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APPROXIMATION OF PERIODIC FUNCTIONS

GERMAN DZYUBENKO

(Communicated by J. Pečarić)

Abstract. Let 2π -periodic function f ∈ C change its convexity finitely even many times, in
the period. We are interested in estimating the degree of approximation of f by trigonometric
polynomials which are coconvex with it, namely, polynomials that change their convexity exactly
at the points where f does. We list established Jackson-type estimates of such approximation
where the constants involved depend on the location of the points of change of convexity and
show that this dependence is essential by constructing a counterexample.

1. Introduction

Denote by C and Cr , respectively the space of continuous 2π -periodic functions
f : R→ R , and that of r -times continuously differentiable functions, equipped with the
uniform norm

‖ f‖ := max
x∈R

| f (x)|.
Denote by Tn the space of trigonometric polynomials Pn(x) = a0 +∑n

j=1(a j ×cos jx+
b j sin jx) of degree not exceeding n ∈ N (of order � 2n+1) with a j ∈ R and b j ∈ R,
and by

En( f ) := inf
Pn∈Tn

‖ f −Pn‖

the value (error) of the best uniform approximation of the function f by polynomials
Pn ∈ Tn.

Recall that for any bounded on [a,b] function f , and k ∈ N, the k -th symmetric
difference of f at the point x with the step h � 0 is defined as

Δk
h f (x) :=

{
∑k

i=0(−1)k−i
(k

i

)
f (x− k

2h+ ih), x± k
2h ∈ [a,b],

0, otherwise,

and the (ordinary) k -th modulus of continuity (or smoothness) of the function f ∈
C[a,b] is defined as

ωk( f , t, [a,b]) := sup
h∈[0,t]

‖Δk
h f‖ = sup

h∈[0,t]
max
x∈[a,b]

|Δk
h f (x)|, t ∈ [0,(b−a)/k],
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ωk( f , t, [a,b]) ≡ ωk( f ,(b−a)/k, [a,b]), t � (b−a)/k,

and in the case of 2π -periodic f , it is defined as

ωk( f ,t) := ωk( f ,t,R) := sup
a∈R

ωk( f , t, [a,a+2π ]).

Recall the classical estimate of Jackson (the case k = 1) [12, 13]-Zigmund (k =
2, ω2( f , t) � t ) [28]-Akhiezer (k = 2) [1]-Stechkin (k � 3) [22]:

If a function f ∈ C, then

En( f ) � c(k)ωk( f ,π/n), n ∈ N, (1)

where c(k) is a constant that depends only on k, for details see, for example, [10,
Section 4]. And hence, in particular, if f ∈ Cr, r ∈ N, then

En( f ) � c(r+ k)
nr ωk( f (r),π/n), n ∈ N. (2)

In 1968 Lorentz and Zeller [17, 18] proved a bell-shaped analogue of the estimate
(1) with k = 1, that is, for approximation of bell-shaped (even and nonincreasing on
[0,π ]) functions from C by bell-shaped polynomials from Tn , and thus gave rise to the
search for other its analogues, with other restrictions on the shape of the function and
polynomials such as piecewise positivity, monotonicity, convexity (now this is called
Shape Preserving Approximation).

In the papers of Popov [19] and Zalizko [25] a coconvex analogue of the inequality
(1) is proved with k = 2 and k = 3, respectively. To state it we need some notations.

Let on [−π ,π) there are 2s, s ∈ N, fixed points

yi : −π � y2s < y2s−1 < .. . < y1 < π ,

and for the remaining i ∈ Z, the points yi are defined by the equality yi = yi+2s + 2π
(that is, y0 = y2s +2π , . . . ,y2s+1 = y1−2π , . . .), and let Y := Y2s = {yi}i∈Z.

Denote by Δ(2)(Y2s) the collection of all functions f ∈ C that are convex on
[y1,y0], concave on [y2,y1], convex on [y3,y2] and so on. Thus, if f ∈ C2 then

f ∈Δ(2)(Y2s) ⇔ f ′′(x)Π(x) � 0, x∈R, where Π(x) := Π(x,Y2s) :=
2s

∏
i=1

sin
1
2
(x−yi)

(Π(x) > 0, x ∈ (y1,y0), Π ∈ Ts). The functions from Δ(2)(Y2s) are called piecewise
convex or coconvex (each other or between themselves), and the approximation of them
by polynomials also from Δ(2)(Y2s) is called coconvex approximation.

Denote by

E(2)
n ( f ,Y2s) := inf

Pn∈Tn∩Δ(2)(Y2s)
‖ f −Pn‖

the value (error) of the best uniform approximation of the function f by polynomials
Pn ∈ Tn ∩Δ(2)(Y2s).



