectors x and y in X (see [4]).

In [19], Niezgoda proved an inequality for certain orthoprojectors. The operator
Pz : X → X defined by

Pz(x) =

〈
x,

z
‖z‖

〉
z

‖z‖ , x ∈ X ,z 
= 0,

is the orthoprojector from X onto span{z} .
Let X be a real linear space with the inner product 〈·, ·〉 . The Chebyshev functional

is defined by
Tz(x,y) = ‖z‖2〈x,y〉− 〈x,z〉〈y,z〉,

for all x,y ∈ X , where z ∈ X is a given nonzero vector.
The standard 2-inner product (·, ·|·) is defined on the inner product space X =

(X ,〈·, ·〉) by (see [1]):

(x,y|z) := 〈x,y〉〈z,z〉− 〈x,z〉〈z,y〉,
for all x,y,z ∈ X .

It is easy to see that we have Tz(x,y) = (x,y|z) and Tz(x,x) � 0, for all x,y,z ∈ X .

If we replace x and y by x− 〈x,z〉
‖z‖2 z and y− 〈y,z〉

‖z‖2 z , z 
= 0, in the Cauchy-Schwarz
inequality, then we find the Cauchy-Schwarz inequality in terms of the Chebyshev func-
tional, given by:

|Tz(x,y)|2 � Tz(x,x)Tz(y,y). (11)

We also have that Tz(x,y) , can be written in terms of orthoprojectors as:

Tz(x,y) = ‖z‖2

(
〈x,y〉−

〈
x,

z
‖z‖
〉〈

y,
z
‖z‖
〉)

= ‖z‖2(〈x,y〉− 〈Pz(x),Pz(y)〉).
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Consequently, we find a relation for the standard 2-inner product in terms of orthopro-
jectors as:

(x,y|z) = ‖z‖2
(
〈x,y〉− 〈Pz(x),Pz(y)〉

)
. (12)

Let U ⊂ X be a subspace of an inner product space X and x,y ∈ X . Then we have
the decompositions x = PU (x)+u and y = PU (y)+ v , which involves

(x,y|z)− (PU (x) ,PU (y) |z) = (u,v|z)−〈u,z〉〈z,PU (y)〉− 〈z,v〉〈PU (x) ,z〉, (13)

where (x,y|z) is the standard 2-inner product on X . We take ‖x|z‖ :=
√

(x,x|z) .
For x = y in relation (13), we have ‖x|z‖2 = ‖PU (x) |z‖2−2Re(〈u,z〉〈z,PU (x)) .

If z /∈U , then 〈z,PU (y)〉 = 0 and 〈PU (x) ,z〉 = 0, which means that relation (13)
becomes

(x,y|z) = (PU (x) ,PU (y) |z)+ (u,v|z) ,
which implies the equality ‖x|z‖2 = ‖PU (x) |z‖2 +‖u|z‖2, so, we obtain

‖x|z‖2 = ‖PU (x) |z‖2 +‖x−PU (x) |z‖2.

COROLLARY 2. Let z be a nonzero vector of a complex pre-Hilbert space X and
x,y ∈ X . Then, the following inequality holds

|〈x,y〉‖z‖2−〈x,z〉〈z,y〉|2 �
(‖x‖2‖z‖2−|〈x,z〉|2)(‖y‖2‖z‖2−|〈y,z〉|2)

�
(‖x‖‖y‖‖z‖2−|〈x,z〉〈z,y〉|)2 . (14)

Proof. For z a nonzero vector of a complex pre-Hilbert space X and x ∈ X , we
take U = span{z} , so, we deduce PUx = Pzx , where Pz is the orthoprojector from

X onto span{z}. Consequently, we have ‖x−Pzx‖2 = ‖x‖2−‖Pzx‖2 = ‖x‖2‖z‖2−|〈x,z〉|2
‖z‖2

and ‖Pzx‖ = |〈x,z〉|
‖z‖ . Using inequality (7), we prove the inequality of the statement. �

REMARK 4. In first part of inequality (14), if we take 〈x,y〉 = 1 and 〈z,y〉 = 0,
then we proved the inequality of Ostrowski for an inner product space [16],

0 � ‖z‖2

‖y‖2 � ‖x‖2‖z‖2−|〈x,z〉|2, (15)

for all x,y,z ∈ X .

