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Abstract. We derive the two-sided inequalities between Lp(X) -norms (1 < p < ∞) of the higher
dimensional Hardy operator and its dual, where the underlying space X is the Heisenberg group
H

n or the Euclidean space R
n . The interest of main results is that it relates two-sided inequalities

with sharp constants which are dimension free. The methodology is completely depending on
the rotation method.

1. Introduction

The classical one-dimensional Hardy operator H was defined by G. H. Hardy in
1925 (see [6]) in the form of

H f (x) =
1
x

∫ x

0
f (t)dt, x > 0,

for all nonnegative measurable functions f on R
+ = (0,∞) . Accompanying the Hardy

operator is the well known Hardy inequality

‖H f‖Lp(R+) � p
p−1

‖ f‖Lp(R+) ,

where 1 < p < ∞ and the constant p/(p−1) is sharp. This inequality has been studied
by a large number of authors over the past 90 years and has motivated some important
lines of study which are currently active. We refer the reader to two books [10, 11].

The dual operator H∗ of the Hardy operator is

H∗ f (x) =
∫ ∞

x

f (t)
t

dt, x > 0,

for all nonnegative measurable functions f on R
+ .
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Now, let us briefly present some background to the problems we are about to
investigate. It is known from [7, (9.9.1) and (9.9.2), p. 244] that, for 1 < p < ∞ , the
operators H and H∗ satisfy the Lp inequalities

p−1
p

‖H f‖Lp(R+) � ‖H∗ f‖Lp(R+) � p‖H f‖Lp(R+) , (1)

(see also [9] for more details). These estimates are not optimal and the constants in (1)
are further improved by Kolyada in [9] who arrived at the following sharp conclusion.

THEOREM A. ([9, Theorem 1.1]) Let f be a nonnegative measurable function
on R

+. Then

(p−1)‖H f‖Lp(R+) � ‖H∗ f‖Lp(R+) � (p−1)1/p‖H f‖Lp(R+)

if 1 < p � 2, and

(p−1)1/p‖H f‖Lp(R+) � ‖H∗ f‖Lp(R+) � (p−1)‖H f‖Lp(R+)

if 2 � p < ∞. All constants are the best possible.

It is interesting to generalize the one-dimensional theory to the higher dimensional
setting. As a counterpart, the theory in higher dimensions is thought to be much more
difficult and profound. Indeed, there are significant problems in higher dimensions for
which the one-dimensional techniques are not adequate. It is important to realize, how-
ever, that many higher dimensional problems are really one-dimensional in nature and
may be successfully analyzed using the one-dimensional theory. The higher dimen-
sional results also provide an elegant approach to studying one-dimensional integral
operators. Thus, the aim of this work is to prove that Theorem A holds for the Heisen-
berg group H

n and the Euclidean space R
n (instead of R

+) .
Since R

n is a very familiar space, in order to set up notation and state our main
results, we begin by recalling some basic preliminaries on the Heisenberg group. More
detailed information, as well as proofs, can be found in [2, 4, 14] and the papers refer-
enced therein.

Let x = (x1, . . . ,x2n,x2n+1) and y = (y1, . . . ,y2n,y2n+1) be in R
2n+1 with n � 1.

The Heisenberg group H
n is the set R

2n+1 equipped with the group law

x◦ y =
(
x1 + y1, . . . ,x2n + y2n,x2n+1 + y2n+1 +2

n

∑
j=1

(y jxn+ j − x jyn+ j)
)
.

The Heisenberg group H
n is a homogeneous group with dilations

δrx = (rx1, . . . ,rx2n,r
2x2n+1), r > 0,

and the norm

|x|h =

⎡⎣( 2n

∑
i=1

x2
i

)2

+ x2
2n+1

⎤⎦1/4

.
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We denote the open ball of radius r centered at x ∈ H
n by B(x,r) = {y ∈ H

n :
d(x,y) < r}, and denote its sphere by S(x,r) = {y ∈ H

n : d(x,y) = r}. The Haar mea-
sure on H

n coincides with the Lebesgue measure on R
2n+1 . We have

|B(x,r)| = |B(0,r)| = νQrQ,

where νQ is the volume of the unit ball B(0,1) on H
n, and

νQ =
2πn+1/2Γ(n/2)

(n+1)Γ(n)Γ((n+1)/2)
.

