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A MULTILINEAR RELLICH INEQUALITY

DAVID E. EDMUNDS AND ALEXANDER MESKHI *

(Communicated by L. Pick)

Abstract. We prove a multilinear variant of the Rellich inequality on the real line. In particular,
we establish the weighted inequality

b

A m 1/p m
(/oo [Twelas) " < Tl € Gla) k=1....m
J k=1 k=1

with a positive function w on (0,b—a)), where —eo < a < b < +e0, m is a positive integer,
6(x) = min{x —a,b —x} is the distance function on (a,b), and 1/p =37 ,1/p;, p; > 1,
j=1,...,m. As acorollary we derive the following estimate

b » omp 1/p "o,
[ TTw] 30 2ma) " < TT
a jZI

1. Introduction

A considerable effort has been made in recent years to establish the (weighted)
boundedness of integral operators in Lebesgue spaces. Such problems have been stud-
ied extensively in Harmonic Analysis, especially in the last two decades (see e.g. the
monograph [7] and references cited therein). Our aim is to establish an m-linear
weighted Rellich inequality

u‘ <C ‘u’-/ L Ii=(ab), —e<a<b<4o, (1)
H /EII " 50y JI:II e )
with a certain positive constant ¢ independent of uy € Cy’(I), k=1,...,m, where 5(x)

is the distance function on / given by the formula

0(x) = min{x—a,b—x} (2)
and
1 2o
_;:2—, 1 <pr<oeo, k=1,...,m. 3)
p k=1pk
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Throughout the paper we shall assume that m is a positive integer, and p is determined
by (3). Observe that in this case 0 < p < oo.
We establish (1) by using appropriate multilinear weighted Hardy inequalities

m

< [Tl wp): “4)

LY (a,b) J=1

‘ .f[la/xfj(t)dt

b
H/fj(’)df <c [T @y (5)
=17 =1

LY (a,b)

which are also proved in this paper. It should be noticed that necessary and sufficient
conditions governing the two-weight bilinear Hardy inequality

<u/b (jf>q<jg>qw(x)dx> 1/q <C<a/bf”‘wl)l/m (a/bngWl)l/pz,

for non-negative f and g were found in [1] under different conditions on weights for
various ranges of p;, p> and g, with ¢ > 1. The proofs used in this paper enable us to
get appropriate two-weight bilinear Rellich inequalities based on the results of [1], but
we do not consider this case here.

Historically, Rellich’s [9] famous inequality states that if u € Cj (R"\{0}) and
n# 2, then

n2(n—4)? 1 |u(x)? 2
o L Pl 0P
and the constant n?(n —4)?/16 is sharp. When n = 2 the inequality still holds but
only for a restricted class of functions (see [2]). In these results the underlying set is
R™\{0} and |x| may be thought of as the distance of a point x € R” from the boundary
{0} of R™\{0}. With this in mind it is natural to consider functions defined on a more
general open subset € of R"” and to seek an inequality involving the distance function
0 defined by 6 (x) = dist (x,dQ). This approach led to the inequality

2
o, < [ st e G5 (@)

valid when Q is convex and even under rather more general conditions: see [2], Corol-
lary 6.2.7.

All this work is in the setting of L. The first step towards an L? version appears to
have been taken by Davies and Hinz [3], most notably when Q =R"\{0}. In the recent
paper [4] an L? form of the Rellich inequality was obtained in general open subsets €2
of R”", together with a somewhat similar inequality involving the p-Laplacian. The
main results of [4] can be summarized as follows:
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THEOREM A. (thecase n=1) Suppose that —eo < a < b < oo andlet r € (1,);
put 8(t) =min{t —a,b—t}. Then forall u € C3(a,b),

/‘; dt\<2rr_1)r<ril)r/ah’u”(t)’rdt

THEOREM B. (the higher-dimensional case) Let Q be a non-empty, proper open
subset of R" and let r € (1,e0); suppose that u € C}(Q). If r =2, then

Ju(x)? 16/ 2
< —
Q61‘/1’4()()461')c\ 9 Q|Au(x)\ dx,

while if r € (1,00)\{2}, then for some explicit constant K (r,n),

/Q#x()x)%dxgk'(r,n)/gmwx)rdx.

Here 8y 4 and Oy o, are mean distance functions obtained by averaging, in a certain
sense, the distance to the boundary of Q in all possible directions.

Finally we mention that two-weight estimates involving one-dimensional Rellich
inequalities were studied in [5] in the linear setting.

