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Abstract. A real valued function f defined on a real open interval I is called Φ -monotone if,
for all x,y ∈ I with x � y it satisfies

f (x) � f (y)+Φ(y− x),

where Φ : [0,�(I)[→ R+ is a given nonnegative error function, where �(I) denotes the length of
the interval I . If f and − f are simultaneously Φ -monotone, then f is said to be a Φ -Hölder
function. In the main results of the paper, using the notions of upper and lower interpolations,
we establish a characterization for both classes of functions. This allows one to construct Φ -
monotone and Φ -Hölder functions from elementary ones, which could be termed the building
blocks for those classes. In the second part, we deduce Ostrowski- and Hermite–Hadamard-
type inequalities from the Φ -monotonicity and Φ -Hölder properties, and then we verify the
sharpness of these implications. We also establish implications in the reversed direction.

1. Introduction

The notions of approximately monotone, submonotone and approximately Hölder
functions were coined up in several papers (cf. [1, 2, 3, 5, 6, 7]) and have applications
in nonsmooth and convex analysis and optimization theory, and also in the theory of
functional equations and inequalities. Motivated by the applicability of such concepts,
in our former paper [4], we introduced the concepts of approximately monotone and
approximately Hölder functions and established their basic properties. We now recall
the terminologies and notations introduced in [4].

Let I be a nonempty open real interval throughout this paper and let �(I) ∈ ]0,∞]
denote its length. The symbols R and R+ denote the sets of real and nonnegative
real numbers, respectively. The class of all functions Φ : [0, �(I)[→ R+ , called error
functions, will be denoted by E (I) . We define two concepts related to an error function
Φ ∈ E (I) .
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A function f : I → R is called Φ-monotone if, for all x,y ∈ I with x � y ,

f (x) � f (y)+ Φ(y− x). (1)

If this inequality is satisfied with the identically zero error function Φ , then we say
that f is monotone (increasing). The class of all Φ-monotone functions on I will be
denoted by MΦ(I) .

A function f : I → R is called Φ-Hölder if, for all x,y ∈ I ,

| f (x)− f (y)| � Φ(|x− y|). (2)

The class of all Φ-Hölder functions on I will be denoted by HΦ(I) .
In [4], we showed that the classes MΦ(I) and HΦ(I) are convex and closed with

respect to the pointwise supremum, i.e., if { fγ : I →R | γ ∈ Γ} is a subfamily of MΦ(I)
[resp. HΦ(I)] with a pointwise supremum f : I → R , i.e.,

f (x) = sup
γ∈Γ

fγ (x) (x ∈ I),

then f ∈MΦ(I) [resp. HΦ(I)]. Analogously, MΦ(I) and HΦ(I) are also closed with
respect to the pointwise infimum. Additionally, the class HΦ(I) is centrally symmetric,
i.e., HΦ(I) is closed with respect to multiplication by (−1) . One can also observe that

HΦ(I) = MΦ(I)∩ (−MΦ(I)).

In [4], we proved that an optimal error functions for Φ-monotonicity and Φ-Hölder
property must be subadditive and absolutely subadditive, respectively. We recall, that
an error function Φ ∈ E (I) is subadditive if, for all u,v ∈ R+ with u+ v < �(I) , the
inequality

Φ(u+ v) � Φ(u)+ Φ(v)

holds. Similarly, Φ is termed as absolutely subadditive if, for all u,v∈ R with |u| , |v| ,
|u+ v|< �(I) , the inequality

Φ(|u+ v|) � Φ(|u|)+ Φ(|v|)
is satisfied. It is clear that absolutely subadditive functions are automatically subaddi-
tive. On the other hand, as we have proved it in [4], increasingness and subadditivity
imply absolute subadditivity. In [4], we also established a formula for the lower and
for the upper Φ-monotone and Φ-Hölder envelopes. Furthermore, we introduced a
generalization of the classical notion of total variation and proved an extension of the
Jordan Decomposition Theorem known for functions of bounded total variations.

The aim of this paper is twofold. In the first part, using the notions of upper and
lower interpolations, we establish a characterization for both classes of functions. This
allows one to construct Φ-monotone and Φ-Hölder functions from elementary ones,
which could be termed as the building blocks for those classes. In addition to these,
we describe the solution to a two variable triangle inequality-type functional equation
which appears in the characterization of Φ-monotonicity. In the second part, we deduce
Ostrowski- and Hermite–Hadamard-type inequalities from the Φ-monotonicity and Φ-
Hölder properties, and then we verify the sharpness of these implications. We also
establish implications in the reversed direction.
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2. Characterization of Φ-monotone functions

In what follows, we construct a large class of elementary Φ-monotone functions
provided that Φ is a subadditive and nondecreasing error function whose members
will turn out to be the building blocks of Φ-monotone functions. It turns out (cf. [4,
Proposition 3.2]), that if Φ is of the form Φ(t) = ct p , where c � 0 and p ∈ ]0,1] , then
Φ is a subadditive and nondecreasing error function.