The area of the unit sphere S(0,1) is ωQ = QνQ , where Q = 2n + 2 is called the
homogeneous dimension of H

n . Similar to the definition on Euclidean space R
n , we

say that u is a radial function if there exists ũ : R
+ → R such that u(x) = ũ(|x|h) for

all x ∈ H
n . We still use the same notation u to designate the function ũ since it will

not cause confusion.
As an extension of the one-dimensional Hardy operator, Christ and Grafakos in

[1] gave the definition of n -dimensional Hardy operator

H f (x) =
1

|B(0, |x|)|
∫

B(0,|x|)
f (y)dy, x ∈ R

n \ {0},

for all nonnegative measurable functions f on R
n . Similar to the one-dimensional

case, the dual operator of H is given by

H ∗ f (x) =
∫
{y: |y|>|x|}

f (y)
|B(0, |y|)|dy,

where f is a nonnegative measurable function on R
n . Here B(0, |y|) is the ball with

center at the origin and radius |y| in R
n . Recently, Wu and Fu in [17] introduced the

analogue for the Hardy operator defined on the Heisenberg group. Following Wu and
Fu in [17], for all nonnegative measurable functions on H

n function f , one defines the
Hardy operator on H

n by

H f (x) =
1

|B(0, |x|h)|
∫

B(0,|x|h)
f (y)dy, x ∈ H

n \ {0},

and its dual operator

H∗ f (x) =
∫
{y: |y|h>|x|h}

f (y)
|B(0, |y|h)|dy.

Let T be the operator H or H and let X be the underlying space R
n or H

n . The
Hardy’s inequality is

‖T f‖Lp(X) � p
p−1

‖ f‖Lp(X) , 1 < p < ∞, (2)

where the constant p/(p−1) is sharp. In the case of R
n , the result has been obtained

by Christ and Grafakos in [1] and Drábek, Heinig and Kufner in [3]. In the case of H
n ,
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it was proved by Wu an Fu in [17]. Inequality (2) has received considerable attention
after its appearance and a number of papers have appeared in the literature dealing with
alternative proofs, various extensions and generalizations, see [3, 5, 8, 12, 13, 15, 16,
18].

Let T ∗ be the operator H ∗ or H∗ . Actually, a linear operator has the same norm
as the norm of its adjoint. So T ∗ maps Lp′ into Lp′ with the operator norm p/(p−1)
if and only if T maps Lp into Lp with the operator norm p/(p−1) for 1 < p < ∞ ,
where p′ is the conjugate index of p . Denote by |x|X the norm of x ∈ X and by
|B(0, |x|X)| the volume of the open ball B(0, |x|X) on X . Applying Fubini’s theorem, a
straightforward computation then shows that

T f (x) =
1

|B(0, |x|X)|
∫

B(0,|x|X )

(∫
{z: |y|X<|z|X<|x|X }

f (z)
|B(0, |z|X)|dz

)
dy

� 1
|B(0, |x|X)|

∫
B(0,|x|X )

T ∗ f (y)dy,

and

T ∗ f (x) =
∫
{z: |z|X >|x|X}

(
1

|B(0, |z|X )|2
∫
{y: |x|X <|y|X<|z|X}

f (y)dy

)
dz

�
∫
{z: |z|X >|x|X}

T f (z)
|B(0, |z|X )|dz.

With these estimates, the fairy rough inequalities similar to the one-dimensional case
will be established as follows

p−1
p

‖T f‖Lp(X) � ‖T ∗ f‖Lp(X) � p‖T f‖Lp(X) ,

for any 1 < p < ∞ .
In the present paper, we establish an analogous result of Theorem A which in fact

is motivated by the interesting result given by Kolyada in [9]. We are going to give
the relation between Lp -norms of the higher dimensional Hardy operator and its dual
operator, and to establish best constants in inequalities. It is interesting to find that sharp
constants are dimension free, which means that they do not depend on the dimension
of underlying space n .

Our results can be stated as follows.

THEOREM 1. Let f be a nonnegative measurable function on H
n . Then

(p−1)‖H f‖Lp(Hn) � ‖H∗ f‖Lp(Hn) � (p−1)1/p‖H f‖Lp(Hn) (3)

if 1 < p � 2, and

(p−1)1/p‖H f‖Lp(Hn) � ‖H∗ f‖Lp(Hn) � (p−1)‖H f‖Lp(Hn) (4)

if 2 � p < ∞. All constants in (3) and (4) are sharp.
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THEOREM 2. Let f be a nonnegative measurable function on R
n. Then

(p−1)‖H f‖Lp(Rn) � ‖H ∗ f‖Lp(Rn) � (p−1)1/p‖H f‖Lp(Rn) (5)

if 1 < p � 2, and

(p−1)1/p‖H f‖Lp(Rn) � ‖H ∗ f‖Lp(Rn) � (p−1)‖H f‖Lp(Rn) (6)

if 2 � p < ∞. All constants in (5) and (6) are sharp.