2. Preliminaries
Let v be an a.e. positive function (i.e. a weight) on the interval I := (a,b), —eo <

a < b <. We denote by Li(I) (or by L}(a,b)), 0 < r < e, the Lebesgue space
defined by the norm for r > 1 (quasi-normif 0 < r < 1):

lellzza) = (/bg(x)r\/(x)dx)l/r.

If v= const, then L}(I) will be denoted by L"(I) (or by L"(a,b)).
In the sequel we will denote by H, and H; the Hardy-type operators of the form:

/f t, x€(a,b), —o<a<b< oo
T x—a

H, f(x) =71 /f t; x€ (a,b), —o<a<b<eo.

It is known that (for example, it follows from the general two-weight theory for
the Hardy operator, see, e.g., introduction of [8] and references therein) that operators
H, and H,; are bounded in L"(a,b) for 1 < r < oo; moreover,

1Hallzr == [Hallrap)—1r(ap) < 7' and [|Hpl|zr == [Hpllr@p)—1r@p) <75 (6)
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where —oo < a < b < oo, and
r
/

r—1°
To get the main results of this paper we will obtain weighted multilinear Hardy
inequalities. In particular, we prove the following statements:

PROPOSITION 1. Let —oo < a < b < oo, v be a weight function on (a,b). Then
inequality (4) with a positive constant c independent of f;, fj € LPi(a,b), j=1,...,m,
holds if and only if

b 1/p m—1/
Agp = sup (/ v(x)dx) <t—a> <.
a<t<b t

Moreover, if ¢ is the best possible constant in (4), then
Au h CAu b
where
| 1/p
Co <2+2ml7 Hm 1 HaL”i(u,h)) s lfb<oo’
2 VPTI | Hallpigaw) 3 b= oo
PROPOSITION 2. Let —oo < a < b < oo, v be a weight function on (a,b). Then

inequality (5) with a positive constant c independent of f;, fj € LPi(a,b), j=1,...,m,
holds if and only if

t 1/p m—1/
By = sup (/ v(x)dx) (b—t) <o,
a<t<b a

Moreover; if ¢ is the best possible constant in (5), then
Bu h CBu by

where
mp—1 1/p .
oo ) I ) s e > o,
2’11 l/ijzl ||Hh||L”t 7007}]) l‘f a=—

3. The weighted Rellich inequality

In this section we formulate the main results of this paper. We discuss the case
when a weight function is a function of the distance function (2) defined on (a,b).

THEOREM 1. Let —o0 < a < b < oo, I :=(a,b), and let w be a weight function
on the interval (0,(b—a)). If

~ b 1/p
Dyp:= sup (/ w(x)x’”pdx) TP < oo,
T

0<t<b—a
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then for all u; € C(z) (I), j=1,...,m, inequality (1) holds with the constant C given by
the formula:

- m 1/p
C= ¥, | 1422 o0y | @

i=1

The next statement deals with the cases b = oo and a = —eo, respectively.

THEOREM 2. Let —eo < a < co. Suppose that I := (a,). Let w be a weight
Sunction on (0,e0). If

_ oo 1/p
D := sup </ w(x)xml’dx> " < oo, (8)
t>0 t
then for all u; € Cg([), Jj=1,...,m, inequality (1) holds, where
c=2""Y*DI]p. 9)

i=1

THEOREM 3. Let —oo < b < oo andlet I := (—oo,b). Suppose that w be a positive
function on (0,0). If condition (8) is satisfied, then for all u; € C3(I), j=1,...,m
inequality (1) holds, where C is defined by (9).

By applying Theorems 1, 2 and 3 we can easily deduce the following statements:

COROLLARY 1. Let —eo < a < b < e and let I := (a,b). Then the following
inequality holds for all uj € C3(I), j=1,...,m

z P —2m e - "
[Tl 60 2max) < TTIls, (10)
7 i1 =1

where

m 1/p
C=(2mp— l)_l/p[l +2mp_2H(p§)p} .
i=1

COROLLARY 2. Let —oo < a < oo and let I := (a,e). Then inequality (10) holds
forall uj € C3(I), j=1,...,m, where

C =2m— l/P (2mp — l/PHp

COROLLARY 3. Let —oo < b < oo. Suppose that I := (—oo,b). Then inequality
(10) holds for all u; € C3(I), j=1,...,m, where C is defined by

c=2"" l/p (2mp — 1/pl_[p
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4. Proofs of the results
First we prove Proposition 1.

Proof of Proposition 1. Necessity, and consequently, the lower estimate ¢ > A,
follows by the standard way taking the test functions fj = x(4,) in inequality (4). Now
we show sufficiency, and hence, the upper estimate for the best constant ¢ in (4).