ON CONSTANTS IN COCONVEX APPROXIMATION OF PERIODIC FUNCTIONS 203

Thus, in [19] and [25] the following estimate (3) is proved.
If a function f ∈ Δ(2)(Y2s), then for each n∈ N that is greater than some constant

N(Y2s), which depends only on min
i=1,...,2s

{yi− yi+1}, the following inequalities hold

E(2)
n ( f ,Y2s) � c(s)ωk( f ,π/n), k = 2,3, n > N(Y2s), (3)

where c(s) is a constant that depends only on s.
Note that the following estimate (4) is a simple consequence of (3) and the Whit-

ney inequality [23] ‖ f − f (0)‖ � 3ωk( f ,2π), k ∈ N, ( f (0) ∈ Δ(2)(Y2s)∩T0 and inter-
polates f , the constant 3 is obtained in the work of Gilewicz, Kraykin, Shevchuk [11]):
if f ∈ Δ(2)(Y2s), then

E(2)
n ( f ,Y2s) � C(Y2s)ω3 ( f ,π/n) , n ∈ N, (4)

where C(Y2s) is a constant that depends only on min
i=1,...,2s

{yi− yi+1} .

Moreover, Zalizko [26] using considerations of the articles Shvedov [21] and
DeVore, Leviatan, Shevchuk [3] for each n ∈ N, constructed a function gn(x) =
gn(x,Y2,k) ∈ Δ(2)(Y2) such that

E(2)
n (gn,Y2) � C(Y2,k)n2( k

3−1)ωk (gn,π/n) , k ∈ N, k � 4,

where C(Y2,k) is a constant that depands only on Y2 (i.e. on y2 − y1 ) and k . In other
words, for each n ∈ N, he found a function from Δ(2)(Y2), for which the inequality
(4) is false with ωk, k > 3, i.e. it cannot be improved in the order of the modulus of
smoothness (unlike the inequalities (1) and (2) of approximation without restrictions,
which hold for all k ∈ N).

In the sequel we will have positive constants c = c(·) and N = N(·) that depend
only on the arguments in the parentheses.

In this paper we will prove that N(Y2s) in (3) and C(Y2s) in (4) cannot be replaced
by constants that do not depend on Y2s (but depend only on s). That is if s � 1, then
even

E(2)
n ( f ,Y2s) � c(s)ω1( f ,π/n), n � N,

is not valid with N = N(s) replacing N = N(Y2s) . In fact we prove more, namely,

THEOREM 1. For every k � 1 , r = 0,1,2,3 and s ∈ N , there do not exist con-
stants c = c(k,r,s) and N = N(k,r,s) , depending only on k , r and s, such that the
inequality

E(2)
n ( f ,Y2s) � c

nr ωk( f (r),π/n), (5)

holds for all n � N and for all f ∈ Cr ∩Δ(2)(Y2s) .

For r = 0,1, Theorem 1 was proved by Popov [20]. Like in [20] the considerations
in the proof of Theorem 1 are inspired by the paper of Leviatan and Shevchuk [16].
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REMARK 1. We think that for smoothness of high orders (for r > 3) the statement
of Theorem 1 is also true but we do not consider this question in the paper. It seems in
this case another counterexample needs to be constructed.

We note that corresponding results on coconvex approximation in an interval by al-
gebraic polynomials (including poinwise estimates of Nikolskii-type and interpolatory
at the ends of the interval estimates) can be found in the papers of Kopotun, Leviatan,
Shevchuk [14, 16], the author with Gilewicz, Leviatan, Shevchuk [4, 5, 6, 7, 8] with
Zalizko [9] and in the papers of Wu, Zhou [24, 27].

We refer an interested reader to the very good (comprehensive and qualified) sur-
vey on most cases (without periodic, rational, spline and oneside) of Shape Preserving
Approximation written by Kopotun, Leviatan, Prymak, Shevchuk [15] where all known
positive and negative results in the field are collected with complete truth tables for
the validity of Nikolskii-type and Jackson-type estimates, involving the ordinary k -th
moduli of smoothness of the r -th derivative of a given function, as well as estimates
involving the Ditzian-Totik moduli of smoothness. Many of the methods applied for
the proofs of all positive results in these truth tables are modifications of similar ones
in the papers by DeVore, Gilewicz, Kopotun, Leviatan, Mania, Shevchuk, Yu and the
author (see References there).

2. Counterexample

We will use the well known Bernstein inequality [2] (1912)

‖P′
n‖ � n‖Pn‖, Pn ∈ Tn.

Given 0 < b < 1, define 2π -periodic even function gb by setting it on [−π ,π ] as

gb(x) :=
∫ x

0
(x−u)g′′b(u)du,

where

g′′b(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
b4 (x2 −b2)2 +

16
15(1+b)

b, |x| � b,

32b
5(1+b)(1−b)3

( |x|3
3

− 1+b
2

x2 +b|x|
)

+
16

15(1+b)
b, b < |x| � 1,

0, 1 < |x| � π .

Then it is readily seen that

‖gb‖ = −gb(1) = −
(

1
6
− b

2(1+b)
+

b2

6(1+b)

)
16
15

b <
8
45

b,

g′b(x) = − 1
b4

(
x5

5
+

2b2

3
x3 +b4x

)
+

16b
15(1+b)

x, |x| � b,
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g′′b(±x0) = 0, x0 = b

√√√√1−
√

16b
15(1+b)

< b, (6)

‖g′b‖ = −g′b(x0) <
2b
3

,

‖g′′b‖ = 1− 16
15(1+b)

b,

‖g(3)
b ‖ =

8

3
√

3b
� 2

b
.

and clearly gb ∈ C3∩Δ(2)({−x0,x0}) .