In general, the proof on the Heisenberg group is considerably more complicated
than the proof in Euclidean space because it does not use symmetrization. However, we
find that many techniques and results are similar for some averaging integral operators
both in the case of H

n and R
n . With this fact, we only give the proof of Theorem 1

in details. The method by which our results are obtained is quite elementary by means
of the rotation method. As we said, the main results show that the n -dimensional
inequalities are equivalent to one-dimensional ones with the identical constants. We
must show that there is an optimizer for the inequality, i.e., that there is a function f
that actually gives equality in Theorems 1 and 2 with the sharp constant. Indeed, the
problem of finding the best constant is reduced to test equality over the class of radial
functions.

2. Proof of Theorems 1 and 2

We shall need the following lemma which is analogous to the one-dimensional
case on R

1 presented in [9] in which the author did not provide the proof.

LEMMA 1. Let 1 < p < ∞ . Assume that f is a nonnegative measurable function
on H

n . If H f ∈ Lp(Hn) , then

|x|Q/p
h H f (x) → 0 as |x|h → 0+ or |x|h → ∞.

Proof. For any x ∈ H
n\{0} , there exists j ∈ Z such that 2 j < |x|h � 2 j+1 . Since

f is nonnegative, and by the definition of Hardy operator H , we have

2−QH f (2 j) � H f (x) � 2QH f (2 j+1). (7)

On the one hand, we find that

‖H f‖Lp(Hn) �
∫
{x: |x|h>1}

(
1

νQ|x|Qh

∫
B(0,|x|h)

f (y)dy

)p

dx

=
∞

∑
j=0

∫
{x: 2 j<|x|h�2 j+1}

(
1

νQ|x|Qh

∫
B(0,|x|h)

f (y)dy

)p

dx

�
∞

∑
j=0

∫
{x: 2 j<|x|h�2 j+1}

(
2−QH f (2 j)

)p
dx

=
νQ(2Q −1)

2Qp

∞

∑
j=0

2 jQ (H f (2 j)
)p

.
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Noting that H f ∈ Lp(Hn) , it implies that

lim
j→∞

2 jQ (H f (2 j)
)p = 0.

It follows from (7) that for 2 j < |x|h � 2 j+1 ,

2−Qp2 jQ (H f (2 j)
)p � |x|Qh (H f (x))p � 2Qp2( j+1)Q (H f (2 j+1)

)p
,

which clearly yields
lim

|x|h→∞
|x|Qh (H f (x))p = 0.

On the other hand, we have

‖H f‖Lp(Hn) �
∫
{x: 0<|x|h�1}

(
1

νQ|x|Qh

∫
B(0,|x|h)

f (y)dy

)p

dx

=
0

∑
j=−∞

∫
{x: 2 j−1<|x|h�2 j}

(
1

νQ|x|Qh

∫
B(0,|x|h)

f (y)dy

)p

dx

�
0

∑
j=−∞

∫
{x: 2 j−1<|x|h�2 j}

(
2−QH f (2 j−1)

)p
dx

=
νQ(2Q −1)

2Qp

0

∑
j=−∞

2( j−1)Q (H f (2 j−1)
)p

.

Using that H f ∈ Lp(Hn) , it implies that

lim
j→−∞

2( j−1)Q (H f (2 j−1)
)p

= 0,

and then we must have
lim

|x|h→0+
|x|Qh (H f (x))p = 0.

We complete the proof.
A similar proof as that of Lemma 1 leads easily to the following result.

LEMMA 2. Let 1 < p < ∞ . Assume that f is a nonnegative measurable function
on R

n. If H f ∈ Lp(Rn) , then

|x|n/pH f (x) → 0 as |x| → 0+ or |x| → ∞.

Proof of Theorem 1. Assume that H f and H∗ f belong to Lp(Hn). From the def-
initions of the Hardy operator H and its dual operator H∗ on H

n , these two operators
are radial. Write

FQ(s) =
∫

S(0,1)
sQ−1 f (δsy

′)dσ(y′).
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The norm of ‖H f‖p
Lp(Hn) can be written in the polar coordinates form as follows:

‖H f‖p
Lp(Hn) =

∫
Hn

|H f (x)|pdx (8)

=
ωQ

ν p
Q

∫ ∞

0
tQ−1−Qp

(∫ t

0

∫
S(0,1)

sQ−1 f (δsy
′)dσ(y′)ds

)p

dt

=
ωQ

ν p
Q

∫ ∞

0
tQ−1−Qp

(∫ t

0
FQ(s)ds

)p

dt.