Next we present an improvement of first part of inequality (4) given by:

THEOREM 3. For any T ∈ B(X) one has

0 � 1
2γ

� ‖T‖−ω(T), (16)

where γ = sup‖x‖=1 ‖y‖2‖Tx‖2 , with 〈Tx,y〉 = 1 and 〈x,y〉 = 0 .
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Proof. If in Ostrowski’s inequality for a pre-Hilbert space, we replace x and z , by
Tx and x , it follows that

0 � ‖x‖2

‖y‖2 � ‖Tx‖2‖x‖2−|〈Tx,x〉|2,

for all x,y ∈ X , with 〈Tx,y〉 = 1 and 〈x,y〉 = 0. The above inequality implies the
inequality

0 � 1
2‖y‖2‖Tx‖ � 1

‖y‖2 (‖Tx‖+ |〈Tx,x〉|) � ‖Tx‖− |〈Tx,x〉|.

So, we obtain
1

2‖y‖2‖Tx‖ + |〈Tx,x〉| � ‖Tx‖,

for all x,y ∈ X , ‖x‖ = 1, with 〈Tx,y〉 = 1 and 〈x,y〉 = 0. Taking the supremum in
above inequality over ‖x‖ = 1, we deduce the inequality of the statement. �

THEOREM 4. Let U ⊂ X be a subspace of a complex Hilbert space and x ∈ X . If
T ∈ B(X) , such that ‖x−Tx‖ � ‖x− y‖, for every y ∈U, then we have

‖(T −PU)(x)‖ � ‖T‖‖x− y‖, (17)

for every y ∈U .

Proof. For every subspace U ⊂ X , we have the decomposition X = U
⊕

U⊥ , so
every x ∈ X can be uniquely written as x = PUx + u , where u ∈ U⊥. If x ∈ U and
y = x , then, from inequality of the hypothesis, we obtain Tx = x , so we say that every
vector y∈U is a fixed point of the operator T . Since PUx∈U , we have T (PUx) = PUx.
Therefore, if x ∈U , then x = PUx = T (PUx) = Tx , so inequality (17) is true.

If x ∈ X −U , then because x = PUx+u , we deduce Tx = TPUx+Tu , it follows
Tx = PUx+Tu and passing to the norm, we find

‖(T −PU)(x)‖ = ‖Tu‖ � ‖T‖‖u‖ = ‖T‖‖x−PUx‖.
Therefore, using the Best Approximation Theorem, we prove

‖(T −PU)(x)‖ � ‖T‖‖x−PUx‖ � ‖T‖‖x− y‖,
for every y ∈U . Consequently, the proof is complete. �

REMARK 5. Let z be a nonzero vector of a complex Hilbert space X and x ∈ X .
For U = span{z} , we have PUx = Pzx , where Pz is the orthoprojector from X onto
span{z}. Therefore, using inequality (17), we deduce for an operator T ∈ B(X) , such
that ‖x−Tx‖ � ‖x− z‖, the following inequality:

‖(T −Pz)(x)‖ � ‖T‖‖x− z‖. (18)

THEOREM 5. If T ∈ B(X) , then the following inequality holds

‖T − I‖ � ‖T‖−ω(T), (19)
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where I is the identity operator.

Proof. From [15], in an inner product space X over the field of complex numbers
C , we have the identity

‖2〈u,v〉v−‖v‖2u‖ = ‖u‖‖v‖2,

for every u,v ∈ X . Therefore, applying the triangle inequality, we find

|〈u,v〉|‖v‖+‖〈u,v〉v−‖v‖2u‖ � ‖u‖‖v‖2, (20)

for every u,v ∈ X . If we choose in relation (20) u = Tx and v = x , with ‖x‖ = 1, then
we obtain

|〈Tx,x〉|+‖〈Tx,x〉x−Tx‖ � ‖Tx‖. (21)

But, using the following identity from [13]: ‖u−〈u,e〉e‖2 = infλ∈C ‖u− λe‖2 , with
‖e‖ = 1, we deduce that

