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TRANSFERENCE METHOD FOR CONE–LIKE RESTRICTED

SUMMABILITY OF THE TWO–DIMENSIONAL WALSH–LIKE SYSTEMS

KÁROLY NAGY ∗ AND MOHAMED SALIM

(Communicated by T. Erdélyi)

Abstract. In the present paper we investigate the boundedness of the maximal operator of some
d -dimensional means, provided that the set of the indeces is inside a cone-like set L . Applying
some assumptions on the summation kernels Pn1 ,...,nd we state that the cone-like restricted max-
imal operator T γ

CLR is bounded from the Hardy space Hγ
p to the Lebesgue space Lp for p > p0 .

In the end point p0 assuming some natural conditions on one-dimensional kernels we show that
the maximal operator T γ

CLR is not bounded from the Hardy space Hγ
p0 to the Lebesgue space

Lp0 .

1. Definitions and notation

We follow the standard notions of dyadic analysis introduced by Schipp, Simon,
Wade and Pál in [20] (see also [1]). Let N denote the set of natural numbers and let
P := N\{0} . The cyclic group of order 2 will be denoted by Z2 . The topology is given
by that every subset is open. The Haar measure on Z2 is given such that

μ({0}) = μ({1}) = 1/2.

Let G be the complete direct product of countable infinite copies of the compact group
Z2. The elements of G are sequences of the form x = (x0,x1, . . . ,xk, . . .) with compo-
nents xk ∈ {0,1}(k ∈ N) . On G the group operation is the component-wise addition,
the measure μ is the product measure and the topology is the product topology. Such
compact Abelian group G is called the Walsh group.

A base for the neighbourhoods of G can be given by

I0 (x) := G,

In (x) := In (x0, . . . ,xn−1) := {y ∈ G : y = (x0, . . . ,xn−1,yn,yn+1, . . .)} ,

(x ∈ G,n ∈ N) , In(x) are called dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote the
null element of G, and for the simplicity we write In := In (0) (n ∈ N) . Set en :=
(0, . . . ,0,1,0, . . .) ∈ G, the n th component of which is 1 and the rest are zeros.

Mathematics subject classification (2010): 42C10, 43A75, 42B08, 42B30.
Keywords and phrases: Walsh-Paley system, Walsh-Kaczmarz system, maximal operator, multi-

dimensional system, restricted summability, almost everywhere convergence, Cesàro means, group of 2-adic
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The Fine’s map ‖.‖ : G → [0,1] is defined by

‖x‖ :=
∞

∑
n=0

xn2−(n+1). (1)

Backwards, each x ∈ [0,1[ can be expressed in number system based 2 in the form

x =
∞

∑
j=0

x j2− j−1, where x j ∈ {0,1} for all j.

This expansion is unique except for dyadic rational numbers x ∈ { p
2n : p,n∈ P} . In this

case we choose the expansion which terminates in 0 ’s. For n ∈ N let nk be the k th
coordinate of n with respect to number system based 2. That is, we write

n =
∞

∑
k=0

nk2
k,

where nk ∈ {0,1} k ∈ N . We use the notation |n| := max{ j ∈ N :n j �= 0} , that is
2|n| � n < 2|n|+1 , where |n| is called the order of natural number n .

Let rk denote the k -th Rademacher function, it is defined by

rk (x) := (−1)xk (k ∈ N, x ∈ G).

The Walsh-Paley system (simply we say Walsh system) is defined as the product
system of Rademacher functions. Namely,

wn (x) :=
∞

∏
k=0

(rk (x))nk = r|n| (x) (−1)

|n|−1
∑

k=0
nkxk

(x ∈ G,n ∈ P) .

The Walsh-Kaczmarz functions are defined by κ0 := 1 and for n � 1

κn(x) := r|n|(x)
|n|−1

∏
k=0

(r|n|−1−k(x))
nk = r|n|(x)(−1)∑|n|−1

k=0 nkx|n|−1−k .

The Walsh-Kaczmarz system was introduced by Šneider [26] in 1948. Some basic
result with respect to Walsh-Kaczmarz system can be found in [3, 21, 23, 24, 25, 29],
for current results see also [12, 16, 27, 28, 35]. We give more details later.

It is known that the set of Walsh-Kaczmarz functions and the set of Walsh-Paley
functions are equal in dyadic blocks. Namely,

{κn : 2k � n < 2k+1} = {wn : 2k � n < 2k+1}
for all k ∈ P . Moreover, κ0 = w0.

The relation between the Walsh-Paley and Walsh-Kaczmarz system is not a simple
relation, it is given by a coordinate transformation (for more details see [25] written by
V.A. Skvortsov).

For both system we define the one-dimensional Dirichlet kernels and Cesàro ker-
nels (see [10, 24, 35, 36]) by

Dψ
n :=

n−1

∑
k=0

ψk, Kψ,α
n (x) :=

1
Aα

n

n

∑
k=1

Aα−1
n−k Dψ

k (x),
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(ψn = wn (n ∈ N) or ψn = κn (n ∈ N), and 0 < α ), where

Aα
j :=

(
j + α

j

)
=

(α +1)(α +2) . . .(α + j)
j!