If Φ ∈ E (I) , h : I → [−∞,∞] and p ∈ I , then define the functions hp,hp : I →
[−∞,∞] as follows:

hp(x) :=

{
h(x) if x � p,

h(p)−Φ(x− p) if p < x,
and hp(x) :=

{
h(p)+ Φ(p− x) if x < p,

h(x) if p � x.
(3)

PROPOSITION 2.1. Let Φ ∈ E (I) be subadditive and nondecreasing and h : I →
[−∞,∞] be nondecreasing. Then, for all p ∈ I , the functions hp and hp defined by (3)
are Φ-monotone.

Proof. Let p∈ I be fixed. To show that hp is Φ-monotone, let x,y∈ I with x < y .
We now distinguish three subcases according to the position of p with respect to x and
y .
If x < y � p , then

hp(x) = h(x) � h(y) = hp(y) � hp(y)+ Φ(y− x).

If x � p < y , then the increasingness of Φ implies

hp(x) = h(x) � h(p) = hp(y)+ Φ(y− p) � hp(y)+ Φ(y− x).

Finally, if p < x < y , then the subadditivity of Φ results

hp(x) = h(p)−Φ(x− p) = hp(y)+ Φ(y− p)−Φ(x− p)� hp(y)+ Φ(y− x).

The proof of the Φ-monotonicity of hp is analogous, therefore omitted.
If Φ ∈ E (I) , f : I → R and p ∈ I , then we say that f can be interpolated at p

by a Φ-monotone function from below [resp. from above] if there exits a Φ-monotone
function h : I → R such that h(p) = f (p) and h � f [resp. f � h ].

PROPOSITION 2.2. Let Φ ∈ E (I) be a subadditive and nondecreasing function,
let f : I → R and p ∈ I be fixed. Then f can be interpolated at p by a Φ-monotone
function from below if and only if, for all x ∈ I ,

−∞ < inf
[x,p]

f if x � p and f (p) � f (x)+ Φ(x− p) if p < x. (4)

Analogously, f can be interpolated at p by a Φ-monotone function from above if and
only if, for all x ∈ I ,

f (x) � f (p)+ Φ(p− x) if x < p and sup
[p,x]

f < +∞ if p � x. (5)



250 A. R. GOSWAMI AND Z. PÁLES

Proof. Suppose first that there exists a Φ-monotone function h : I → R such that
h(p) = f (p) and h � f . Let x ∈ I be arbitrary.

If x � p and t ∈ [x, p] , then by the Φ-monotonicity of h and the nondecreasing-
ness of Φ , we get

h(x) � h(t)+ Φ(t− x) � h(t)+ Φ(p− x) � f (t)+ Φ(p− x),

which implies that
inf
[x,p]

f � h(x)−Φ(p− x) > −∞.

If p < x , then f (p) = h(p) � h(x)+ Φ(x− p) � f (x)+ Φ(x− p) proving the second
part of condition (4).

To prove the sufficiency, assume that condition (4) holds and define the function
h : I → [−∞,∞] by

h(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
[x,p]

f if x < p,

f (p) if x = p,

sup
[p,x]

f if p < x.

Then one can easily check that h is nondecreasing, h(p) = f (p) and, by the first part
of (4), h(x) is finite if x � p . Therefore, the function hp has finite values everywhere.
According to Proposition 2.1, hp is Φ-monotone and hp(p) = h(p) = f (p) . Thus, it
remains to show that hp � f . Indeed, if x � p , then hp(x) = inf[x,p] f � f (x) . If p < x ,
then, by the second part of (4), hp(x) = h(p)−Φ(x− p)= f (p)−Φ(x− p) � f (x) and
the proof is completed.

The second part of the proposition can be verified in an analogous manner.

THEOREM 2.3. Let Φ ∈ E (I) be a subadditive and nondecreasing function and
f : I → R . Then the following assertions are equivalent.

(i) f is Φ-monotone.

(ii) There exists a function H : I×I→R such that H satisfies the functional equations

min(H(x,y),H(y,z)) = H(x,z) and max(H(z,y),H(y,x)) = H(z,x) (6)

for all x,y,z ∈ I with x � y � z and, for all p ∈ I , the function h := H(·, p) is
nondecreasing and hp and hp are Φ-monotone interpolations for f at p from
below and from above, respectively.

(iii) For every p ∈ I , there exists a nondecreasing function h : I → R such that hp is
a Φ-monotone interpolation of f at p from below.

(iv) For every p ∈ I , there exists a nondecreasing function h : I → R such that hp is
a Φ-monotone interpolation of f at p from above.
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Proof. (i) ⇒ (ii) : Assume that f is Φ-monotone and let’s define the function
H : I× I → R by

H(x,y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
[x,y]

f if x < y,

f (x) if x = y,

sup
[y,x]

f if x > y.

By its Φ-monotonicity, the function f can be interpolated from below and from above
by a Φ-monotone function, thus, Proposition 2.2 implies that the values of H are finite.

Then, for any x,y,z ∈ I with x � y � z , we have

min(H(x,y),H(y,z)) = min

(
inf
[x,y]

f , inf
[y,z]

f

)
= inf

[x,z]
f = H(x,z).

Analogously, we can also establish the second equality:

max(H(z,y),H(y,x)) = max

(
sup
[y,z]

f ,sup
[x,y]

f

)
= sup

[x,z]
f = H(z,x).