‖Tx−〈Tx,x〉x‖ � ‖Tx− x‖, (22)

with ‖x‖ = 1. Combining relations (21) and (22), we obtain

|〈Tx,x〉|+‖Tx− x‖ � ‖Tx‖,
and taking the supremum in above inequality over ‖x‖ = 1, we deduce the inequality
of the statement. �

3. Applications for Grüss type inequalities

Grüss’ inequality [11] says that∣∣∣∣∣∣ 1
b−a

b∫
a

f (t)g(t)dt− 1
b−a

b∫
a

f (t)dt · 1
b−a

b∫
a

g(t)dt

∣∣∣∣∣∣� 1
4
(β0−α0)(δ0 − γ0), (23)

for two bounded integrable functions f ,g : [a,b]→R and four real scalars α0,β0,γ0,δ0

such that
α0 � f (t) � β0 and γ0 � g(t) � δ0, for all t ∈ [a,b] .

It is our aim to establish a class of inequalities similar to (23) in the framework
of an arbitrary inner product space. Throughout this section X is a real linear space
endowed with an inner product 〈·, ·〉 and norm ‖ · ‖ = 〈·, ·〉1/2 . It is also assumed that
e ∈ X is a given vector of norm one. We consider the subspace U = spane and its
orthogonal complement U⊥ = (spane)⊥ to X . We denote by P = PU the orthogonal
projection from X onto U and by Q = idX −P the orthogonal projection from X onto
the subspace U⊥ , where idX is the identity map on X .

A Grüss type inequality gives an estimate from above for the expression

|〈x,y〉− 〈x,e〉〈e,y〉|, (24)

where x,y ∈ X (see [7, 8, 9, 10, 20, 21, 22, 23, 24, 26]).
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Usually Grüss type inequalities are intended for vectors x,y ∈ X in some subsets
of balls described by requirement of type (25) (see [7, 8, 20, 21, 22, 24]). In Theorem 6
we continue this approach and restrict ourselves to the subsets formed by double ice-
cream cones defined by mutual conditions (25) and (26) (see Remarks 6 and 7 for
details). This allows to achieve an improvement of the standard Grüss type inequality
by using an additional factor 0 < km � 1 in the upper bound of Grüss functional (24)
(see inequality (28)).

THEOREM 6. Let x,y ∈ X with x 
∈ spane and y 
∈ spane (i.e., Qx 
= 0 and Qy 
=
0 ). If there exist x0 ∈ spane and y0 ∈ spane such that x̃ = x− x0 and ỹ = y− y0 , and
there exist R > 0 and S > 0 such that

‖x− x0‖ � R and ‖y− y0‖ � S, (25)

and there exist k,m ∈ (0,1] such that

‖Qx‖ � k‖x− x0‖ and ‖Qy‖ � m‖y− y0‖, (26)

then

〈x,y〉−〈x,e〉〈e,y〉= ‖x̃‖‖ỹ‖
(

1− 1
2
d2(x̃,Qx̃)

)(
1− 1

2
d2(ỹ,Qỹ)

)(
1− 1

2
d2(Qx,Qy)

)
,

(27)
and

|〈x,y〉− 〈x,e〉〈e,y〉| � RSkm

∣∣∣∣1− 1
2
d2(Qx,Qy)

∣∣∣∣� RSkm. (28)

Proof. It is easy to see that x̃ 
= 0 and ỹ 
= 0. It follows that Px = 〈x,e〉e and
Qx = x−〈x,e〉e . It is clear that Qx̃ = Q(x− x0) = Qx and Qỹ = Q(y− y0) = Qy .

Having in mind identity (1), we establish

〈x,y〉−〈x,e〉〈e,y〉= 〈x−〈x,e〉e,y−〈y,e〉e〉= 〈Qx,Qy〉= ‖Qx‖‖Qy‖
(

1− 1
2
d2(Qx,Qy)

)
,

(29)
where

d(Qx,Qy) =
∥∥∥∥ Qx
‖Qx‖ − Qy

‖Qy‖
∥∥∥∥ .

