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Abstract. In the finite dimensional case, mean-type mappings, their invariant means, relations
between the uniqueness of invariant means and convergence of orbits of the mapping, are consid-
ered. In particular it is shown, that the uniqueness of an invariance mean implies the convergence
of all orbits. A strongly irregular mean-type mapping is constructed and its unique invariant mean
is determined. An application in solving a functional equation is presented.

1. Introduction

We deal with mean-type mappings, invariant means with respect to the mean-type
mappings, relations between the uniqueness of invariant means and convergence of the
orbits of the mean-type mappings, in general finite dimensional case.

The main result of section 2, Theorem 1, says that, without any regularity condi-
tions, the orbits of the mean-type mapping converge if, and only if, the mean-type map
has a unique invariant mean. In particular, the uniqueness of invariance mean implies
the convergence of the orbits, and each coordinate of the limit mean-type map is just the
invariant mean. This result generalizes the suitable result in [7] where two-dimensional
case is considered.

In section 3 we show that the continuity of the mean-type mapping together with
its weak contractivity are sufficient conditions for the uniqueness of the invariant mean.

In iteration theory of mean-type mappings, the continuity of the invariant mean
was assumed to guarantee its uniqueness (see for example [1, 4, 5] and [9, p. 134,
Theorem 83]). In a recent paper [6], basing on the fact that every mean is continuous
on the main diagonal of its domain, it was shown that this continuity assumption is
redundant.

In section 4, making use of the discontinuous additive functions, we construct a
mean-type mapping, which is discontinuous at every point outside of the diagonal and,
applying Theorem 1, we show that the arithmetic mean is a unique invariant mean for
it.

In section 5, again applying Theorem 1, we find all continuous functions which
are invariant with respect to a given mean-type mapping and we show that in this case
the assumption of continuity is indispensable.
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2. Invariance principle

Let an interval I ⊂ R and p ∈ N be fixed.
A function M : I p → I is called a mean in I if it is internal, that is if

min(v1, . . . ,vp) � M (v1, . . . ,vp) � max(v1, . . . ,vp) , v1, . . . ,vp ∈ I ,

or, briefly, if
minv � M (v) � maxv, v ∈ I p.

In the sequel, to avoid the trivial results, we assume that p > 1.
A mapping M : I p → I p is referred to as mean-type if there exists some means

Mi : I p → I , i = 1, . . . , p , such that M = (M1, . . . ,Mp) .
We say that a function K : I p →R is invariantwith respect to M (briefly M-invariant),

if K ◦M = K .
Now, following the idea from [8], for a mean-type mapping M : I p → I p we define

an orbit OM : I p → (I p)∞ by

OM(v) :=
(
v,M(v),M2(v), . . .

)
where Mn is the n -th iterate of M , n = 0,1, . . . . In view of well known isomorphism
(XY )Z ∼ XY×Z , the function O∗

M : I p → I∞ is given by

O∗
M(v) :=

(
v1, . . . ,vp, [M(v)]1, . . . , [M(v)]p, [M2(v)]1, . . . , [M2(v)]p, . . .

)
,

where [Mn(v)]i stands for the i-th coordinate of the vector Mn(v) , i ∈ {1, . . . , p} .
By �∞(I) denote the set of all bounded sequences a = (a1,a2, . . .) with values in

an interval I .
For p∈N a function φ : �∞(I)→ I is called p-limit-like if, for every a = (a1,a2, . . .)

∈ �∞(I) , the following two conditions hold
(i) φ(a1,a2,a3, . . .) = φ(ap+1,ap+2,ap+3, . . .) , and
(ii) liminfn→∞ an � φ(a1,a2, . . .) � limsupn→∞ an .
Note that whenever the sequence a is convergent, then φ(a) = limn→∞ an .

PROPOSITION 1. Let M : I p → I p be a mean-type mapping, and φ : �∞(I)→ I be
a p-limit-like function. Then the function Mφ : I p → R given by Mφ := φ ◦O∗

M is a
mean on I , which is M-invariant.

Conversely, every M-invariant mean equals Mφ for some p-limit-like function φ .

Proof. By the definition of mean the sequence (maxMn(v))n∈N is nondecreasing
and

limsupO∗
M (v) = limsup

n→∞
maxMn(v) � maxM0(v) = max(v).

Similarly we obtain liminfO∗
M(v) � min(v) . Now, as φ is between liminf and limsup,

we obtain that Mφ is a mean. Moreover

Mφ ◦M(v) = φ ◦O∗
M(M(v)) = φ

(
[M(v)]1, . . . , [M(v)]p, [M2(v)]1, . . . , [M2(v)]p, . . .