Thus, we have shown that H satisfies the functional equations of assertion (ii).
Let p∈ I be fixed. To show the nondecreasingness of h := H(·, p) , assume x,y∈ I

with x < y . If x < y � p , Then, by the defination of h , we have

h(x) = H(x, p) = inf
[x,p]

f � inf
[y,p]

f = H(y, p) = h(y).

If x � p < y ,

h(x) = H(x, p) = inf
[x,p]

f � f (p) � sup
[p,y]

f = H(y, p) = h(y).

Finally, if p < x < y , then

h(x) = H(x, p) = sup
[p,x]

f � sup
[p,y]

f = H(y, p) = h(y).

This completes the proof of the monotonicity.
Finally, we just need to show that hp is a Φ-monotone interpolation of f at p

from below.
hp � f � hp and hp(p) = f (p) = hp(p).

For the first inequality, let x ∈ I be arbitrary. If x � p , then

hp(x) = h(x) = H(x, p) = inf
[x,p]

f � f (x).

If p < x , then the Φ-monotonicity of f yields

hp(x) = h(p)−Φ(x− p) = H(p, p)−Φ(x− p) = f (p)−Φ(x− p) � f (x).
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Therefore, hp � f holds on I . The equality hp(p) = f (p) is obvious.
Analogously, one can see that hp is a Φ-monotone interpolation of f at p from

above.
(ii) ⇒ (iii),(iv) : Assume that H : I × I → R satisfies the conditions of assertion

(ii). For any p∈ I , define h := H(·, p) . Then hp and hp are Φ-monotone interpolation
of f at p from below and above, respectively. Hence assertions (iii) and (iv) are valid.

The proof of the last two implications is based on the result of our previous paper
[4] which states that the family of Φ-monotone functions is closed under pointwise
supremum and infimum.

(iii) ⇒ (i) If we assume that f admits a Φ-monotone interpolation from below at
every point p ∈ I , then f is the pointwise supremum of a family of such Φ-monotone
functions, and therefore, f itself is a Φ-monotone function.

(iv) ⇒ (i) If we assume that f admits a Φ-monotone interpolation from above at
every point p ∈ I , then f is the pointwise infimum of a family of such Φ-monotone
functions, and therefore, f itself is a Φ-monotone function.

3. The functional equation (6)

In what follows we will investigate the functional equation (6) more closely.

THEOREM 3.1. Let H : I× I →R and assume that H satisfies (6) for all x,y,z ∈ I
with x � y � z. Then

H(x,y) � inf
t∈[x,y]

H(t,t) and H(y,x) � sup
t∈[x,y]

H(t,t) (7)

for all x,y ∈ I with x � y. If, in addition, H is continuous at the diagonal {(t,t) | t ∈ I ,
then the above inequalities can be replaced by equality.

Proof. First we prove that, for all n ∈ N and elements t0 � t1 � . . . � tn−1 � tn in
I , the function H satisfies the following generalization of (6):

min(H(t0,t1), . . . ,H(tn−1,tn)) = H(t0, tn) and

max(H(tn,tn−1), . . . ,H(t1,t0)) = H(tn, t0).
(8)

This statement is trivial if n = 1. We prove the statement for n > 1 by induction.
For n = 2, the equalities in (8) are equivalent to (6). Assume now that (8) holds for
some n � 2 and let t0 � t1 � . . . � tn−1 � tn � tn+1 in I . Then, applying the inductive
hypothesis and then (6), we get

min(H(t0, t1), . . . ,H(tn−1,tn),H(tn,tn+1)

= min
(
min(H(t0,t1), . . . ,H(tn−1,tn)),H(tn, tn+1)

)
= min(H(t0,tn),H(tn,tn+1)) = H(t0,tn+1).

This proves the first equality in (8) for the case n+1. The proof of the second equality
is completely analogous.
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To prove the first inequality in (7), let x � y and apply (8) for (t0,t1,t2,t3) =
(x,t,t,y) and for (t0, t1,t2) = (x,t,y) where t ∈ [x,y] is arbitrary. We obtain

H(x,y) = min(H(x,t),H(t,t),H(t,y))
= min(min(H(x,t),H(t,y)),H(t,t)) = min(H(x,y),H(t,t))

This implies that H(x,y) � H(t,t) for all t ∈ [x,y] and completes the proof of the first
inequality in (7). The proof of the second inequality is similar.

Now assume that H is continuous at the diagonal {(t, t) | t ∈ I . Let x,y ∈ I with
x � y . If x = y , then [x,y] = {x} and bothe equalities in (6) hold. Assume now that
x < y and let x0 := x and y0 := y , and suppose that we have constructed xn < yn such
that

[xn,yn] ⊆ [xn−1,yn−1], yn− xn = 2−n(y− x) and H(xn,yn) = H(xn−1,yn−1). (9)

Using (6), we now have that

min(H(xn,
xn+yn

2 ),H( xn+yn
2 ,yn)) = H(xn,yn).

If H(xn,
xn+yn

2 ) = H(xn,yn) then define xn+1 := xn and yn+1 := xn+yn
2 , otherwise let

xn+1 := xn+yn
2 and yn+1 := yn . Then (9) holds for n+1 instead of n .