By making use of equality (5) we get

‖Qx‖ = ‖Qx̃‖ = ‖x̃‖
(

1− 1
2
d2(x̃,Qx̃)

)
. (30)

Likewise, we have

‖Qy‖ = ‖Qỹ‖ = ‖ỹ‖
(

1− 1
2
d2(ỹ,Qỹ)

)
. (31)
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By combining (29), (30) and (31) we deduce that

〈x,y〉−〈x,e〉〈e,y〉= ‖x̃‖‖ỹ‖
(

1− 1
2
d2(x̃,Qx̃)

)(
1− 1

2
d2(ỹ,Qỹ)

)(
1− 1

2
d2(Qx,Qy)

)
,

(32)
which proves (27).

By using the facts 〈x̃,Qx̃〉 = 〈Qx̃,Qx̃〉 = ‖Qx̃‖2 = ‖Qx‖2 > 0, we shall show that

1− 1
2
d2(x̃,Qx̃) > 0, (33)

whence
0 � d(x̃,Qx̃) <

√
2.

To see (33), we proceed as follows.

d2(x̃,Qx̃) =
∥∥∥∥ x̃
‖x̃‖ − Qx̃

‖Qx̃‖
∥∥∥∥2

=
〈

x̃
‖x̃‖ − Qx̃

‖Qx̃‖ ,
x̃

‖x̃‖ − Qx̃
‖Qx̃‖

〉
=
〈

x̃
‖x̃‖ ,

x̃
‖x̃‖
〉
−
〈

x̃
‖x̃‖ ,

Qx̃
‖Qx̃‖

〉
−
〈

Qx̃
‖Qx̃‖ ,

x̃
‖x̃‖
〉

+
〈

Qx̃
‖Qx̃‖ ,

Qx̃
‖Qx̃‖

〉

=
∥∥∥∥ x̃
‖x̃‖
∥∥∥∥2

−2

〈
x̃
‖x̃‖ ,

Qx̃
‖Qx̃‖

〉
+
∥∥∥∥ Qx̃
‖Qx̃‖

∥∥∥∥2

= 2−2

〈
x̃

‖x̃‖ ,
Qx̃

‖Qx̃‖
〉

= 2−2
〈Qx̃,Qx̃〉
‖x̃‖‖Qx̃‖ = 2−2

‖Qx̃‖2

‖x̃‖‖Qx̃‖ < 2,

as claimed.
In conclusion, we get

d2(x̃,Qx̃) = 2−2
‖Qx̃‖2

‖x̃‖‖Qx̃‖ .

Hence,

1− 1
2
d2(x̃,Qx̃) =

‖Qx̃‖2

‖x̃‖‖Qx̃‖ . (34)

By (26) we have
‖Qx‖ � k‖x− x0‖, (35)

which can be rewritten as
‖Qx̃‖ � k‖x̃‖, (36)

or, equivalently,
‖Qx̃‖2

‖x̃‖‖Qx̃‖ � k,

since ‖x̃‖ > 0 and ‖Qx̃‖ > 0.
Now, by utilizing (34) we obtain

1− 1
2
d2(x̃,Qx̃) � k, (37)
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as wanted.
In a similar manner, we find that

1− 1
2
d2(ỹ,Qỹ) � m. (38)

Therefore the former inequality of (28) can be easily deduced from (3), (25), (27),
(37) and (38). This completes the proof. �

REMARK 6. a) From relations (3), (27) and (33), we deduce∣∣∣〈x,y〉− 〈x,e〉〈e,y〉
∣∣∣� ‖x̃‖‖ỹ‖

(
1− 1

2
d2(x̃,Qx̃)

)(
1− 1

2
d2(ỹ,Qỹ)

)
.

But, using the algebraic inequality
(
a2−b2

)(
c2−d2

)
� (ac−bd)2 , we find(

1− 1
2
d2(x̃,Qx̃)

)(
1− 1

2
d2(ỹ,Qỹ)

)
�
(

1− 1
2
d(x̃,Qx̃)d(ỹ,Qỹ)

)2

,

so, we prove the following inequality:∣∣∣〈x,y〉− 〈x,e〉〈e,y〉
∣∣∣� ‖x̃‖‖ỹ‖

(
1− 1

2
d(x̃,Qx̃)d(ỹ,Qỹ

)2

. (39)

b) We now interpret conditions (25) and (26). So, for given R > 0 and k ∈ (0,1]
we are interested in the set

C(R,k) = {x ∈ X : ‖x− x0‖ � R and ‖Qx‖ � k‖x− x0‖}
=

⋃
R1∈(0,R]

⋃
k1∈(0,k]

{x ∈ X : ‖x− x0‖ = R1 and ‖Qx‖ = k1‖x− x0‖}

=
⋃

R1∈(0,R]

⋃
k1∈(0,k]

{x ∈ X : ‖x− x0‖ = R1 and ‖Qx‖ = k1R1}.