( j ∈ N; α �= −1,−2, . . .).

Choosing α = 1 we get back the Fejér kernels

Kψ
n = Kψ,1

n =
1
n

n

∑
k=1

Dψ
k =

n−1

∑
k=0

(
1− k

n

)
ψk.

These functions has some good properties, useful in the following investigations. First,
we mention a simple result with respect to the Dirichlet kernels, which play a central
role in the Walsh-Fourier analysis (see [20]):

Dw
2n(x) = Dκ

2n(x) = D2n(x) =

{
0, if x �∈ In,

2n, if x ∈ In.
(2)

For functions f ,g ∈ L1(G) the dyadic convolution f ∗ g is defined by

( f ∗ g)(x) :=
∫

G
f (t)g(x+ t)dμ(t).

For f ∈ L1 let us denote the n th partial sum of f by Sψ
n ( f ) , the n th Fejér means

of f by σψ
n ( f ) and the n th (C,α) mean of f by σψ,α

n ( f ) . It is clear that Sψ
n ( f ) =

f ∗Dψ
n , σψ

n ( f ) = f ∗Kψ
n and σψ,α

n ( f ) = f ∗Kψ,α
n (n ∈ N). We remark that the Fejér

kernels and (C,α) kernels (0 < α ) are uniformly bounded for both systems, that is,

sup
n
‖Kw,α

n ‖1 < ∞ and sup
n
‖Kκ ,α

n ‖1 < ∞

hold (see [3, 20, 22, 23, 24, 25]).

Further, we assume that the summation kernels Pn := ∑n−1
k=0 λn,kψk with real co-

efficients λn,k (n,k ∈ N) (here {ψk : k ∈ N} denotes the Walsh-Paley or the Walsh-
Kaczmarz system) satisfy the inequality

sup
n
‖Pn‖1 < ∞. (3)

If we consider the maximal operator

T ( f ) := sup
n
| f ∗Pn| ( f ∈ L1(G)), (4)

then T : L∞(G) → L∞(G) is evidently bounded.

The σ -algebra generated by the dyadic intervals In(x) (x ∈ G) will be denoted

by Fn (n ∈ N) . Let us denote by f =
(

f (n),n ∈ N

)
a martingale with respect to

(Fn,n ∈ N) (for details see, e. g. [31]). The maximal function of a martingale f is
defined by

f ∗ = sup
n∈N

∣∣∣ f (n)
∣∣∣ .
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In case f ∈ L1 , the maximal function can also be given by

f ∗ (x) = sup
n∈N

1
μ (In(x))

∣∣∣∣∣∣∣
∫

In(x)

f (u)dμ (u)

∣∣∣∣∣∣∣ , x ∈ G.

For 0 < p � ∞ the Hardy martingale space Hp consists of all martingales for
which

‖ f‖Hp
:= ‖ f ∗‖p < ∞.

If f ∈ L1 , then it is easily seen that the sequence (S2n( f ) : n ∈ N) is a martingale.
If f is a martingale, that is, f = ( f (0), f (1), . . .) then the Fourier coefficients with re-
spect to both systems Walsh-Paley and Walsh-Kaczmarz, must be defined in a little bit
different way:

f̂ ψ (i) = lim
k→∞

∫
G

f (k) (x)ψi (x)dμ (x) .

The Fourier coefficients of f ∈ L1 are the same as the ones of the martingale (S2n( f ) :
n ∈ N) obtained from f . The atomic decomposition is a useful characterization of the
Hardy space Hp . Let 0 < p � 1. A bounded measurable function a is a p -atom, if
either a is identically equal to 1, or there exists a dyadic interval I for which

a) suppa ⊆ I ,

b) ‖a‖∞ � μ(I)−1/p ,

c)
∫
I adμ = 0.

We say that the atom a is supported on the dyadic interval I . Then a martingale f =
( fn : n ∈ N) belongs to the Hardy space Hp (0 < p � 1) if and only if there exists a
sequence (λk : k ∈ N) of real numbers such that ∑∞

k=0 |λk|p < ∞ and

f =
∞

∑
k=0

λkak. (5)

Moreover, the following equivalence of norms (quasi-norms) holds:

cp‖ f‖Hp � inf

(
∞

∑
k=0

|λk|p
)1/p

� Cp‖ f‖Hp ( f ∈ Hp),

where the infimum is taken over all decompositions of f of the form (5). We note that
here and later cp and Cp, denote positive constants depending only on p , although not
always the same in different occurrences.

In this paper we use the next Lemma of Weisz [31]:

LEMMA 1. (Weisz [31]) Suppose that the operator T is σ -sublinear and p-quasi-
local for some 0 < p < 1 . If T is bounded from L∞ to L∞ , then

‖T f‖p � cp‖ f‖Hp for all f ∈ Hp.
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The Kronecker product
(
ψn : n ∈ N

d
)

of d Walsh-(Kaczmarz) system is said to
be the d -dimensional Walsh-(Kaczmarz) system. That is,

ψn (x) = ψn1

(
x1) . . .ψnd

(
xd
)

,

where n = (n1, . . . ,nd) and x = (x1, . . . ,xd) .
If f ∈ L1

(
Gd
)
, then the number f̂ ψ (n) :=

∫
Gd

fψn
(
n ∈ N

d
)

is said to be the

n th Walsh-(Kaczmarz)-Fourier coefficient of f . We can extend this definition to mar-
tingales in the usual way (see Weisz [30, 31]).