According to the Cantor Intersection Theorem, the intersection of the sequence
of intervals [xn,yn] equals a singleton {t} , where t ∈ [x,y] and t is the common limit
of the sequences (xn) and (yn) . By the continuity of H at (t,t) , it follows that the
sequence (H(xn,yn)) converges to H(t,t) . Therefore, H(t,t) = H(x0,y0) = H(x,y) ,
which establishes the first equality in (7). The proof of the second equality is similar,
therefore, it is omitted.

We note that the last assertion of the theorem is not valid without continuity. In-
deed, define H : I × I → R by H(x,y) = sign(x− y) . Then H increases in its first
variable, decreases in the second variable, and it is easy to see that H satisfies the two
equalities in (6) for all x � y � z . On the other hand, (7) holds with strict inequalities.

It is also worth observing that a function H : I× I → R satisfies (6) if and only if
G := −H fulfils

max(G(x,y),G(y,z)) = G(x,z) and min(G(z,y),G(y,x)) = G(z,x) (10)

for all x � y � z in I . Now Theorem 3.1, with the transformation H := −G , implies
the following assertion.

COROLLARY 3.2. Let G : I × I → R and assume that G satisfies (10) for all
x,y,z ∈ I with x � y � z. Then

G(x,y) � sup
t∈[x,y]

G(t,t) and G(y,x) � inf
t∈[x,y]

G(t, t) (11)

for all x,y∈ I with x � y. If, in addition, G is continuous at the diagonal {(t,t) | t ∈ I} ,
then the above inequalities can be replaced by equality.
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4. Characterization of Φ-Hölder functions

If Φ ∈ E (I) , f : I → R and p ∈ I , then we say that f can be interpolated at p by
a Φ-Hölder function from below [resp. from above] if there exits a Φ-Hölder function
h : I → R such that h(p) = f (p) and h � f [resp. f � h ].

In what follows, given an error function Φ ∈ E (I) and p ∈ I , we define the func-
tion Φp : I → R by

Φp(x) := Φ(|x− p|) (x ∈ I). (12)

PROPOSITION 4.1. Let Φ∈E (I) be an absolutely subadditive function with Φ(0)
= 0 . Then, for all p ∈ I , the function Φp is Φ-Hölder on I .

Proof. Let p ∈ I and let x,y ∈ I . Then, using the absolute subadditivity of Φ , it
immediately follows that

|Φp(x)−Φp(y)| = |Φ(|x− p|)−Φ(|y− p|)|� Φ(|y− x|).

This shows that Φp is Φ-Hölder on I .

PROPOSITION 4.2. Let Φ∈E (I) be an absolutely subadditive function with Φ(0)
= 0 , let f : I → R and p ∈ I be fixed. Then f can be interpolated at p by a Φ-Hölder
function from below if and only if, for all x ∈ I ,

f (p) � f (x)+ Φ(|x− p|). (13)

Analogously, f can be interpolated at p by a Φ-Hölder function from above if and
only if, for all x ∈ I ,

f (x) � f (p)+ Φ(|x− p|). (14)

Proof. Suppose first that there exists a Φ-Hölder function h : I → R such that
h(p) = f (p) and h � f . Let x ∈ I be arbitrary. Then

f (p) = h(p) � h(x)+ Φ(|x− p|) � f (x)+ Φ(|x− p|)

verifying condition (13).
To prove the sufficiency, assume that (13) holds for all x ∈ I and define h :=

f (p)−Φp . According to Proposition 4.1, it follows that h is Φ-Hölder. On the other
hand, the condition Φ(0) = 0 implies that h(p) = f (p) .

It remains to show that h � f . Indeed, if x ∈ I , then (13) implies h(x) = f (p)−
Φ(|x− p|) � f (x) and the proof is completed.

The verification of the second assertion is analogous.

THEOREM 4.3. Let Φ ∈ E (I) be absolutely subadditive function with Φ(0) = 0
and let f : I → R . Then the following assertions are equivalent to each other:

(i) f is Φ-Hölder.
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(ii) For every p ∈ I , the functions f (p)−Φp and f (p)+ Φp are Φ-Hölder interpo-
lations of f at p from below and above, respectively.

(iii) For every p ∈ I , f possesses a Φ-Hölder interpolation from below.

(iv) For every p ∈ I , f possesses a Φ-Hölder interpolation from above.

Proof. (i) ⇒ (ii) Let f be a Φ-Hölder function. Then, trivially, f possesses
Φ-Hölder interpolation at p from below and from above. Thus, by Proposition 4.2,
the inequalities (13) and (14) are valid. Therefore we have that f (p)−Φp � f �
f (p)+ Φp . On the other hand, these two functions are Φ-Hölder and interpolate f at
p . This proves (ii) .

The implication (ii) ⇒ (iii) and (ii) ⇒ (iv) are obvious.
The proof of the implications (iii) ⇒ (i) and (iv) ⇒ (i) is based on a result of

our previous paper [4] which states that the family of Φ-Hölder functions is closed
under pointwise supremum and infimum. If we assume that f admits a Φ-Hölder in-
terpolation from below (resp. from above) at every point p ∈ I , then f is the pointwise
supremum (resp. infimum) of a family of Φ-Hölder functions, and therefore, f itself
is a Φ-Hölder function.

5. Hermite–Hadamard-type inequalities for Φ-monotone functions

In the sequel, a function defined on an interval will be called locally integrable if
it has a finite Lebesgue integral over every compact subinterval of its domain.