)
= φ

(
v1, . . . ,vp, [M(v)]1, . . . , [M(v)]p, [M2(v)]1, . . . , [M2(v)]p, . . .

)
= φ ◦O∗

M(v) = Mφ (v)
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which concludes the proof.
To prove the converse, for an arbitrary M-invariant mean K , we define the func-

tion φ on the every orbit O∗
M(v) by

φ(O∗
M(v)) := K(v) v ∈ I p, (1)

For every v ∈ I p we have φ(O∗
M(v)) = K(v) = K ◦M(v) = φ(O∗

M(M(v))) what
implies that φ satisfies (i) on the image O∗

M(I p) .
To preserve the p -limit-like properly we need to extend this definition to

φ(O∗
M(v)) := K(v), v ∈ I p (2)

φ(Icp ×O∗
M(v)) := K(v), v ∈ I p, c ∈ {1,2, . . .}. (3)

We underline that if for some w ∈ I p and c0 > 0 we get O∗
M(w) ∈ Ic0 p ×O∗

M(v)
then by the definition Mc0(w) = v and, consequently, K(v) = K(w) . Therefore defini-
tions (1) and (3) are coherent. Moreover, it is easy to check that the set

Γ :=
⋃

v∈Ip

({
O∗

M(v)
}∪

∞⋃
c=1

Icp×O∗
M(v)

)
⊂ �∞(I)

is closed under shifting by p elements (both left and right). Thus so is the set Γ′ :=
�∞(I)\Γ . Furthermore properties (i) and (ii) are valid on φ |Γ .

As the value of φ on Γ′ does not affect the value of Mφ , we can define it in any
way, just to keep validity of (i) and (ii) e.g. φ(a) := liminfa for a ∈ Γ′ .

COROLLARY 1. Let M : I p → I p be a mean-type mapping. Then L := Mliminf

and U := Mlimsup are the smallest and the biggest M-invariant means, respectively.

REMARK 1. Let us underline that analogous corollary can be also established if
M is a selfmapping of compactly supported Borel measures (see [2] for details).

THEOREM 1. (Invariance Principle) Let M : I p → I p be a mean-type mapping
and K : I p → I be an arbitrary mean. K is a unique M-invariant mean if and only if the
sequence of iterates (Mn)n∈N

of the mean-typemapping M converges to K := (K, . . . ,K)
pointwise on Ip .

Proof. We have the following equivalent conditions:

K is a unique M-invariant mean

⇐⇒ K = L = U

⇐⇒ K(v) = liminfO∗
M(v) = limsupO∗

M(v) for all v ∈ I p

⇐⇒ O∗
M(v) is convergent to K(v) for all v ∈ I p

⇐⇒ OM(v) is convergent to K(v) for all v ∈ I p

⇐⇒ OM is convergent to K pointwise on I p

⇐⇒ Mn is convergent to K pointwise on I p,

thus the proof is complete.
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3. Weakly contractive mean-type mappings

We say that a mean-type mapping M : I p → I p is weakly contractive if for every
nonconstant vector v ∈ I p there is a positive integer n0 (v) such that

max(Mn(v))−min(Mn(v)) < max(v)−min(v) for all n � n0(v).

Let us emphasize that it is sufficient to verify if the inequality above is valid for
n = n0(v) . Moreover in a special case p = 2 it was proved [7] that M is weakly
contractive if and only if M2 is contractive. This is not the case here.

Even for p = 3 we can construct weakly contractive mean-type mapping on I3

such that the function I p � v → n0(v) is unbounded.

EXAMPLE 1. Take a continuous and weakly-contractive mean-type mapping
M0 : I3 → I3 such that

M0(v1,v2,v3) =

{(
v1,v2,

v1+v3
2

)
if |v3− v1| = (v2 − v1)2;

(v1,v1,v1) if 2 |v3− v1| = (v2− v1)2,

and the set Λ := {(v1,v2,v3) ∈ I3 : |v3 − v1|� (v2−v1)2} . Define a mapping M : I3 →
I3 by

M(v1,v2,v3) :=
{(

v1,v2,
v1+v3

2

)
if (v1,v2,v3) ∈ Λ;

M0 (v1,v2,v3) otherwise.

Obviosly M is continuous. Moreover for every x,y,z ∈ I there exists n1(x,y,z) such
that Mn1(x,y,z) ∈ Λ . Thus Mn1(x,y,z)+k(x,y,z) = Mk

0(M
n1(x,y,z)) . Consequently as M0 is

weakly contractive, so is M .
Now take x ∈ I and i ∈ N such that x + 2−i ∈ I . By simple induction we can

describe the M-orbit of the vector w := (x,x+2−i,x+2−i) ∈ I3 . Namely

Mn(w) = Mn(x,x+2−i,x+2−i) =

{
(x,x+2−i,x+2−i−n) for n � i+1

(x,x,x) for n > i+1.

