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A MULTILINEAR RELLICH INEQUALITY

DAVID E. EDMUNDS AND ALEXANDER MESKHI ∗

(Communicated by L. Pick)

Abstract. We prove a multilinear variant of the Rellich inequality on the real line. In particular,
we establish the weighted inequality
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with a positive function w on (0,b− a)) , where −∞ � a < b � +∞ , m is a positive integer,
δ (x) = min{x− a,b− x} is the distance function on (a,b) , and 1/p = ∑m

j=1 1/pj , pj > 1 ,
j = 1, . . . ,m . As a corollary we derive the following estimate
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1. Introduction

A considerable effort has been made in recent years to establish the (weighted)
boundedness of integral operators in Lebesgue spaces. Such problems have been stud-
ied extensively in Harmonic Analysis, especially in the last two decades (see e.g. the
monograph [7] and references cited therein). Our aim is to establish an m-linear
weighted Rellich inequality∥∥∥ m

∏
j=1

u j

∥∥∥
Lp

w(δ (·))(I)
� C

m
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Lp j (I)
, I := (a,b), −∞ � a < b � +∞, (1)

with a certain positive constant c independent of uk ∈C∞
0 (I) , k = 1, . . . ,m , where δ (x)

is the distance function on I given by the formula

δ (x) = min{x−a,b− x} (2)

and
1
p

:=
m

∑
k=1

1
pk

, 1 < pk < ∞, k = 1, . . . ,m. (3)
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Throughout the paper we shall assume that m is a positive integer, and p is determined
by (3). Observe that in this case 0 < p < ∞ .

We establish (1) by using appropriate multilinear weighted Hardy inequalities
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which are also proved in this paper. It should be noticed that necessary and sufficient
conditions governing the two-weight bilinear Hardy inequality
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,

for non-negative f and g were found in [1] under different conditions on weights for
various ranges of p1 , p2 and q , with q > 1. The proofs used in this paper enable us to
get appropriate two-weight bilinear Rellich inequalities based on the results of [1], but
we do not consider this case here.

Historically, Rellich’s [9] famous inequality states that if u ∈ C∞
0 (Rn\{0}) and

n �= 2, then

n2(n−4)2

16

∫
Rn

|u(x)|2
|x|4 dx �

∫
Rn

|Δu(x)|2 dx,

and the constant n2(n− 4)2/16 is sharp. When n = 2 the inequality still holds but
only for a restricted class of functions (see [2]). In these results the underlying set is
R

n\{0} and |x| may be thought of as the distance of a point x∈ R
n from the boundary

{0} of R
n\{0}. With this in mind it is natural to consider functions defined on a more

general open subset Ω of R
n and to seek an inequality involving the distance function

δ defined by δ (x) = dist (x,∂Ω) . This approach led to the inequality

9
16

∫
Ω

|u(x)|2
δ (x)4 dx �

∫
Ω
|Δu(x)|2 dx, u ∈C∞

0 (Ω) ,

valid when Ω is convex and even under rather more general conditions: see [2], Corol-
lary 6.2.7.

All this work is in the setting of L2. The first step towards an Lp version appears to
have been taken by Davies and Hinz [3], most notably when Ω = R

n\{0}. In the recent
paper [4] an Lp form of the Rellich inequality was obtained in general open subsets Ω
of R

n, together with a somewhat similar inequality involving the p -Laplacian. The
main results of [4] can be summarized as follows:
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THEOREM A. (the case n = 1) Suppose that −∞ < a < b � ∞ and let r ∈ (1,∞);
put δ (t) = min{t−a,b− t}. Then for all u ∈ C2

0(a,b),
∫ b

a

|u(t)|r
δ (t)2r dt �

(
r

2r−1

)r ( r
r−1

)r ∫ b

a

∣∣u′′(t)∣∣r dt.

THEOREM B. (the higher-dimensional case) Let Ω be a non-empty, proper open
subset of R

n and let r ∈ (1,∞); suppose that u ∈ C2
0(Ω). If r = 2 , then

∫
Ω

|u(x)|2
δM,4(x)4 dx � 16

9

∫
Ω
|Δu(x)|2 dx,

while if r ∈ (1,∞)\{2}, then for some explicit constant K(r,n),
∫

Ω

|u(x)|r
δM,2r(x)2r dx � K(r,n)

∫
Ω
|Δu(x)|r dx.

Here δM,4 and δM,2r are mean distance functions obtained by averaging, in a certain
sense, the distance to the boundary of Ω in all possible directions.