Observe that the set

{x ∈ X : ‖x− x0‖ = R1 and ‖Qx‖ = k1R1}
is the circle on the sphere {x ∈ X : ‖x− x0‖ = R1} whose projection onto the subspace
(spane)⊥ is the circle of radius k1R1 centered at the origin. Thus the set C(R,k) is
the union of two ”ice-cream cones” with the same symmetry axis spane characterized
by parameters R and k as above. This shows the geometry of C(R,k) defined by
conditions (25) and (26). In consequence, Grüss type inequality (28) in Theorem 6
is designed to work for vectors x and y in some double ice-cream cones with their
symmetry axis spane and with their apices at some points x0 ∈ spane and y0 ∈ spane ,
respectively. The case k = m = 1 is mentioned in Remark 7.

REMARK 7. Inequality (28) relies on numbers k and m satisfying requirement
(26). Certainly, (26) holds for k = m = 1, since Qx = Q(x−x0) and Q is an orthogonal
projection. In context of Remark 6, this case corresponds to the trivial double ice-cream
cones reduced to the unions of two half-balls giving whole balls B(x0,R) and B(y0,S) ,
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respectively. Therefore Corollary 3 concerns vectors x and y from balls defined by
condition (40), only.

COROLLARY 3. Let x,y ∈ X with x 
∈ spane and y 
∈ spane. If there exist x0 ∈
spane and y0 ∈ spane and there exist R > 0 and S > 0 such that

‖x− x0‖ � R and ‖y− y0‖ � S, (40)

then

|〈x,y〉− 〈x,e〉〈e,y〉| � RS

∣∣∣∣1− 1
2
d2(Qx,Qy)

∣∣∣∣� RS. (41)

Proof. We consider the vectors x̃ = x− x0 and ỹ = y− y0 . It is easy to see that
x̃ 
= 0 and ỹ 
= 0. It is sufficient to employ inequality (28) in Theorem 6 with the
specification k = m = 1. In fact, condition (26) is satisfied in the form

‖Qx‖ = ‖Qx̃‖ � ‖x̃‖ = ‖x− x0‖ and ‖Qy‖ = ‖Qỹ‖ � ‖ỹ‖ = ‖y− y0‖. �

A nonempty set K ⊂X is said to be a convex cone, if (i) x,y∈K implies x+y∈K ,
and (ii) 0 � t ∈ R and x ∈ K imply tx ∈ K .

If K ⊂ X is a convex cone, then the dual cone of K is defined by

dualK = {z ∈ X : 〈z,v〉 � 0 for all v ∈ K }.
If dualK = K then K is called self-dual.
In what follows we use the following cone preorders �K and �dualK on X defined

by
y �K x iff x− y ∈ K,

y �dualK x iff x− y ∈ dualK.

LEMMA 1. ([9, Lemma 2.1], [20, Lemma 4.1]) For any vectors α,β ,x ∈ X , the
following statements are mutually equivalent:

(i) There exists a convex cone K ⊂ X such that α �K x �dualK β .

(ii) 〈β − x,x−α〉� 0 .

(iii) ‖x− 1
2 (α + β )‖ � ‖ 1

2(β −α)‖ .

The next result is an extension of [20, Theorem 4.2]. The pair of conditions (ii)-
(iii) below says that vectors x and y belong to the corresponding double ice-cream
cones C(R,k) and C(S,m) for suitable R , k , S , m . (The same concerns the forthcom-
ing corollaries after Theorem 7.)