For the description of our subsequent results, we now introduce the following
notation and terminology: If a,b ∈ I then the convex hull of {a,b} , i.e., the smallest
interval containing a and b , will denoted by 〈a,b〉 . If, additionally, f : 〈a,b〉 → R is
Lebesgue integrable, then the integral average of f over 〈a,b〉 is defined by

A ( f ,〈a,b〉) :=
∫ 1

0
f (ta+(1− t)b)dt. (15)

One can easily see that the following equality holds:

〈a,b〉 :=

⎧⎪⎪⎨
⎪⎪⎩

[a,b] if a < b,

{a} if a = b,

[b,a] if a > b,

and A ( f ,〈a,b〉) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
b−a

∫ b

a
f if a < b,

f (a) if a = b,

1
a−b

∫ a

b
f if a > b.

(16)

The inequalities stated in the following results summarize both Hermite–Hadamard
and Ostrowski-type inequalities for the Φ-monotone as well as for the Φ-Hölder set-
tings.
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THEOREM 5.1. Let Φ ∈ E (I) and f : I →R be locally Lebesgue integrable func-
tions. If f is Φ-monotone, then, for all u,v,w,z ∈ I with u � w and v � z,

A ( f ,〈u,v〉) � A ( f ,〈w,z〉)+A (Φ,〈w−u,z− v〉). (17)

If f is Φ-Hölder, then, for all u,v,w,z ∈ I ,∣∣A ( f ,〈u,v〉)−A ( f ,〈w,z〉)∣∣ � A (Φ◦ | · |,〈w−u,z− v〉). (18)

Proof. Assume first that f is Φ-monotone. Then the inequalities u � w and v � z
imply tu+(1− t)v � tw+(1− t)z for t ∈ [0,1] , hence

f (tu+(1− t)v) � f (tw+(1− t)z)+ Φ(t(w−u)+ (1− t)(z− v)).

Integrating with respect to t over [0,1] , we get that (17) holds.
In the case when f is Φ-Hölder, for t ∈ [0,1] , we get

f (tu+(1− t)v)− f (tw+(1− t)z)� Φ(|t(w−u)+ (1− t)(z− v)|),
f (tw+(1− t)z)− f (tu+(1− t)v)� Φ(|t(w−u)+ (1− t)(z− v)|).

Integrating both inequalities with respect to t over [0,1] , we get that (18) holds.
Assuming Φ-monotonicity, we deduce a monotonicity type integral inequality

which we will call the lower and upper Hermite–Hadamard inequalities for Φ-monotone
functions.

THEOREM 5.2. Let Φ ∈ E (I) and f : I →R be a Φ-monotone. Assume that both
functions are locally Lebesgue integrable. Then, for every x < y in I , the following two
inequalities hold:

f (x)− 1
y− x

∫ y−x

0
Φ � 1

y− x

∫ y

x
f � f (y)+

1
y− x

∫ y−x

0
Φ. (19)

Furthermore, if Φ is subadditive and nondecreasing, then, for all x < y in I ,

sup
f∈MΦ(I)

(
f (x)− 1

y− x

∫ y

x
f

)
= sup

f∈MΦ(I)

(
1

y− x

∫ y

x
f − f (y)

)
=

1
y− x

∫ y−x

0
Φ. (20)

Proof. Let x < y . Then the left and right hand side inequalities in (19) follow
from (17) and (16) by taking the particular cases u = v = w = x , z = y and u = x ,
v = w = z = y , respectively.

Now assume that Φ is subadditive and nondecreasing. In view of (19), it is clear
that both supremums are not bigger than the right hand side of (20). To prove the
equalities in (20), let x < y in I . Then let f and f be defined by

f (u) :=

{
0 if u � x,

−Φ(u− x) if x < u,
and f (u) :=

{
Φ(y−u) if u < y,

0 if y � u.
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By Proposition 2.1, we can obtain that both f and f are Φ-monotone. On the other
hand, we have

sup
f∈MΦ(I)

(
f (x)− 1

y− x

∫ y

x
f

)
� f (x)− 1

y− x

∫ y

x
f

=
1

y− x

∫ y

x
Φ(u− x)du =

1
y− x

∫ y−x

0
Φ

and

sup
f∈MΦ(I)

(
1

y− x

∫ y

x
f − f (y)

)
� 1

y− x

∫ y

x
f − f (y)

=
1

y− x

∫ y

x
Φ(y−u)du =

1
y− x

∫ y−x

0
Φ.

These two inequalities together with their reverses imply that the equality (20) holds.

COROLLARY 5.3. Let p ∈ [0,1] , c ∈ [0,∞[ and f : I → R be a c(·)p -monotone
locally Lebesgue integrable function. Then, for every x < y in I , the following two
inequalities hold:

f (x)− c
p+1

(y− x)p � 1
y− x

∫ y

x
f � f (y)+

c
p+1

(y− x)p.

Furthermore, for all x < y in I ,

sup
f∈MΦ(I)

(
f (x)− 1

y− x

∫ y

x
f

)
= sup

f∈MΦ(I)

(
1

y− x

∫ y

x
f − f (y)

)
=

c
p+1

(y− x)p.

Proof. Apply the previous statement for the error function Φ ∈ E (R+) given by
Φ(t) := ct p . This error function is subadditive and nondecreasing, therefore, the second
part of the theorem can also be applied.