LEMMA 1. Given n � 1 , for each polynomial pn ∈ Tn , satisfying

sin
x− x0

2
sin

x+ x0

2
p′′n(x) � 0, x ∈

[
− 1

2
,
1
2

]
,

with b = bn = 1
3√

n4
, we have

‖gb− pn‖ >
7b
120

.

Proof. First we observe that p′′n(±x0) = 0, and that p′′n(x) � 0, for −x0 < x < x0 .
Assume that for some −x0 < x∗ < x0 , p′′n(x∗) < − 1

6 . Then

|[p′′n ;−x0,x∗,x0]| = |p′′n(x∗)|
(x0− x∗)(x0 + x∗)

>
1

6x2
0

>
1

6b2 ,

where in the square brackets is the divided difference of second order

[ f ; t0, t1, t2] :=
f (t0)

(t0 − t1)(t0 − t2)
+

f (t1)
(t1 − t0)(t1 − t2)

+
f (t2)

(t2 − t0)(t2 − t1)

of f at points (knots of the divided difference) t0,t1,t2 : ti �= t j if i �= j. Since

[p′′n ;−x0,x∗,x0] =
1
2

p(4)
n (θ ),

for some −x0 < θ < x0(< 1
20 ) , it follows by the Bernstein inequality that

1
2
n4‖pn‖ � 1

2
|p(4)

n (θ )| > 1
6b2 .

Now by (6) and the prescribed value of b ,

‖gb− pn‖ � ‖pn‖−‖gb‖ >
b

3n4b3 −
8b
45

=
7b
45

. (7)
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If on the other hand, p′′n(x) � − 1
6 , for all −x0 < x < x0 , then we represent pn in the

form

pn(x) = pn(0)+ xp′n(0)+
∫ x

0
(x−u)p′′n(u)du.

Since p′′n(x) � 0 for x0 � |x| � 1
2 , it follows that

pn

(
− 1

2

)
−2pn(0)+ pn

(1
2

)
=
∫ 1

2

0

(1
2
−u
)
p′′n(u)du+

∫ − 1
2

0

(
− 1

2
−u
)

p′′n(u)du

>

∫ x0

0

(1
2
−u
)
p′′n(u)du+

∫ x0

0

(1
2
−u
)
p′′n(−u)du

> −x0

6
> −b

6
.

Directly estimate

gb

(
− 1

2

)
−2gb(0)+gb

(1
2

)
= 2

((∫ b

0
+
∫ 1

2

b

)(1
2
−u
)
g′′b(u)du

)

� −2b
5

.

Therefore

4‖gb− pn‖ �
(

pn

(
− 1

2

)
−gb

(
− 1

2

))
−2(pn(0)−gb(0))+

(
pn

(1
2

)
−gb(

1
2
)
)

� −b
6

+
2b
5

=
7b
30

.

Thus together with (7), this concludes the proof of Lemma 1.
As an immediate consequence we get

EXAMPLE 1. For every constant A > 1 there exists an N(A) sufficiently large
such that if n > N(A) , then for any s � 1, there is a function g = g(x,n) ∈ C

3 , which
changes convexity 2s times in [−π ,π) , and such that any polynomial pn ∈ Tn which
is coconvex with it, satisfies

‖g− pn‖ >
A‖g(3)‖

n3 ,

‖g− pn‖ >
A‖g′′‖

n2 ,

and

‖g− pn‖ >
A‖g′‖

n
.

Proof. Let N(A) = (48A)3 and let s � 1. We take b = bn = 1
3√

n4
, n > N(A) ,

as in Lemma 1, and let g = gb . The function g changes convexity at y2 = −x0 and
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y1 = x0 , it is convex in [y1,π) , and if s > 1, then we take 2(s− 1) arbitrary points
satisfying −π � y2s < · · · < y3 < −1, and regard g as changing convexity at these
points too, hence g∈ Δ2(Y2s) . If the polynomial pn is coconvex with g , then it satisfies
the requirements of Lemma 1. Therefore, by Lemma 1 and (6) we have

‖g− pn‖ >
7b
120

=
7‖g(3)‖3√3n

1
3

n
8
3 n

1
3 960

>
A‖g(3)‖

n3 ,

‖g− pn‖ >
7b
120

>
7b‖g′′‖

120
>

A‖g′′‖
n2 ,

and

‖g− pn‖ >
7b
120

>
21n‖g′‖
240n

>
A‖g′‖

n
.

Example 1 is proved.

REMARK 2. It should be noted that the function g above is independent of A .

We are ready to prove Theorem 1.

Proof of Theorem 1. The proof readily follows from the observation that for all
k � 1,

ωk( f ,t) � 2k−1ω1( f ,t) � 2k−1t‖ f ′‖,
which by Example 1 does not allow the case r = 0 in (5) and

ωk( f ,t) � 2k‖ f‖,

which takes care of the other cases and completes the proof.
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