For x = (x1, . . . ,xd)∈Gd and n = (n1, . . . ,nd)∈ N
d the d -dimensional rectangles

are defined by In(x) := In1(x
1)× . . .× Ind (x

d) . For n ∈ N
d the σ -algebra generated by

the rectangles {In(x),x ∈Gd} is denoted by Fn . The conditional expectation operators
relative to Fn are denoted by En (with n = (n1, . . . ,nd)).

Suppose that the functions γ j : [1,+∞)→ [1,+∞) are strictly monotone increasing
continuous functions with properties limx→+∞ γ j(x) = +∞ and γ j(1) = 1 for all j =
2, . . . ,d . Moreover, suppose that for j = 2, . . . ,d there exist ζ ,c j,1,c j,2 > 1 such that
the inequality

c j,1γ j(x) � γ j(ζx) � c j,2γ j(x) (6)

holds for each x � 1. In this case the functions γ j are called CRF (cone-like restriction
functions) [4, 8]. Let us introduce the notion γ := (γ2, . . . ,γd) and set β j � 1 be fixed
for j = 2, . . . ,d . We define the d -dimensional cone-like set L (with respect to the first
dimension) by

L := {n ∈ N
d : γ j(n1)/β j � n j � β jγ j(n1), j = 2, . . . ,d}.

The d -dimensional Dirichlet kernels, Fejér kernels and (C,α ) kernels can be given as
the Kronecker product of one-dimensional kernels. That is,

Dψ
n (x) = Dψ

n1
(x1) . . .Dψ

nd
(xd), Kψ

n (x) = Kψ
n1

(x1) . . .Kψ
nd

(xd),

Kψ,α
n (x) = Kψ,α1

n1
(x1) . . .Kψ,αd

nd
(xd),

where n = (n1, . . . ,nd) ∈ N
d , x = (x1, . . . ,xd) ∈ Gd , and α = (α1, . . . ,αd) .

In the present paper we investigate the boundedness of the maximal operator of
some d -dimensional means, provided that the set of the indeces is inside a cone-like
set L and the convergence over a cone-like set L . Namely, we consider the d -parameter
analogue of T (see (4)) as follows. Let Pn = Pn1,...,nd (n = (n1, . . . ,nd) ∈ N

d ) be the
Kronecker product of summation kernels P1

n1
, . . . ,Pd

nd
, that is Pn1,...,nd (x

1, . . . ,xd) :=
P1

n1
(x1) . . .Pd

nd
(xd) . For a fixed CRF function γ we define the cone-like restricted max-

imal operator T γ
CLR by

T γ
CLR( f ) := sup

n∈L
| f ∗Pn| ( f ∈ L1(Gd)). (7)

If γ is the identical function (in each coordinate) then we get a d -dimensional cone.
The cone-like sets were introduced by Gát in [4]. The condition (6) on the function
γ is natural, because Gát [4] proved that to each cone-like set with respect to the first
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dimension there exists a larger cone-like set with respect to the second dimension and
reversely, if and only if the inequality (6) holds.

Connecting to the work of Gát [4] Weisz defined a new type martingale Hardy
space depending on the function γ (see [32]). For a given n1 ∈ N let us set n j :=
|γ j(2n1)| , that is, n j is the order of γ j(2n1) (this means that 2n j � γ j(2n1) < 2n j+1 ) for
j = 2, . . . ,d . Let us set n1 := (n1, . . . ,nd) . Since, the function γ is increasing (for each
coordinate function γ j ), the sequence (n1, n1 ∈ N) is increasing (in each coordinate),
as well. A class of one-parameter martingales f = ( fn1 , n1 ∈ N) is given with respect
to the σ -algebras (Fn1 , n1 ∈ N) . The maximal function of a martingale f is defined
by f ∗ = sup

n1∈N

| fn1 | . For 0 < p � ∞ the martingale Hardy space Hγ
p(Gd) consists of

all martingales for which the Lp -norm of the maximal function f ∗ is finite, that is,
‖ f‖Hγ

p
:= ‖ f ∗‖p < ∞. It is known that Hγ

p ∼ Lp for 1 < p � ∞ , where ∼ denotes the
equivalence of the norms and spaces (see [31]).

If f ∈ L1(Gd) then it is easily shown that the sequence (S2n1 ,...,2nd ( f ) : n1 =
(n1, . . . ,nd),n1 ∈ N) is a one-parameter martingale with respect to the σ -algebras
(Fn1 , n1 ∈ N) . In this case the maximal function can also be given by

f ∗(x) = sup
n1∈N

1
mes(In1(x))

∣∣∣∣∣
∫

In1 (x)
f (u)dμ(u)

∣∣∣∣∣= sup
n1∈N

|S2n1 ,...,2nd ( f ,x)|

for x ∈Gd . The Hardy space Hγ
p has atomic structure also. The atoms a are supported

on the dyadic rectangles I from the σ -algebras Fn1 .