LEMMA 5.4. Let Ψ ∈ E (I) and assume that the map t 
→ Ψ(t)/t is locally inte-
grable on [0, �(I)[ and define Φ ∈ E (I) by

Φ(u) = Ψ(u)+
∫ u

0

Ψ(t)
t

dt (u ∈ ]0, �(I)[). (21)

Then Φ is locally integrable and satisfies the following equation:

Ψ(u)+
1
u

∫ u

0
Φ = Φ(u) (u ∈ ]0, �(I)[). (22)

Proof. By the assumption, we also have that Ψ is locally integrable and hence Φ
defined by (21) is also locally integrable. Let u ∈ ]0, �(I)[ be fixed. Then, by Fubini’s
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theorem, we obtain

Ψ(u)+
1
u

∫ u

0
Φ(s)ds = Ψ(u)+

1
u

∫ u

0

(
Ψ(s)+

∫ s

0

Ψ(t)
t

dt
)
ds

= Ψ(u)+
1
u

∫ u

0
Ψ(s)ds+

1
u

∫ u

0

∫ s

0

Ψ(t)
t

dtds

= Ψ(u)+
1
u

∫ u

0
Ψ(s)ds+

1
u

∫ u

0

∫ u

t

Ψ(t)
t

dsdt

= Ψ(u)+
1
u

∫ u

0
Ψ(s)ds+

1
u

∫ u

0
(u− t)

Ψ(t)
t

dt

= Ψ(u)+
1
u

∫ u

0
Ψ(s)ds+

∫ u

0

Ψ(t)
t

dt− 1
u

∫ u

0
Ψ(t)dt

= Ψ(u)+
∫ u

0

Ψ(t)
t

dt = Φ(u).

This completes the proof of (22).

THEOREM 5.5. Let Ψ ∈ E (I) and assume that the map t 
→ Ψ(t)/t is locally
integrable on [0, �(I)[ and define Φ ∈ E (I) by (21). If f : I → R is an upper semicon-
tinuous solution of

f (u) � 1
v−u

∫ v

u
f + Ψ(v−u) (u,v ∈ I, u < v), (23)

then f is Φ-monotone on I .

Proof. Let f : I → R be an upper semicontinuous solution of (23). Then f is
Lebesgue measurable. Therefore f is upper bounded on any compact subinterval [u,v]
of I and hence the Lebesgue integral of f exists and it cannot be +∞ . On the other
hand, (23) shows that (v−u)( f (u)−Ψ(v−u)) is a lower bound for the integral of f ,
thus f has a finite Lebesgue integral over [u,v] .

To prove that f is Φ-monotone, let x,y ∈ I be fixed with x < y . Let USC([x,y])
denote the family of upper semicontinuous Lebesgue integrable functions and, for g ∈
USC([x,y]) , define

(Tg)(u) :=

⎧⎪⎨
⎪⎩

1
y−u

∫ y

u
g+ Ψ(y−u) if u ∈ [x,y[ ,

g(y) if u = y.

Then T is a monotone and affine operator which maps USC([x,y]) into itself.
Observe that inequality (23) for v = y gives that f � T f holds on [x,y] . By the

monotonicity of T , it follows that T f � T (T f ) = T 2 f . By induction, this yields that
Tn−1 f � Tn f for all n ∈ N . Therefore, the sequence Tn f is increasing.

Define F : [x,y] → R by
F(u) := sup

[u,y]
f .
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By the upper semicontinuity of f , we have that F is finite.
Let v ∈ ]x,y[ be arbitrarily fixed. We prove by induction, for all n ∈ N∪{0} , that

Tn f (u) �

⎧⎨
⎩

(v− x
y− x

)n
(F(x)−F(v))+F(v)+ Φ(y−u) if u ∈ [x,v[ ,

F(v)+ Φ(y−u) if u ∈ [v,y] .
(24)

If n = 0, then Tn f (u) = f (u) and (24) simplifies to

f (u) �

⎧⎨
⎩

F(x)+ Φ(y−u) if u ∈ [x,v[ ,

F(v)+ Φ(y−u) if u ∈ [v,y] ,

which follows from the definition of F and the nonnegativity of Φ .
Now assume that (24) holds for some n . For u ∈ [x,v[ , using the first and sec-

ond inequalities in (24) on the intervals [u,v] and [v,y] , respectively, and finally the
assertion of Lemma 5.4, we get

(Tn+1 f )(u) =
1

y−u

∫ y

u
T n f + Ψ(y−u) =

1
y−u

(∫ v

u
T n f +

∫ y

v
T n f

)
+ Ψ(y−u)

� v−u
y−u

((v− x
y− x

)n
(F(x)−F(v))+F(v)

)
+

1
y−u

∫ v

u
Φ(y− t)dt

+
y− v
y−u

F(v)+
1

y−u

∫ y

v
Φ(y− t)dt + Ψ(y−u)

=
v−u
y−u

(v− x
y− x

)n
(F(x)−F(v))+F(v)+

1
y−u

∫ y

u
Φ(y− t)dt + Ψ(y−u)

�
(

v− x
y− x

)n+1

(F(x)−F(v))+F(v)+
1

y−u

∫ y−u

0
Φ+ Ψ(y−u)

=
(

v− x
y− x

)n+1

(F(x)−F(v))+F(v)+ Φ(y−u).