Finally we mention that two-weight estimates involving one-dimensional Rellich
inequalities were studied in [5] in the linear setting.

2. Preliminaries

Let v be an a.e. positive function (i.e. a weight) on the interval I := (a,b) , −∞ �
a < b � ∞ . We denote by Lr

v(I) (or by Lr
v(a,b)), 0 < r < ∞ , the Lebesgue space

defined by the norm for r � 1 (quasi-norm if 0 < r < 1):

‖g‖Lr
v(I) =

( b∫
a

|g(x)|rv(x)dx

)1/r

.

If v ≡ const , then Lr
v(I) will be denoted by Lr(I) (or by Lr(a,b)).

In the sequel we will denote by Ha and H ′
b the Hardy-type operators of the form:

Ha f (x) =
1

x−a

x∫
a

f (t)dt, x ∈ (a,b), −∞ < a < b � ∞;

H ′
b f (x) =

1
b− x

b∫
x

f (t)dt; x ∈ (a,b), −∞ � a < b < ∞.

It is known that (for example, it follows from the general two-weight theory for
the Hardy operator, see, e.g., introduction of [8] and references therein) that operators
Ha and H ′

b are bounded in Lr(a,b) for 1 < r < ∞ ; moreover,

‖Ha‖Lr := ‖Ha‖Lr(a,b)→Lr(a,b) � r′, and ‖H ′
b‖Lr := ‖H ′

b‖Lr(a,b)→Lr(a,b) � r′, (6)
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where −∞ < a < b � ∞ , and
r′ =

r
r−1

.

To get the main results of this paper we will obtain weighted multilinear Hardy
inequalities. In particular, we prove the following statements:

PROPOSITION 1. Let −∞ < a < b � ∞ , v be a weight function on (a,b) . Then
inequality (4) with a positive constant c independent of f j , f j ∈ Lpj (a,b) , j = 1, . . . ,m,
holds if and only if

Aa,b := sup
a<t<b

(∫ b

t
v(x)dx

)1/p(
t−a

)m−1/p
< ∞.

Moreover, if c is the best possible constant in (4), then

Aa,b � c � CAa,b,

where

C =

⎧⎪⎨
⎪⎩

(
2+2mp−1 ∏m

i=1 ‖Ha‖p
Lpi (a,b)

)1/p

, if b < ∞,

2m−1/p ∏m
j=1‖Ha‖Lpi(a,∞) if b = ∞.

PROPOSITION 2. Let −∞ � a < b < ∞ , v be a weight function on (a,b) . Then
inequality (5) with a positive constant c independent of f j , f j ∈ Lpj (a,b) , j = 1, . . . ,m,
holds if and only if

Ba,b := sup
a<t<b

(∫ t

a
v(x)dx

)1/p(
b− t

)m−1/p
< ∞.

Moreover, if c is the best possible constant in (5), then

Ba,b � c � CBa,b,

where

C =

⎧⎨
⎩

(
2+2mp−1 ∏m

i=1 ‖H ′
b‖p

Lpi (a,b)

)1/p
, if a > −∞,

2m−1/p ∏m
j=1 ‖H ′

b‖Lpi (−∞,b) if a = −∞.

3. The weighted Rellich inequality

In this section we formulate the main results of this paper. We discuss the case
when a weight function is a function of the distance function (2) defined on (a,b) .

THEOREM 1. Let −∞ < a < b < ∞ , I := (a,b) , and let w be a weight function
on the interval

(
0,(b−a)

)
. If

D̃a,b := sup
0<τ<b−a

(∫ b

τ
w(x)xmpdx

)1/p

τm−1/p < ∞,
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then for all u j ∈C2
0(I) , j = 1, . . . ,m, inequality (1) holds with the constant C given by

the formula:

C = 41/pD̃a,b

[
1+2mp−2

m

∏
i=1

(p′i)
p
]1/p

. (7)

The next statement deals with the cases b = ∞ and a = −∞ , respectively.

THEOREM 2. Let −∞ < a < ∞ . Suppose that I := (a,∞) . Let w be a weight
function on (0,∞) . If

D̃ := sup
t>0

(∫ ∞

t
w(x)xmpdx

)1/p

tm−1/p < ∞, (8)

then for all u j ∈C2
0(I) , j = 1, . . . ,m, inequality (1) holds, where

C = 2m−1/pD̃
m

∏
i=1

p′i. (9)

THEOREM 3. Let −∞ < b < ∞ and let I := (−∞,b) . Suppose that w be a positive
function on (0,∞) . If condition (8) is satisfied, then for all u j ∈ C2

0(I) , j = 1, . . . ,m,
inequality (1) holds, where C is defined by (9).