THEOREM 7. Let x,y,α,β ,γ,δ ∈ X be vectors such that x 
∈ spane and y 
∈
spane. Assume that

(i) x 
= α+β
2 ∈ spane and y 
= γ+δ

2 ∈ spane,
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(ii) for some convex cones K1,K2 ⊂ X ,

α �K1 x �dualK1 β and γ �K2 y �dualK2 δ (42)

(iii) for some k,m ∈ (0,1] ,

‖Qx‖ � k

∥∥∥∥x− α + β
2

∥∥∥∥ and ‖Qy‖ � m

∥∥∥∥x− γ + δ
2

∥∥∥∥ . (43)

Then

|〈x,y〉− 〈x,e〉〈e,y〉| � 1
4
km‖β −α‖‖δ − γ‖. (44)

Proof. By (ii) we have

〈β − x,x−α〉� 0 and 〈δ − y,y− γ〉� 0.

By Lemma 1 we infer that∥∥∥∥x− α + β
2

∥∥∥∥�
∥∥∥∥β −α

2

∥∥∥∥ and

∥∥∥∥y− γ + δ
2

∥∥∥∥�
∥∥∥∥δ − γ

2

∥∥∥∥ . (45)

We introduce

x0 =
α + β

2
and y0 =

γ + δ
2

and

R =
∥∥∥∥β −α

2

∥∥∥∥ and S =
∥∥∥∥δ − γ

2

∥∥∥∥ .

Thus condition (25) is satisfied by (45).
By virtue of (i) one sees that x 
= x0 ∈ spane and y 
= y0 ∈ spane .
It is now sufficient to apply inequality (28) in Theorem 6. �
The case k = m = 1 of the next corollary leads to some results due to Dragomir [7,

Theorem 1], [9, Theorem 2.5].

COROLLARY 4. Let x,y ∈ X be vectors such that x 
∈ spane and y 
∈ spane, and
α0,β0,γ0,δ0 ∈ R . Assume that

(i) x 
= α0+β0
2 e and y 
= γ0+δ0

2 e,

(ii) for some convex cones K1,K2 ⊂ X ,

α0e �K1 x �dualK1 β0e and γ0e �K2 y �dualK2 δ0e, (46)

or, equivalently,∥∥∥∥x− α0 + β0

2
e

∥∥∥∥�
∣∣∣∣β0−α0

2

∣∣∣∣ and

∥∥∥∥y− γ0 + δ0

2
e

∥∥∥∥�
∣∣∣∣δ0 − γ0

2

∣∣∣∣ ,
(iii) for some k,m ∈ (0,1] ,

‖Qx‖ � k

∥∥∥∥x− α0 + β0

2
e

∥∥∥∥ and ‖Qy‖ � m

∥∥∥∥y− γ0 + δ0

2
e

∥∥∥∥ ,
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then

|〈x,y〉− 〈x,e〉〈e,y〉| � 1
4
km|β0−α0||δ0− γ0|.

Proof. Use Theorem 7 for the vectors α = α0e , β = β0e , γ = γ0e and δ =
δ0e . �

We now specialize Theorem 7. In Corollary 5 we deal with the space X = R
n

endowed with the standard inner product of R
n , and with the vector e = 1√

n (1, . . . ,1) ∈
R

n of norm one (cf. [20, Corollary 4.4]).

COROLLARY 5. Let x = (x1, . . . ,xn) , y = (y1, . . . ,yn) , α = (α1, . . . ,αn) , β =
(β1, . . . ,βn) , γ = (γ1, . . . ,γn) and δ = (δ1, . . . ,δn) be vectors in R

n such that x 
∈ spane
and y 
∈ spane (i.e., x and y are not of constant entries). Assume that

(i) x 
= α+β
2 ∈ spane and y 
= γ+δ

2 ∈ spane,

(ii) αi � xi � βi and γi � yi � δi for all i = 1, . . . ,n,
or more generally

n

∑
i=1

(βi − xi)(xi −αi) � 0 and
n

∑
i=1

(δi − yi)(yi − γi) � 0, (47)

(iii) for some k,m ∈ (0,1] ,(
n

∑
i=1

(xi− x)2

)1/2

� k

(
n

∑
i=1

(
xi− αi + βi

2

)2
)1/2

(48)

and (
n

∑
i=1

(yi − y)2

)1/2

� m

(
n

∑
i=1

(
yi − γi + δi

2

)2
)1/2

, (49)

where x = 1
n

n
∑
i=1

xi and y = 1
n

n
∑
i=1

yi .