Similarly, we may rewrite ‖H∗ f‖p
Lp(Hn) as

‖H∗ f‖p
Lp(Hn) =

∫
Hn

|H∗ f (x)|pdx =
ωQ

ν p
Q

∫ ∞

0
sQ−1

(∫ ∞

s

FQ(t)
tQ

dt

)p

ds. (9)

Applying integration by parts and using Lemma 1, (8) can be estimated as follows

‖H f‖p
Lp(Hn) =

ωQ

ν p
Q

(
1

Q−Qp
tQ−Qp

(∫ t

0
FQ(s)ds

)p
∣∣∣∣∣
∞

t=0

(10)

− p
Q−Qp

∫ ∞

0
tQ−QpFQ(t)

(∫ t

0
FQ(s)ds

)p−1

dt

)

=
1

ν p−1
Q

· p
p−1

∫ ∞

0
tQ−QpFQ(t)

(∫ t

0
FQ(s)ds

)p−1

dt.

Next we shall prove the theorem in three steps.
Step 1. We shall show that

‖H∗ f‖Lp(Hn) � (p−1)1/p‖H f‖Lp(Hn)

if 1 < p � 2, and

(p−1)1/p‖H f‖Lp(Hn) � ‖H∗ f‖Lp(Hn)

if 2 � p < ∞.
For t > 0, we let

ΦQ(s,t) =
∫ t

s

FQ(u)
uQ du, 0 < s � t < ∞.

An easy calculation show that

Q
∫ t

0
sQ−1ΦQ(s,t)ds =

∫ t

0
FQ(u)du, (11)

and also for any q > 0(∫ ∞

s

FQ(t)
tQ

dt

)q

=
∫ ∞

s

∂
∂ t

(∫ t

s

FQ(u)
uQ du

)q

dt = q
∫ ∞

s

FQ(t)
tQ

ΦQ(s,t)q−1dt. (12)
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It follows from (12) with q = p and the Fubini theorem that (9) can be written as

‖H∗ f‖p
Lp(Hn) =

ωQ

ν p
Q

· p
∫ ∞

0
sQ−1

∫ ∞

s

FQ(t)
tQ

ΦQ(s,t)p−1dtds (13)

=
ωQ

ν p
Q
· p
∫ ∞

0

FQ(t)
tQ

∫ t

0
sQ−1ΦQ(s,t)p−1dsdt.

From (10) and (11), we have the identity

‖H f‖p
Lp(Hn) =

(
Q
νQ

)p−1

· p
p−1

∫ ∞

0
tQ−QpFQ(t)

(∫ t

0
sQ−1ΦQ(s,t)ds

)p−1

dt. (14)

Obviously, ‖H∗ f‖2
L2(Hn) = ‖H f‖2

L2(Hn). Thus we shall only deal with the case

p �= 2. We now divide p into two cases: 1 < p < 2 and 2 < p < ∞ .
Case I. Let 1 < p < 2. By Hölder’s inequality with exponents (p− 1)−1 and

(2− p)−1 , we have that

∫ t

0
sQ−1ΦQ(s,t)p−1ds �

(∫ t

0
sQ−1ΦQ(s,t)ds

)p−1(∫ t

0
sQ−1ds

)2−p

= Qp−2tQ(2−p)
(∫ t

0
sQ−1ΦQ(s,t)ds

)p−1

.

The above estimate together with (13) and (14) gives that

‖H∗ f‖p
Lp(Hn) �

(
Q
νQ

)p−1

· p
∫ ∞

0
FQ(t)tQ−Qp

(∫ t

0
sQ−1Φn(s,t)ds

)p−1

dt

= (p−1)‖H f‖p
Lp(Hn).

Case II. Let p > 2. Using Hölder’s inequality with exponents p− 1 and (p−
1)/(p−2), we have(∫ t

0
sQ−1ΦQ(s,t)ds

)p−1

�
∫ t

0
sQ−1ΦQ(s,t)p−1ds

(∫ t

0
sQ−1ds

)p−2

= Q2−ptQ(p−2)
∫ t

0
sQ−1ΦQ(s, t)p−1ds.

With the help of (13) and (14), we have, as a consequence, that

‖H f‖p
Lp(Hn) � ωQ

ν p
Q

· p
p−1

∫ ∞

0

FQ(t)
tQ

∫ t

0
sQ−1ΦQ(s,t)p−1dsdt

=
1

p−1
‖H∗ f‖p

Lp(Hn).