By applying Theorems 1, 2 and 3 we can easily deduce the following statements:

COROLLARY 1. Let −∞ < a < b < ∞ and let I := (a,b) . Then the following
inequality holds for all u j ∈C2

0(I) , j = 1, . . . ,m,

(∫
I

∣∣∣ m

∏
j=1

u j(x)
∣∣∣p

δ (x)−2mpdx

)1/p

� C
m

∏
j=1

‖u′′j‖Lp j (I), (10)

where

C = (2mp−1)−1/p
[
1+2mp−2

m

∏
i=1

(p′i)
p
]1/p

.

COROLLARY 2. Let −∞ < a < ∞ and let I := (a,∞) . Then inequality (10) holds
for all u j ∈C2

0(I) , j = 1, . . . ,m, where

C = 2m−1/p(2mp−1)−1/p
m

∏
j=1

p′j.

COROLLARY 3. Let −∞ < b < ∞ . Suppose that I := (−∞,b) . Then inequality
(10) holds for all u j ∈C2

0(I) , j = 1, . . . ,m, where C is defined by

C = 2m−1/p(2mp−1)−1/p
m

∏
j=1

p′j.
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4. Proofs of the results

First we prove Proposition 1.

Proof of Proposition 1. Necessity, and consequently, the lower estimate c � Aa,b

follows by the standard way taking the test functions f j = χ(a,t) in inequality (4). Now
we show sufficiency, and hence, the upper estimate for the best constant c in (4).

(i) b < ∞ .

Observe that

( b∫
t

v(x)dx

)1/p

(t−a)m−1/p =
( b∫

t

v(x)dx

)1/p m

∏
j=1

(t −a)1/p′j

for all a < t < b . That is why the condition Aa,b < ∞ , Hölder’s inequality and the rep-
resentation (a,b) = ∪k�0[a+ b−a

2k+1 ,a+ b−a
2k ) yield (we assume that f j are non-negative

and f j ∈ Lpj (I) , j = 1, . . . ,m):
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� Aa,b

(
2+2mp−1

m

∏
i=1
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(ii) b = ∞ . In this case we represent the interval (a,∞) as the union of intervals
(a+2k,a+2k+1] , where k ∈ Z . Consequently, arguing as above we find that
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k∈Z
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f j(t)dt
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Lp j .

The proposition has been proved. �

Proof of Proposition 2. The proof of this statement is similar to that of Proposition
1. We only point out that in this case we use the representations:

(a,b) = ∪∞
j=0

(
b− (b−a)/2k,b− (b−a)/2k+1

]
,
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(−∞,b) = ∪ j∈Z

(
b−2k+1,b−2k

]
. �

Proof of Theorem 1. Let d be the midpoint of the interval (a,b) . Then by using
Propositions 1 and 2 we have that∥∥∥∥ m

∏
j=1

u j

∥∥∥∥p

Lp
w(δ (·))(a,b)

�
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u j
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Lp
w(δ (·))(a,d)

+
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�
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�
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∏
j=1

x∫
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(x− t)|u′′j (t)|dt
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+
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a

w(b− x)
∣∣∣∣ m

∏
j=1

b∫
x

(t − x)u′′j (t)dt

∣∣∣∣p

dx

�
b∫

a

w(x−a)(x−a)mp
( m

∏
j=1

x∫
a

|u′′j (t)dt|
)p

dx

+
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a

w(b− x)(b− x)mp
( m

∏
j=1

b∫
x

|u′′j (t)|dt

)p

dx

� C̃
m

∏
j=1

‖u′′j‖p
Lp j (a,b)

,

where C̃ is defined by

C̃ =
(

2+2mp−1
m

∏
i=1

‖Ha‖p
Lpi(I)

)
Ãp

a,b +
(

2+2pm−1
m

∏
i=1

‖H ′
b‖p

Lpi(I)

)
B̃p

a,b (11)

with

Ãa,b := sup
a<t<b

(∫ b

t
w(x−a)(x−a)mpdx

)1/p(
t−a

)m−1/p
,

and

B̃a,b := sup
a<t<b

(∫ t

a
w(b− x)(b− x)mpdx

)1/p(
b− t

)m−1/p
.