If γ is the identical function (in each coordinate) then L is a d -dimensional cone.
In the two-dimensional case, using a two-dimensional cone restriction set, the proper-
ties of the maximal operator of Walsh-Paley-Fejér means was discussed by Gát [5] and
Weisz [33], separately. Later, the cone restricted maximal operator of two-dimensional
Walsh-Kaczmarz-Fejér means was investigated by Simon [22]. Namely, they showed
that the maximal operator σ∗ of Fejér means is bounded from the Hardy space Hp to
the Lebesgue space Lp for p > 1/2. It was shown also that the end point p = 1/2 is
essential. Further properties in the end point p = 1

2 was discussed later. Namely, in
2007 Goginava and the first author proved that the cone-restricted maximal operator is
not bounded from the Hardy space H1/2 to the space weak-L1/2 [13, 14].

Connecting to the original paper [4] on trigonometric system, Gát asked the fol-
lowing. ”What could we state for other systems for example Walsh-Paley, Walsh-
Kaczmarz and Vilenkin systems and for other means for example logarithmic means,
Riesz means, (C,α ) means?” Some parts of Gát’s question was answered by Weisz
[32], Blahota and the authors [2, 17, 18, 19] and naturally in paper [8]. Moreover, there
are some results in papers [5, 8] about divergence of two-dimensional Fejér means.
Namely, if we suppose that β is a function and not just a constant, then we have two
cases. Either β is bounded, then we have a.e. convergence for each integrable function,
or β is not bounded, then the maximal convergence space is L log+ L .

In 2011, the properties of the maximal operator of the (C,α) and Riesz means of
multi-dimensional Vilenkin-Fourier series with cone-like restriction set, was discussed
by Weisz [32]. Namely, it was shown that the maximal operator is bounded from dyadic
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Hardy space Hp to the space Lp for p0 < p � ∞ ( p0 := max{1/(1+αk) : k = 1, . . . ,d} )
and is of weak type (1,1) . Recently, it was shown that the index p0 is sharp. Namely,
it was proven that the maximal operator is not bounded from the dyadic Hardy space
Hp0 to the space Lp0 [2] (see also [19]). A detailed list of the reached results for one-
and several dimensional Walsh-like systems can be found in [34]. For Walsh-Kaczmarz
system the properties of cone-like restricted two-dimensional maximal operator of Fejér
and (C,α ) means was discussed in [17, 18]. Namely, it is proven that the maximal
operator is bounded from dyadic Hardy space Hp to the Lebesgue space Lp for p0 <
p � ∞ (with the same p0 as Weisz showed) and is of weak type (1,1) . Moreover, at
the end point p = p0 , it is showed that the maximal operator σκ ,α ,∗

L is not bounded
from the Hardy space Hγ

p0 to the space Lp0 .

Our work is motivated by the work of the authors [17, 18] mentioned above and
the paper of Simon [22]. In the last paper Simon improved a so called transference
method. Namely, he considered the maximal operator T of a sequence of summations
(see (4)) and showed that the p -quasi-locality of T implies the same statement for its
two-dimensional version T Id

CR where Id notes that the CRF function γ is the identical
function (in each coordinate, see (7), as well). The main aim of this paper is to extend
the transference method of Simon for all CRF functions γ and cone-like sets L defined
by γ . We mention that our proof is mainly based on the papers [18, 22], we generalize
the method improved in [18] and in the same time we extend the method of paper
[22] for cone-like sets. Applying Lemma 1 of Weisz and some assumptions on the
summation kernels Pn1,...,nd we state that the maximal operator T γ

CLR is bounded from
the Hardy space Hγ

p to the Lebesgue space Lp for p > p0 . In the end point p0 assuming
some natural conditions on one-dimensional kernels we show that the maximal operator
T γ
CLR is not bounded from the Hardy space Hγ

p0 to the Lebesgue space Lp0 . After
proving our main theorems we give an application, we get some new results unknown
until the present days.

2. Improved transference method

In the one-dimensional case to apply the previous Lemma of Weisz (see Lemma
1) we show usually that the operator T : L∞(G) → L∞(G) in question is bounded. It
immediately follows from inequality (3). The operator T is called p -quasi-local if for
arbitrary p -atom a supported on the dyadic interval I the inequality∫

G\I
|T (a)|pdμ � Cp (8)

holds [30]. Hence, p -quasi-locality together with (L∞,L∞)-boundedness of the σ -
sublinear operator T implies that the operator T is bounded from the Hardy space Hp

to the Lebesgue space Lp .