This equality proves that for all n < i we have

max(Mn(w))−min(Mn(w)) = max(w)−min(w)

Thus n0(w) � i . As i can be take arbitrary large (obviously w depends on i) we have
that n0 cannot be bounded.

THEOREM 2. If M : I p → I p is a continuous, weakly contractive mean-type map-
ping then there exists a unique M-invariant mean K : I p → I . Moreover, the sequence
of iterates (Mn)n∈N

converges (pointwise on Ip) to K := (K, . . . ,K) .

Proof. Assume that I is closed.
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First observe that in view of Theorem 1 the moreover part is equivalent to our
assertion. Second, it is sufficient to prove that L = U . Assume to the contrary that
L (v0) �= U (v0) for some v0 ∈ I p .

Define a spread δ := U (v0)−L (v0) > 0 and sets

X0 := {v ∈ I p : max(v)−min(v) � δ},
Xk := {v ∈ I p : max(v)−min(v) ∈ [δ ,δ + 1

k ]} for k ∈ N+,

Xω :=
∞⋂

k=0

Xk = {v ∈ I p : max(v)−min(v) = δ}.

Then for every k ∈ N there exists nk such that Mn(v0) ∈ Xk for all n > nk .
As X0 is compact, there exists a subsequence (mk) such that Mmk (v0) ∈ Xk and

the sequence (Mmk (v0)) is convergent to some element w0 ∈ I p . By the definition, as
the difference maxMmk (v0)−minMmk (v0) is nonincreasing, we have w0 ∈ Xω .

As M is weakly contractive, there exists s0 ∈ N such that

maxMs0(w0)−minMs0(w0) < max(w0)−min(w0) = δ .

By the continuity of M there exists an open neighbourhood W � w0 such that

maxMs0(w)−minMs0(w) < δ for all w ∈W.

But, by the definition, there exists k0 ∈ N such that Mmk0 (v0) ∈W . Then

maxMs0+mk0 (v0)−minMs0+mk0 (v0) < δ . (4)

On the other hand, as both L and U are M-invariant means, we have

minMs0+mk0 (v0) � L ◦Ms0+mk0 (v0) = L (v0),

maxMs0+mk0 (v0) � U ◦Ms0+mk0 (v0) = U (v0)

which implies

maxMs0+mk0 (v0)−minMs0+mk0 (v0) � U (v0)−L (v0) = δ ,

contradicting (4).

4. Examples of highly discontinuous means

EXAMPLE 2. For a discontinuous additive function α : R → R define a function
λα : R → R by

λα (u) :=
3 |α (u)|+3
4 |α (u)|+12

, u ∈ R.

Since
1
4

� λα (u) <
3
4
, u ∈ R, (5)
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the functions M,N : R
2 → R defined by

M (u,v) = λα (u)u+(1−λα (u))v, N (u,v) = (1−λα (u))u+ λα (u)v.

are means in R . Both M and N , being the means, are continuous at every point of
the diagonal Δ := {(x,x) : x ∈ R} (see [6]) but, as the graph of α is dense in R

2 (see,
for instance [3]), these functions are strongly irregular in R

2\Δ (in particular they are
discontinuous at every point outside of Δ).

Note that
A◦ (M,N) = A,

i.e., the arithmetic mean A : R
2 → R , A(u,v) = u+v

2 , is invariant with respect to the
mean-type mapping (M,N) : R

2 → R
2 .

To show that A is a unique (M,N) -invariant mean, first observe that, for all
u,v ∈ R ,

|M (u,v)−N (u,v)| = |2λα (u)−1| |u− v| ,
whence, in view of (5),

|M (u,v)−N (u,v)| � 1
2
|u− v| , u,v ∈ R.

Putting (Mn,Nn) := (M,N)n , n ∈ N0 , we hence get

|Mn+1 (u,v)−Nn+1 (u,v)| � 1
2
|Mn (u,v)−Nn (u,v)| , u,v ∈ R, n ∈ N0,

whence, by induction,

|Mn (u,v)−Nn (u,v)| � 1
2n |u− v| , u,v ∈ R, n ∈ N.