Consequently, ∥∥∥∥ m

∏
j=1

u j

∥∥∥∥
Lp

w(δ (·))(a,b)
� C̃1/p

m

∏
j=1

‖u′′j‖Lp j (a,b),

with the constant C̃ defined by (11).



A MULTILINEAR RELLICH INEQUALITY 273

Observe now that an appropriate change of variables in integrals yields that

Ãa,b = B̃a,b = D̃a,b < ∞.

Consequently, taking also (6) into account we find that

C̃1/p = 41/pD̃a,b

[
1+2mp−3

( m

∏
i=1

‖Ha‖p
Lpi (I) +

m

∏
i=1

‖H ′
b‖p

Lpi(I)

)]1/p

� C,

where C is defined by (7). �

Proof of Theorem 2. Suppose that I = (a,∞) . Observe that if x ∈ (a,∞) we have
that δ (x) = x− a . Arguing as in the proof of Theorem 1 and applying Proposition 1

and the representations u j(x) =
x∫
a
(x− t)u′′j (t)dt for u j ∈C2

0(I) , j = 1, . . . ,m , we get

∥∥∥∥ m

∏
j=1

u j

∥∥∥∥
Lp

w(δ (·))(I)
� 2m−1/pÃa,∞

( m

∏
j=1

‖Ha‖Lpi(I)

) m

∏
j=1

∥∥u′′j
∥∥

Lp j (I),

where

Ãa,∞ := sup
t>a

(∫ b

t
w(x−a)(x−a)mpdx

)1/p(
t−a

)m−1/p
.

Since
Ãa,∞ = D̃ < ∞,

and (6) holds, we are done.

Proof of Theorem 3. Let I = (−∞,b) . The proof of this case is similar to that of

the previous one. In this case we use representations u j(x) =
b∫
x
(t − x)u′′j (t)dt which

hold for u j ∈C2
0(I) , j = 1, . . . ,m , and Proposition 2. Hence, we find that∥∥∥∥ m

∏
j=1

u j

∥∥∥∥
Lp

w(δ (·))(I)
� 2m−1/pB̃−∞,b

( m

∏
j=1

‖H ′
b‖Lpi(I)

) m

∏
j=1

∥∥u′′j
∥∥

Lp j (I),

where

B̃−∞,b := sup
t<b

(∫ t

−∞
w(b− x)(b− x)mpdx

)1/p(
b− t

)m−1/p
.

Again, it can be checked that
B̃−∞,b = D̃ < ∞,

where D̃ is defined by (8).
Since (6) holds for the norms ‖H ′

b‖Lpi (I) , i = 1 . . . ,m, the result follows. �

Acknowledgement. The second author was supported by the Shota Rustaveli Na-
tional Science Foundation Grant (No. FR-18-2499).

The authors are grateful to the referee for his helpful remarks.



274 D. E. EDMUNDS AND A. MESKHI

RE F ER EN C ES

[1] M. I. AGUILAR CANSTRO, P. ORTEGA SALVADOR AND C. RAMIRES TORREBLAN, Improved Rel-
lich inequalities for the polyharmonic operator, Indiana Univ. Math. J., 387 (2012) 320–334.

[2] A. BALINSKY, W. D. EVANS AND R. T. LEWIS, The analysis and geometry of Hardy’s inequality,
Springer, New York, 2015.

[3] E. B. DAVIES AND A. M. HINZ, Explicit constants for Rellich inequalities in Lp(Ω) , Math. Z., 227
(1998), 511–523.

[4] D. E. EDMUNDS AND W. D. EVANS, The Rellich inequality, Rev. Math. Complut., 29, 3 (2016),
511–530.

[5] D. E. EDMUNDS AND A. MESKHI, Two-weighted Hardy operator in Lp(x) spaces and applications,
Studia Math. 249 (2019), 143–162.

[6] W. D. EVANS AND R. T. LEWIS, Hardy and Rellich inequalities with remainders, J. Math. Inequal.
1, 4 (2007), 473–490.

[7] L. GRAFAKOS, Classical Fourier analysis, Springer, Third Edition, New York, GTM 249, 2014.
[8] A. KUFNER AND L.-E. PERSSON, Weighted inequalities of Hardy type, World Scientific, Singapore,

2003.
[9] F. RELLICH, Halbbeschränkte Differentialoperatoren höherer Ordnung, In: Gerretsen, J.C.H., de
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