If I = In(x) is a one-dimensional dyadic interval for some x ∈ G and n ∈ N , then
for all r = 0,1, . . . ,n we define Ir by Ir := In−r(x) . Furthermore, the definition of p -
quasi-locality of operator T can be modified as follows: there exists r = 0,1, . . . such
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that ∫
G\Ir

|T (a)|pdμ � Cp (9)

holds for every p -atom a with support I . Analogical idea can be applied in multi-
dimensional case. In most of the proofs of the p -quasi-locality we could realize the
inequality ∫

G\In

(
sup
n�2n

∫
In
|Pn(x+ t)|dμ(t)

)p

dμ(x) � Cp2−N (n ∈ N) (10)

which immediately implies inequalities (8) or (9) (see [22]).
In the next Theorem, we prove that the inequality (10) for one-dimensional kernels

Pi
ni

:= ∑ni−1
k=0 λ i

ni,k
ψk ( i = 1, . . . ,d ) (that is the p -quasi-locality of the one-dimensional

operators T 1, . . . ,Td defined by the kernels P1
n1

, . . .Pd
nd

, respectively) implies the same
property for cone-like restricted operator T γ

CLR .

THEOREM 1. Let the function γ be CRF. Assume that the kernels Pi
ni

satisfy the
inequalities (3) and (10) for all 0 < pi < p � 1 ( i = 1, . . . ,d ). Then the maximal
operator T γ

CLR is bounded from the Hardy space Hγ
p to the Lebesgue space Lp for

p0 < p � 1 (where p0 := max{p1, . . . , pd} ). Moreover, the maximal operator T γ
CLR is

of weak type (1,1).

Proof. The operator T γ
CLR is bounded from the space L∞ to the space L∞ . It

immediately follows from the inequality (3). Moreover, it can be seen easily that the
operator T γ

CLR is σ -sublinear.
Let a be a p -atom. Let it be supported on the dyadic rectangle I . Without loss of

generality we can assume that I = IN1 × . . .× INd (with Nj := |γ j(2N1)| , j = 2, . . . ,d ).
The atom a satisfies ‖a‖∞ � 2(N1+...+Nd)/p and

∫
I adμ = 0. Furthermore, it follows

that a ∗Pn = 0 (n = (n1, . . . ,nd)), when n j < 2Nj for j = 1, . . . ,d .
In the next steps, we use the following inequality and the monotonicity of CRF

functions γ j ( j = 2, . . . ,d ).

cl
j,1γ j

(
2N1

ζ l

)
� γ j(2N1) = γ j

(
2N1

ζ l ζ l
)

� cl
j,2γ j

(
2N1

ζ l

)
holds for all l ∈ P ( j = 2, . . . ,d ). That is,

γ j(2N1)
cl

j,2

� γ j

(
2N1

ζ l

)
� γ j(2N1)

cl
j,1

( j = 2, . . . ,d). (11)

First, we apply the right side of inequality (11) for any positive real number x ,

γ j

(
2N1

ζ x

)
� γ j

(
2N1

ζ [x]

)
� γ j(2N1)

c[x]
j,1

� c j,1γ j(2N1)
cx

j,1
( j = 2, . . . ,d),

where [x] denotes the integer part of x . Now, let us set δ := max{ζ logc j,1
2β j+1

: j =
2, . . . ,d}, as we did in paper [18].
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If n1 � 2N1/δ , then

n j � β jγ j(n1) � β jγ j(2N1ζ− logc j,1
2β j−1

)

� β j
c j,1

c
logc j,1

2β j+1

j,1

γ j(2N1) � γ j(2N1)
2

< 2Nj .

ζ ,c j,1,c j,2 > 1, β j � 1 imply n1 < 2N1 and n j � γ j(2N1)/2 < 2Nj ( j = 2, . . . ,d ).
This yields a ∗Pn = 0 for n = (n1, . . . ,nd) .

That is, we could suppose that n1 > 2N1/δ . Now, we apply the left side of inequal-
ity (11) for any positive real number x ,

γ j

(
2N1

ζ x

)
� γ j

(
2N1

ζ 	x


)
� γ j(2N1)

c	x
j,2

� γ j(2N1)
cx+1

j,2

( j = 2, . . . ,d),

where 	x
 denotes the upper integer part of x . This yields that

n j � γ j(n1)
β j

� γ j(2N1/δ )
β j

� 1

β jc
max{logc j,1

2β j+1: j=2,...,d}+1

j,2

γ j(2N1) � γ j(2N1)
δ ′

j
� 2Nj

δ ′

with δ ′ := max j=2,...,d δ ′
j for all j = 2, . . . ,d . δ ′ > 1 can be assumed.

The proof will be complete, if we show that the maximal operator T γ
CLR satisfies

the modified version of p -quasi-locality (9) for p0 < p � 1, where p0 := max{pi :
i = 1, . . . ,d} . For a p -atom a in Hγ

p with support I = IN1 × . . .× INd (with N1 =
(N1, . . . ,Nd)) the multidimensional version of inequality (9) reads as follows: There
exist a constant cp > 0 and r = 0,1, . . . , such that∫

Ir
|T γ

CLR(a)|pdμ � cp < ∞ (12)

holds for each atom a , where Ir := Ir
N1

× . . .× Ir
Nd

:= IN1−r × . . .× INd−r (Nj − r � 0
for all j = 1, . . . ,d ). We will give the value of r later.

Let us set x = (x1, . . . ,xd) ∈ Ir .

|(a ∗Pn)(x)| =
∣∣∣∣∫

I
a(t1, . . . ,td)P1

n1
(x1 + t1) . . .Pd

nd
(xd + td)dμ(t)

∣∣∣∣
� 2(N1+...+Nd)/p

∫
IN1

|P1
n1

(x1 + t1)|dμ(t1) . . .
∫

INd

|Pd
nd

(xd + td)|dμ(td) (n ∈ N
d).