This proves that, for every point (u,v) ∈ R
2 , the orbit

OM((u,v)) = ((Mn (u,v) ,Nn (u,v)) : n ∈ N0)

approaches the diagonal as n→ ∞ . To show the convergence of the orbit, take arbitrary
(u,v) ∈ R

2\Δ and put c = A(u,v) = u+v
2 , so we have v = 2c− u . The invariance

of A with respect to (M,N) implies that N (u,v) = 2c−M (u,v) , and, by induction,
Nn (u,v) = 2c−Mn (u,v) for all n∈N0 , that is, every point (Mn (u,v) ,Nn (u,v)) lays on
the straight-line crossing perpendicularly the diagonal Δ at the point (c,c) . It follows
that

lim
n→∞

(Mn (u,v) ,Nn (u,v)) = (c.c) .

Applying Theorem 1 we conclude that A is a unique (M,N) -invariant mean.

The result considered in this example can be easily extended to the following
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PROPOSITION 2. Let α : R → R be a discontinuous additive function, κ ∈ (0,1)
and b,c,d be real numbers such that

c > 1, 0 < b � d,
2

1+ κ
� c � 2

1−κ
,

2b
1+ κ

� d � 2b
1−κ

,

and let λα : R → R be defined by

λα (u) :=
|α (u)|+b
c |α (u)|+d

, u ∈ R.

Then
(i) the functions M,N : R

2 → R defined by

M (u,v) = λα (u)u+(1−λα (u))v, N (u,v) = (1−λα (u))u+ λα (u)v,

are means in R;
(ii) the means M ,N are continuous only at the points of the diagonal Δ :=

{(x,x) : x ∈ R} and

|M (u,v)−N (u,v)| � κ |u− v| , u,v ∈ R;

(iii) the arithmetic mean A : R
2→ R , A(u,v) = u+v

2 , is a unique (M,N) -invariant
and

lim
n→∞

(M,N)n = (A,A) (pointwise).

REMARK 2. This result remains true on replacing α (u) by α ( f (u,v)) where
f : R

2→ R is an arbitrary nonconstant regular function.

REMARK 3. It is not difficult to observe that the above proposition can be modi-
fied to a result in which A is replaced by an arbitrary quasi-arithmetic mean.

5. An applications in solving a functional equation

Applying Theorem 1 we prove the following

THEOREM 3. Assume that M : I p → I p is a mean-type mapping and K : I p → I
is its unique M-invariant mean. A function F : I p → R which is continuous on the
diagonal Δ(I p) :=

{
(u1, . . . ,up) ∈ I p : u1 = . . . = up

}
is invariant with respect to the

mean-type mapping, i.e. F satisfies the functional equation

F ◦M = F, (6)

if, and only if, there is a continuous function ϕ : I → R such that

F = ϕ ◦K.



216 J. MATKOWSKI AND P. PASTECZKA

Proof. Assume first that F : I p → R that is continuous on the diagonal Δ(I) and
F satisfies (6). From (6) by induction we get

F = F ◦Mn, n ∈ N0.

By Theorem 1 the sequence of mean-type mappings (Mn)n∈N0
converges pointwise

to the mean-type mapping K = (K, . . . ,K) : I p → I p . Since F is continuous on the
diagonal Δ(I) , we hence get, for all u = (u1, . . . ,up) ∈ I p ,

F (u1, . . . ,up) = lim
n→∞

F (Mn (u1, . . . ,up)) = F
(

lim
n→∞

(Mn (u1, . . . ,up))
)

= F (K(u1, . . . ,up)) = F ((K (u1, . . . ,up) , . . . ,K (u1, . . . ,up))) ,

whence, setting
ϕ (t) := F (t, . . . ,t) , t ∈ I ,

we obtain F (u1, . . . ,up) = ϕ (K (u1, . . . ,up)) for all (u1, . . . ,up)∈ I p , that is F = ϕ ◦K .
To prove the converse implication, take an arbitrary function ϕ : I → R and put

F := ϕ ◦K . Then we have

F ◦M =(ϕ ◦K)◦M = ϕ ◦ (K ◦M) = ϕ ◦K = F,

which completes the proof.

REMARK 4. The assumption of the continuity of the restriction of the function F
on the diagonal Δ(I p) is essential.

To show it take arbitrary (not necessarily continuous) function ϕ : I → R and
define F : I p → R by

F (u1, . . . ,up) := ϕ (t) if lim
n→∞

Mn (u1, . . . ,up) = (t, . . . ,t) .

Since limn→∞ Mn (u1, . . . ,up) = limn→∞ Mn (M(u1, . . . ,up)) ,we have for all u ∈ I p ,

F (u) = F (M(u)) .

REMARK 5. If F is a pre-mean then ϕ = id and consequently F = K . There-
fore if there exists a uniquely determined M-invariant mean then it is also the unique
M-invariant premean which is continuous on the diagonal.
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