If u ∈ [v,y[ , then [u,y] ⊆ [v,y] and hence we shall only need the second inequality for
Tn f on [u,y] . Using this estimate and the assertion of Lemma 5.4, we get

(Tn+1 f )(u) =
1

y−u

∫ y

u
T n f + Ψ(y−u) � F(v)+

1
y−u

∫ y

u
Φ(y− t)dt + Ψ(y−u)

= F(v)+
1

y−u

∫ y−u

0
Φ+ Ψ(y−u) = F(v)+ Φ(y−u).

and the trivial inequality (Tn+1 f )(y) = f (y) � F(v)+ Φ(y− u) shows the desired in-
equality is true for u = y .

In view of the monotonicity of the sequence Tn f , we have that f � Tn f for all
n ∈ N . Thus, (24) implies, for all n ∈ N , that

f (u) �

⎧⎨
⎩

(v− x
y− x

)n
(F(x)−F(v))+F(v)+ Φ(y−u) if u ∈ [x,v[ ,

F(v)+ Φ(y−u) if u ∈ [v,y] .
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Upon taking the limit n → ∞ , the above inequality yields, for all v ∈ [x,y[ , that

f (u) � F(v)+ Φ(y−u) = sup
[v,y]

f + Φ(y−u) u ∈ [x,y].

Now, taking the limit v → y , the upper semicontinuity of f yields, that

f (u) � f (y)+ Φ(y−u) u ∈ [x,y].

In particular, this inequality holds for u = x , which completes the proof of the Φ-
monotonicity of f .

The following result is a counterpart of Theorem 5.5. It can be proved directly in
an analogous way, however, we will deduce it from this theorem using a sign transfor-
mation.

THEOREM 5.6. Let Ψ∈E (I) and assume that the map t 
→Ψ(t)/t is locally inte-
grable on [0, �(I)[ and define Φ ∈ E (I) by (21). If f : I →R is a lower semicontinuous
solution of

1
v−u

∫ v

u
f � f (v)+ Ψ(v−u) (u,v ∈ I, u < v), (25)

then f is Φ-monotone on I .

Proof. Assume that f : I → R satisfies (25). Define g(x) := − f (−x) for x ∈
J := −I . Then �(I) = �(J) hence Φ,Ψ ∈ E (J) and g is lower semicontinuous over J .
On the other hand, for u,v ∈ J with u < v , we have that −u,−v ∈ I with −v < −u .
Applying (23) for these variables, we obtain

1
−u− (−v)

∫ −u

−v
f � f (−u)+ Ψ(−u− (−v)) (u,v ∈ J, u < v).

This, after replacing f (x) by −g(−x) , gives

− 1
v−u

∫ v

u
g � −g(u)+ Ψ(v−u) (u,v ∈ J, u < v).

From here, we can see that g satisfies the inequality (23) (wherein f is replaced by g ).
According to Theorem 5.5, we can conclude that g is Φ-monotone on J . This, with an
analogous substitutions, implies that f is also Φ-monotone.

COROLLARY 5.7. Let p ∈ ]0,1] , c ∈ [0,∞[ . If f : I → R is an upper semicontin-
uous solution of

f (u) � 1
v−u

∫ v

u
f + c(v−u)p (u,v ∈ I, u < v),

then f is c(p+1)
p (·)p -monotone on I . In particular, f is increasing if p > 1 .
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Proof. By our assumption, f satisfies (23) with Ψ defined by Ψ(u) := cup . In
order to apply the previous theorem, we have to compute Φ which is given by (21).

Φ(u) = Ψ(u)+
∫ u

0

Ψ(t)
t

dt = cup +
∫ u

0
ct p−1dt

= cup +
c
p
up =

c(p+1)
p

up.

Thus, by Theorem 5.5, f is c(p+1)
p (·)p -monotone on I .

In the case p > 1, the c(p+1)
p (·)p -monotonicity implies that f is in fact increasing.

The next assertion is a counterpart of Corollary 5.7. Its proof can be obtained
from Theorem 5.6 exactly in the same way as the previous corollary was deduced from
Theorem 5.5.

COROLLARY 5.8. Let p ∈ ]0,1] , c ∈ [0,∞[ . If f : I → R is a lower semicontinu-
ous solution of

1
v−u

∫ v

u
f � f (v)+ c(v−u)p (u,v ∈ I, u < v),

then f is c(p+1)
p (·)p -monotone on I . In particular, f is increasing if p > 1 .

6. Ostrowski- and Hermite–Hadamard-type inequalities for Φ-Hölder functions

The result stated in the next theorem will be called an Ostrowski-type inequality
for Φ-Hölder functions.