Now, we decompose the set Ir = Ir
N1

× . . .× Ir
Nd

as the following disjoint union (see
[18] or for d = 2 [22])

Ir =(Ir
N1

× . . .× Ir
Nd

)∪
∪ (Ir

N1
× Ir

N2
× . . .× Ir

Nd
)∪ . . .∪ (Ir

N1
× . . .× Ir

Nd−1
× Ir

Nd
)∪

...

∪ (Ir
N1

× Ir
N2
× . . .× Ir

Nd
)∪ . . .∪ (Ir

N1
× . . .× Ir

Nd−1
× Ir

Nd
).

(13)

Let us set δ ′′ := max{δ ,δ ′} and set r ∈ P such that 2−r � 1/δ ′′ < 2−r+1 . Moreover,
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we set Lr,l := Ir
N1

× . . .× Ir
Nl
× Ir

Nl+1
× . . .× Ir

Nd
for l = 0, . . . ,d−1. Let us define

Ji :=
∫

IrNi

(
sup

ni�2Ni/δ ′′

∫
INi

|Pi
ni
(xi + ti)|dμ(ti)

)p

μ(xi), i = 1, . . . , l,

Jj :=
∫

IrNj

⎛⎝ sup
n j�2Nj /δ ′′

∫
INj

|Pj
n j

(x j + t j)|dμ(t j)

⎞⎠p

μ(x j), j = l +1, . . . ,d.

We immediately get∫
Lr,l

|T γ
CLR(a)|pdμ � 2N1+...+Nd J1 · . . . · Jl · Jl+1 · . . . · Jd . (14)

First, we discuss the integrals Ji ( i = 1, . . . , l ). Inequality (3) and the definitions
of δ ′′,r immediately yield that

Ji � 2−(Ni−r)

(
sup
n1∈N

‖Pi
ni
‖1

)p

� cp2−Ni (i = 1, . . . , l). (15)

Second, we discuss the integrals Jj ( j = l +1, . . . ,d ). Inequality (10) implies

Jj �
∫

IrNj

⎛⎝ sup
n j�2Nj−r

∫
IrNj

|Pj
n j

(x j + t j)|dμ(t j)

⎞⎠p

μ(x j) � cp2
−Nj , if p > p j (16)

( j = l +1, . . . ,d ). Inequalities (14)–(16) yield∫
Lr,l

|T γ
CLR(a)|pdμ � cp if p > p0

for all l = 0, . . . ,d−1. The decomposition (13) of Ir written above gives∫
Ir
|T γ

CLR(a)|pdμ � cp2d if p > p0.

Lemma 1 completes the proof of Theorem 1. The maximal operator T γ
CLR is of weak

type (1,1) follows by Marcinkiewicz interpolation theorem.
It follows that the a.e. convergence holds for polynomials, they form a dense

subset of L1 . Thus, by standard argument the next Corollary holds.

COROLLARY 1. Let γ be CRF and L be a cone-like set. Let f ∈ L1(Gd) . Assume
that the kernels Pi

ni
satisfy the inequalities (3) and (10) for all 0 < pi < p � 1 ( i =

1, . . . ,d ). Then
lim∧n→∞
n∈L

Tn( f ) = f

holds almost everywhere.

Fejér and (C,α) means were investigated with respect to Walsh-Paley sysetem in
papers [8, 32] and Walsh-Kaczmarz system in [18].

In many cases the following question arises. Is the border point p0 sharp or not?
In the next Theorem, we prove that if we could construct a one-dimensional counterex-
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ample martingale sequence in Hp0(G) which shows that the one-dimensional maximal
operator T is not bounded from the Hardy space Hp0 to the space Lp0 . Then this en-
able us to construct a new d -dimensional counterexample martingale sequence in Hγ

p0 ,
as well, which has the same property from the Hardy space Hγ

p0 to the space Lp0 .
In many papers the one-dimensional martingale

fA(x) := D2A+1(x)−D2A(x) (17)

is applied as a counterexample martingale [9, 22]. Since,

f̂ ψ
A (k) =

{
1, if k = 2A, . . . ,2A+1−1,

0, otherwise

and

Sψ
j ( fA)(x) =

⎧⎪⎨⎪⎩
Dψ

j (x)−D2A(x), if j = 2A +1, . . . ,2A+1−1,

fA(x), if j � 2A+1,

0, otherwise.

It could be concluded that

‖ fA‖Hp = ‖ f ∗A‖p = ‖D2A‖p = 2A(1−1/p)

and f ∈ Hp . Moreover, fA is a p -atom and satisfies

S2A+1( fA) = fA. (18)

The next inequality usually is proved

‖T ( fn)‖p0

‖ fn‖Hp0

� an, (19)

where T is defined by one-dimensional summation kernels Pn (see (4)) and (an) is a
positive real valued sequence, which tends to +∞ monotone increasingly. Inequality
(19) and limn→+∞ an = +∞ yield that the maximal operator T is not bounded from
the Hardy space Hp0 to the space Lp0 . In the end point p0 assuming some natural
conditions for one-dimensional kernels in the next Theorem, we show that the maximal
operator T γ

CLR is not bounded from the Hardy space Hγ
p0 to the Lebesgue space Lp0 .