Then∣∣∣∣∣ n

∑
i=1

xiyi − 1
n

n

∑
i=1

xi

n

∑
i=1

yi

∣∣∣∣∣� 1
4
km

(
n

∑
i=1

(βi−αi)2

)1/2( n

∑
i=1

(δi − γi)2

)1/2

. (50)

Proof. It is not hard to verify that (42) and (47) are equivalent (see Lemma 1).
Moreover, the orthogonal projection P from R

n onto spane is given by Pz = (z , . . . , z)

∈ R
n , where z =

n
∑
i=1

zi for z = (z1, . . . ,zn) ∈ R
n . Therefore the orthogonal projection

Q from R
n onto (spane)⊥ is given by

Qz = z−Pz = (z1, . . . ,zn)− (z , . . . , z) = (z1− z , . . . ,zn − z) ∈ R
n.
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For this reason, in light of (48)–(49) we see that (43) holds valid. Thus all assumptions
(i), (ii) and (iii) of Theorem 7 are met. On account of Theorem 7 we obtain (44), which
can be restated as (50), completing the proof. �

We now focus on the space X = L2
[a,b] of real functions integrable with second

power on an interval [a,b] ⊂ R . As usual, we equip X with the inner product 〈 f ,g〉 =
b∫
a

f (t)g(t)dt . We apply the constant function e : [a,b] → R given by e(t) = 1√
b−a

for

t ∈ [a,b] . It is obvious that ‖e‖ = 1.
Using Theorem 7 we obtain the following result (cf. [20, [Corollary 4.5]).

COROLLARY 6. Let x,y,α,β ,γ,δ ∈ L2
[a,b] be functions such that x 
∈ spane and

y 
∈ spane (i.e., x and y are not constant functions). Assume that

(i) x 
= α+β
2 ∈ spane and y 
= γ+δ

2 ∈ spane,

(ii) α(t) � x(t) � β (t) and γ(t) � y(t) � δ (t) for all t ∈ [a,b] ,
or more generally

b∫
a

(β (t)− x(t))(x(t)−α(t))dt � 0 and

b∫
a

(δ (t)− y(t))(y(t)− γ(t))dt � 0,

(51)

(iii) for some k,m ∈ (0,1] ,⎛⎝ b∫
a

(x(t)− x)2 dt

⎞⎠1/2

� k

⎛⎝ b∫
a

(
x(t)− α(t)+ β (t)

2

)2

dt

⎞⎠1/2

(52)

and ⎛⎝ b∫
a

(y(t)− y)2 dt

⎞⎠1/2

� m

⎛⎝ b∫
a

(
y(t)− γ(t)+ δ (t)

2

)2

dt

⎞⎠1/2

, (53)

where x = 1
b−a

b∫
a

x(t)dt and y = 1
b−a

b∫
a

y(t)dt .

Then ∣∣∣∣∣∣
b∫

a

x(t)y(t)dt− 1
b−a

b∫
a

x(t)dt

b∫
a

y(t)dt

∣∣∣∣∣∣
� 1

4
km

⎛⎝ b∫
a

(β (t)−α(t))2 dt

⎞⎠1/2⎛⎝ b∫
a

(δ (t)− γ(t))2 dt

⎞⎠1/2

. (54)

Proof. First of all, we note that (42) and (51) are equivalent (see Lemma 1). Fur-
themore, the orthogonal projection P from L2

[a,b] onto the subspace spane of constant
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functions is given by (Pz)(t) = 1
b−a

b∫
a

z(s)ds = z for t ∈ [a,b] . Therefore the orthog-

onal projection Q from L2
[a,b] onto (spane)⊥ is given by Qz = z−Pz for z ∈ L2

[a,b] ,
where (Qz)(t) = z(t)− z for t ∈ [a,b] . In consequence, by making use of (52) and
(53) we see that (43) is true. In conclusion, assumptions (i), (ii) and (iii) of Theorem 7
are fulfilled. According to Theorem 7 we deduce that (44) holds. From this we get (54),
as desired. �
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Iuliu Maniu Street, No. 50, Braşov, 500091, Romania
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