THEOREM 6.1. Let Φ ∈ E (I) and f : I → R be a Φ-Hölder. Assume that both
functions are locally Lebesgue integrable. Then, for every x < y in I , the following two
inequality hold:∣∣∣∣ f (p)− 1

y− x

∫ y

x
f

∣∣∣∣ � 1
y− x

(∫ p−x

0
Φ+

∫ y−p

0
Φ

)
(p ∈ [x,y]). (26)

Furthermore, if Φ is subadditive and nondecreasing with Φ(0) = 0 , then, for all x < y
in I ,

sup
f∈HΦ(I)

∣∣∣∣ f (p)− 1
y− x

∫ y

x
f

∣∣∣∣ =
1

y− x

(∫ p−x

0
Φ+

∫ y−p

0
Φ

)
(u ∈ [x,y]). (27)

Proof. Let p ∈ [x,y] be fixed. Applying the second assertion of Theorem 5.1 in
the particular case u = v = p , w = x , and z = y , the inequality (18) yields∣∣A ( f ,{p})−A ( f , [x,y])

∣∣ � A (Φ◦ | · |, [x− p,y− p])

=
1

y− x

∫ y−p

x−p
Φ(|t|)dt

=
1

y− x

(∫ p−x

0
Φ+

∫ y−p

0
Φ

)
.
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which reduces to (26).
Assume now that Φ is subadditive and nondecreasing and let x < y be fixed. For

p ∈ [x,y] , define the function Φp : I → R by (12). Then, by Proposition 4.1, we have
that Φp is a Φ-Hölder function. Therefore,

sup
f∈HΦ(I)

∣∣∣∣ f (p)− 1
y− x

∫ y

x
f

∣∣∣∣ �
∣∣∣∣Φp(p)− 1

y− x

∫ y

x
Φp

∣∣∣∣
=

1
y− x

∫ y

x
Φp

=
1

y− x

(∫ p−x

0
Φ+

∫ y−p

0
Φ

)
.

This inequality together with its reverse imply that the equality in (27) is valid.
The inequalities obtained in the particular cases p = x and p = y will be called

the lower and upper Hermite–Hadamard-type inequalities for Φ-Hölder functions.

COROLLARY 6.2. Let q ∈ [0,1] , c ∈ [0,∞[ and f : I → R be a c(·)q -Hölder
locally Lebesgue integrable function. Then, for every x < y in I ,∣∣∣∣ f (p)− 1

y− x

∫ y

x
f

∣∣∣∣ � c
q+1

((p− x)q +(y− p)q) (p ∈ [x,y]).

Furthermore, for all x < y in I ,

sup
f∈HΦ(I)

∣∣∣∣ f (p)− 1
y− x

∫ y

x
f

∣∣∣∣ =
c

q+1
((p− x)q +(y− p)q) (p ∈ [x,y]).

Proof. Apply the previous statement for the error function Φ ∈ E (R+) given by
Φ(t) := ct p .

THEOREM 6.3. Let Ψ ∈ E (I) and assume that the map t 
→ Ψ(t)/t is locally
integrable on [0, �(I)[ and define Φ ∈ E (I) by (21). If f : I → R is a continuous
solution of ∣∣∣∣ f (u)− 1

v−u

∫ v

u
f

∣∣∣∣ � Ψ(v−u) (u,v ∈ I, u < v), (28)

then f is Φ-Hölder on I .

Proof. If f satisfies (28), then f and − f fulfil (23). Therefore, in view of Theo-
rem 5.5, we obtain that f and − f are Φ-monotone, which implies that f is Φ-Hölder
on I .

The proofs of the following results are similar to that of the previous theorem, they
are left to the reader.
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THEOREM 6.4. Let Ψ ∈ E (I) and assume that the map t 
→ Ψ(t)/t is locally
integrable on [0, �(I)[ and define Φ ∈ E (I) by (21). If f : I → R is a continuous
solution of ∣∣∣∣ f (v)− 1

v−u

∫ v

u
f

∣∣∣∣ � Ψ(v−u) (u,v ∈ I, u < v),

then f is Φ-Hölder on I .

COROLLARY 6.5. Let p ∈ ]0,1] , c ∈ [0,∞[ . If f : I → R is a continuous solution
of ∣∣∣∣ f (u)− 1

v−u

∫ v

u
f

∣∣∣∣ � c(v−u)p (u,v ∈ I, u < v),

then f is c(p+1)
p (·)p -Hölder on I . In particular, f is constant if p > 1 .

COROLLARY 6.6. Let p ∈ ]0,1] , c ∈ [0,∞[ . If f : I → R is a continuous solution
of ∣∣∣∣ f (v)− 1

v−u

∫ v

u
f

∣∣∣∣ � c(v−u)p (u,v ∈ I, u < v),

then f is c(p+1)
p (·)p -Hölder on I . In particular, f is constant if p > 1 .

7. A concluding remark

The superadditivity of nonpositive functions can easily be characterized according
to the next statement.

PROPOSITION 7.1. Let I ⊆ R+ with inf(I) = 0 . Let f : I → R be a nonpositive
function. Then f is superadditive if and only if f is (− f )-monotone.

Proof. Assume first that f is (− f )-monotone. Let x,y ∈ I with x+ y ∈ I . Then
the (− f )-monotonicity of f implies

f (x) � f (x+ y)+ (− f )(y).

which yields that f is superadditive.
Conversely, assume that f is superadditive. Then, for any x,y ∈ I with x � y ,

f (y) = f (x+(y− x)) � f (x)+ f (y− x)
= f (x)− (− f )(y− x).

Which establishes the (− f )-monotonicity of f .
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RE F ER EN C ES
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Per. Math. Hungar., 81 (1): 65–87, 2020.
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