Although, we have to require conditions not only for the kernels P1
n1

, but for kernels
Pl

nl
( l = 2, . . . ,d ), as well. Namely, there exist positive constants c∗l such that

|Pl
nl
∗ψ2k−1| = |λ l

nl ,2k−1| � c∗l (20)

hold for all nl � 2k+1 ( l = 2, . . . ,d ). Inequality (20) hold automatically, if the kernel
functions Pl

nl
are the Fejér kernels Kψ

nl or the (C,α) kernels Kψ,α
nl . In the first case

c∗l = 1
2 and in the second case it is easily seen that there exist positive constants c∗l such

that
1

Aα
nl

nl−1

∑
i=2k

Aα−1
nl−i � c∗l > 0 hold for all nl � 2k+1.

So, inequality (20) is a natural condition for many type of kernels Pl
nl

( l = 2, . . . ,d ).
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THEOREM 2. Let γ be CRF and p0 = p1 � pi ( i = 1, . . . ,d ). Let fA be a p0 -atom
in Hp0(G) with support IA which satisfies inequalities (18) and (19) with a positive real
valued sequence (an) which tends to +∞ monotone increasingly. Moreover, the kernels
Pl

nl
satisfy inequality (20) for l = 2, . . . ,d .

Then the maximal operator T γ
CLR is not bounded from the Hardy space Hγ

p0(G
d)

to the space Lp0(Gd) .

We note that the fact that fA is a p0 -atom in Hp0(G) with support IA and satisfies
equality (18) determine fA having the form of (17) multiplied by a constant c �= 0,
where |c| � 1. This yields that

‖ fA‖Hp0
= ‖ f ∗A‖p0 = ‖ fA‖p0 .

Proof. We note that some idea of this proof is coming from papers [11, 2]. Let
fA ∈ Hp0(G) such that it satisfies the conditions of our theorem. We define a d -
dimensional martingale Fn1 in Hγ

p0(G
d) by

Fn1(x) := fn1(x
1)

d

∏
j=2

ψ
2n j−1−1

(x j),

where n2, . . . ,nd is defined to n1 , earlier, that is, n1 = (n1, . . . ,nd) and x = (x1, . . . ,xd)∈
Gd .

We have

F̂ψ
n1

(k) =

{
f̂ ψ
n1(k1), if k j = 2n j−1−1 for all j = 2, . . . ,d;

0, otherwise.

for k = (k1, . . . ,kd) . Now, we calculate Sψ
j (Fn1) . Using equality (18) and the Fourier

coefficients of Fn1 we may write

Sψ
j (Fn1 ,x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sψ

j1
( fn1 ,x

1)∏d
l=2 ψ2nl−1−1(x

l), if jl � 2nl−1 for all l = 2, . . . ,d; j1 < 2n1+1

Fn1(x), if j1 � 2n1+1 and jl � 2nl−1

for all l = 2, . . . ,d;

0, otherwise.
(21)

We immediately have that

F∗
n1

(x) = sup
m1∈N

|S2m1 ,...,2md (Fn1 ,x)| = |Fn1(x)| = | fn1(x
1)|,

where m1 = (m1, . . . ,md) . Moreover,

‖Fn1‖Hγ
p0 (Gd) = ‖F∗

n1
‖p0 = ‖ f ∗n1

‖p0 = ‖ fn1‖Hp0 (G) < ∞. (22)

That is, Fn1 ∈ Hγ
p0(G

d) .
First, we set LN

1 := 2n1 +N, where 0 < N and LN
j := [γ j(2n1 +N)] for j = 2, . . . ,d

(where [x] denotes the integer part of x ). In this case LN := (LN
1 , . . . ,LN

d ) ∈ L . Let us
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calculate Fn1 ∗PLN .

(Fn1 ∗PLN )(x) = ( fn1 ∗P1
LN

1
)(x1)

d

∏
l=2

λ l
LN

l ,2nl−1−1
ψ2nl−1−1(x

l)

From this and inequality (20) we write

|(Fn1 ∗PLN )(x)| = |( fn1 ∗P1
LN

1
)(x1)

d

∏
l=2

λ l
LN

l ,2nl−1−1
|

� |( fn1 ∗P1
LN

1
)(x1)|

d

∏
l=2

c∗l � c∗|( fn1 ∗P1
LN

1
)(x1)| (23)

with a positive constant c∗ . For the maximal operator T γ
CLR we get

T γ
CLRFn1(x) = sup

n∈L
|(Fn1 ∗Pn)(x)| � sup

LN
1

|(Fn1 ∗PLN )(x)| � c∗ sup
0<N

|( fn1 ∗P1
LN

1
)(x1)| (24)

Since, fn1 ∈ Hp0(G) is a p0 -atom with support In1 , we have that

fn1 ∗Pm = 0 for m � 2n1 .