(1) b < oo.
Observe that

( /b T /b o) oo

t t j=1

for all @ <t < b. That is why the condition Ay p < oo, Holder’s inequality and the rep-

resentation (a,b) = Uk>0[a+ T 7a+ ) yield (we assume that f; are non-negative
and f; € LPi(I), j=1,...,m):

dt

ab) k=079t j=1

+h7a
" -p/p p
+Ap7b2H<2k+1 /< / fi(t dt)
k>1j=1
/0 p/pj
<Al I1(%57) (/f war) -0
+ha
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> (20"

k>1

ZA”bHIIfJHLp, Lo w’,,n[

a+(b—a)/2F1

X <(b2_ka)>’l (bz—ka) ( / fi (t)dt) pjdx} "

P 5 r mp—1,p — / X Pj o p/pj
<2, [Tl 2 XT| [ ([ ) o vax
i=1 i=1 Ly a
b

p/pj
<20, T+ 27 T fu o)

_ (2Af’ Lo 1A",,HHH 7, ) .

Hence,

fi( /o),

(ii) b = oo. In this case we represent the interval (a,e<) as the union of intervals
(a+2F,a+2F1], where k € Z. Consequently, arguing as above we find that

. m 1/p m
R o VL Iy (17
» i=1

i=1

a+2kH!

f%(/;”dm( [ soa)

Jj=1

dt

a+2k+l

m , p
<Aiw z szp/ﬂ/( / fj(t)dt)

keZ j=1

a+2k+l

m , Pj1p/pj
<ap g1z [ rwar)]
j=1Lkez "

m < X Pj 17/17j
<ot | / w—a ([ o)
SR (A (7

The proposition has been proved. [J

Proof of Proposition 2. The proof of this statement is similar to that of Proposition
1. We only point out that in this case we use the representations:

(a,b) = U7, <b —(b—a)/2Xb— (b—a) /2’<+1],
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(—o0,b) = Ujez, (b okl 2’6} .0

Proof of Theorem 1. Let d be the midpoint of the interval (a,b). Then by using
Propositions 1 and 2 we have that

m m p m P

H < || TTwi [Tu

=t Wgpab) - Wi=t gy @d) W=t g (@)
d b m
/wx a) H”J dx+/w(b x) | T Tui
a J=l

CH 14717 (0.5
where C is defined by

m .
C= <2+2’"1’ 1HHH [ ) +<2+2P’”‘1HHz§fm(1>>Bib (11)

i=1 i=1

with
~ b 1/p m—1/p
Agp:i= sup (/ w(x—a)(x—a)"”’dx) (t—a) ,
: a<t<b \Jt
and y
~ t p m—1/
Byp = sup (/ w(b—x)(b—x)mpdx) <b—t> "
a<t<b a
Consequently,

m

[Tw

j=1

m
~1
) <CVrT] 1451|127 0.
Luisc (@?) i=1

with the constant C defined by (11).
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Observe now that an appropriate change of variables in integrals yields that

Aa,b = Bu,h = Du,h < oo,
Consequently, taking also (6) into account we find that
S/p_ 41pT 3T P i P v
Cp:4pQWP+2p (gwmmim+£[mjim” <C,

where C is defined by (7). U

Proof of Theorem 2. Suppose that I = (a, ). Observe that if x € (a,o) we have
that 6(x) = x —a. Arguing as in the proof of Theorem 1 and applying Proposition 1

and the representations u;(x) = [(x—1)u’;(t)dt for u; € Ci(I), j=1,...,m, we get
) .

m
1w
j=1

<20 (Tl ) T 1
-1 !

Loen®
where
~ b 1/p m—1/p
Ay oo 1= sUP (/ w(x—a)(x— a)mpdx> (t - a) .
t>a t
Since

Ageo =D < oo,
and (6) holds, we are done.
Proof of Theorem 3. Let I = (—eo,b). The proof of this case is similar to that of
b
the previous one. In this case we use representations u;(x) = [(# — x)u’; (t)dt which
X
hold for u; € Cg (I), j=1,...,m, and Proposition 2. Hence, we find that

m ~ m m
[Te <2 By (TRl ) ET 1
J= J=

J=1

Lisy@

where
~ 1 /p m—1/p
B_op:=sup (/ w(b—x)(b —x)’"pdx> (b - t) .
' t<b —c°
Again, it can be checked that _ B
B_.><,7b =D < oo,

where D is defined by (8).
Since (6) holds for the norms ||Hj || ri(y, i = 1...,m, the result follows. [
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