This together with inequality (24) yield that

T γ
CLR(Fn1)(x) � c∗ sup

m
|( fn1 ∗P1

m)(x1)| = c∗T 1( fn1)(x
1) (25)

and
‖T γ

CLR(Fn1)‖p0

‖Fn1‖Hγ
p0 (Gd)

� c∗‖T 1( fn1)‖p0

‖ fn1‖Hp0 (G)
� c∗an1 . (26)

n1 → ∞ and inequality (19) complete the proof of Theorem 2.
At last, we note that condition (20) can be weakened a little bit. Applying inequal-

ity (20) more precisely in the form

|Pl
nl
∗ψ2k−1| = |λ l

nl ,2k−1| � ck
l (27)

in inequality (23). That is, instead of ∏d
l=2 c∗l we could write ∏d

l=2 cnl−1
l . Thus, on

the right side of inequality (26) the expression a∗n1
:= ∏d

l=2 cnl−1
l an1 appears (where

n2, . . . ,nd defined to n1 earlier). If a∗n1
→ +∞ , while n1 → ∞ our Theorem remain

valid. It means that the absolute value of some coefficients in inequality (20) is not
necessarily bounded from below by a positive constant.

3. Application

It is well-known (see Fine’s map in the first section, equation (1)) that there is a
direct connection between the Walsh group G and the interval I := [0,1[ . The coordi-
nate wise addition in G defines a so-called dyadic addition denoted by � in the interval
[0,1[ . The characters of the Walsh group G are the Walsh-Paley functions. If we change
the operation � on the interval I := [0,1[ by the usual arithmetical sum denoted by + ,
then we get the so-called group of 2-adic integers. It is denoted by (I,+) . The char-
acter system belongs to (I,+) will change, as well. Namely, the 2-adic (or arithmetic)
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sum a+ b := ∑∞
n=0 rn2−(n+1) (a,b ∈ I) , where bits qn,rn ∈ {0,1}(n ∈ N) are defined

recursively as follows : q−1 := 0, an + bn + qn−1 = 2qn + rn for n ∈ N . (Since qn,rn

take on only the values 0,1, these equations uniquely determine the coefficients qn and
rn .) Set

ε(t) := exp(2π ıt) (t ∈ R), (ı = (−1)
1
2 )

and

v2n(x) := ε
(xn

2
+ . . . +

x0

2n+1

)
(x ∈ I,n ∈ N).

We define the product system by

vn :=
∞

∏
n=0

v
n j

2 j ,

where n j is the j th coordinate of natural number n , for more details see the notion of
product system in the first section. It is known [15] that the system (vn,n ∈ N) is the
character system of (I,+) . In the present section, the system {ψk : k∈N} is defined by
ψk := νk for all k ∈ N . The Fourier coefficients, the Dirichlet and the Fejér kernels and
(C,α) kernels are defined in the same way as we did in the first part of this paper. The
partial sums, Fejér means and (C,α) means of an integrable function f are defined
by the convolution of f with the kernel functions. For system (vn,n ∈ N) equality (2)
remain valid. In the most cases the proving methods derived from the dyadic case.

In one-dimensional case the behaviour of the Cesàro means of the Fourier series
on the group of 2-adic integers was discussed, the a.e. convergence and (H.L) issue
were treated by Gát [6]. In paper [9] Gát and the first author investigated the maximal
operator σ∗ := supn |σ1

n | of the Fejér means with respect to the character system of
2-adic integers. Among others, they proved that this operator is bounded from the
Hardy space Hp to the Lebesgue space Lp if and only if 1/2 < p < ∞ . They showed
inequality (10) holds for the Fejér kernels for all 1/2 < p < 1, as well (see inequality
(4) in [9, page 75]). Inequality (3) for Fejér kernels follows from paper [7]. Applying
our transference method (Theorem 1), we immediately get the following Theorem.

THEOREM 3. Let γ be CRF. Set β > 1 . The maximal operator σ∗
CLR is bounded

from the Hardy space Hγ
p(Id) to the space Lp(Id) for all 1

2 < p � 1 . Moreover, the
maximal operator is of weak type (1,1) .

According to Corollary 1 we could state that the d -dimensional Fejér means σn( f )
of an integrable function f ∈ L1(Id) converge almost everywhere to the function f
itself provided that the indeces are inside a cone-like set L .

In the end point case p0 = 1
2 the one-dimensional martingale fA(x) = D2A+1(x)−

D2A(x) (see equality (17)) is applied to show that the maximal operator σ∗ of Fejér
means is not bounded from Hardy space H1/2(I) to the Lebesque space L1/2(I) [9,
Theorem 2.2]. During the proof of this result it was proven, that

‖σ∗( fn)‖1/2

‖ fn‖H1/2

� cn2,
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(see inequality (19), as well). For Fejér kernel functions

Kψ
n ∗ϕ2k−1 � 1

2
hold for all n � 2k+1

(see inequality (20), as well). Applying Theorem 2 we immediately have the following
Theorem.

THEOREM 4. The cone-like restricted maximal operator σ∗
CLR is not bounded

from the Hardy space Hγ
1/2(I

d) to the space L1/2(Id) .
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