Thus, we finish the proof of Step 1.
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Step 2. We shall prove that

(p−1)‖H f‖Lp(Hn) � ‖H∗ f‖Lp(Hn), if 1 < p < 2,

and

‖H∗ f‖Lp(Hn) � (p−1)‖H f‖Lp(Hn), if 2 < p < ∞.

Noting that for any q > 0, we have(∫ ∞

s

FQ(t)
tQ

dt

)q

= q
∫ ∞

s

FQ(t)
tQ

(∫ ∞

t

FQ(u)
uQ du

)q−1

dt. (15)

Applying (15) with the exponent q = p , (9) can be written as

‖H∗ f‖p
Lp(Hn) =

ωQ

ν p
Q

∫ ∞

0
sQ−1

(∫ ∞

s

FQ(t)
tQ

dt

)p

ds (16)

=
ωQ

ν p
Q

· p
∫ ∞

0
sQ−1

∫ ∞

s

FQ(t)
tQ

(∫ ∞

t

FQ(u)
uQ du

)p−1

dtds

= pν1−p
Q

∫ ∞

0
FQ(t)

(∫ ∞

t

FQ(u)
uQ du

)p−1

dt.

Once again, we use (15) with the exponent q = p−1 and switch the order of integration.
This gives

‖H∗ f‖p
Lp(Hn) = ν1−p

Q · p(p−1)
∫ ∞

0
FQ(t)

(∫ ∞

t

FQ(u)
uQ

(∫ ∞

u

FQ(v)
vQ dv

)p−2

du

)
dt

= ν1−p
Q · p(p−1)

∫ ∞

0

FQ(u)
uQ

(∫ ∞

u

FQ(v)
vQ dv

)p−2(∫ u

0
FQ(t)dt

)
du.

Define now the following functions

ϕQ(u) =
F1/(p−1)

Q (u)

uQ

∫ u

0
FQ(t)dt,

and

ψQ(u) = FQ(u)(p−2)/(p−1)
(∫ ∞

u

FQ(v)
vQ dv

)p−2

.

Then, obviously

‖H∗ f‖p
Lp(Hn) = ν1−p

Q · p(p−1)
∫ ∞

0
ϕQ(u)ψQ(u)du. (17)

With the help of expressions of ‖H f‖p
Lp(Hn) in (10) and ‖H∗ f‖p

Lp(Hn) in (16), we have
that ∫ ∞

0
ϕQ(u)p−1du = ν p−1

Q · p−1
p

‖H f‖p
Lp(Hn), (18)
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and ∫ ∞

0
ψQ(u)(p−1)/(p−2)du = ν p−1

Q · 1
p
‖H∗ f‖p

Lp(Hn) (19)

for any p > 1. We now also divide p into two cases: 1 < p < 2 and 2 < p < ∞ .
Case I. Let 1 < p < 2. Using in (17) the Hölder inequality with exponents p−1

and (p−1)(p−2)−1 (cf. [7, Theorem 189, p. 140]), and by equalities (18) and (19),
we have

‖H∗ f‖p
Lp(Hn) � ν1−p

Q · p(p−1) ·
(

ν p−1
Q · p−1

p
‖H f‖p

Lp(Hn)

)1/(p−1)

·
(

ν p−1
Q · 1

p
‖H∗ f‖p

Lp(Hn)

)(p−2)/(p−1)

= (p−1)
p

p−1 ‖H f‖
p

p−1
Lp(Hn)‖H∗ f‖

p(p−2)
p−1

Lp(Hn).

Hence

‖H∗ f‖Lp(Hn) � (p−1)‖H f‖Lp(Hn)

in the case 1 < p < 2.
Case II. Let p > 2. One has using in (17) the Hölder inequality with exponents

p−1 and (p−1)(p−2)−1 together with equalities (18) and (19),

‖H∗ f‖p
Lp(Hn) � (p−1)

p
p−1 · ‖H f‖

p
p−1
Lp(Hn)‖H∗ f‖

p(p−2)
p−1

Lp(Hn).

Hence

‖H∗ f‖Lp(Hn) � (p−1)‖H f‖Lp(Hn)

in the case p > 2.
Step 3. In order to prove that constants in (3) and (4) are sharp, we are going now

to construct some suitable functions. We shall prove it by choosing three classes of
functions.

Case I. We shall prove that the constant (1/(p−1))1/p in the right-hand side of
(3) and the left-hand side of (4) is the sharp one.

For any ε > 0, take fε (x) = χ{x: 1�|x|h�1+ε}(x). On the one hand, we have

‖H fε‖p
Lp(Hn) =

∫
Hn

(
1

|B(0, |x|h)|
∫

B(0,|x|h)
χ{y: 1�|y|h�1+ε}(y)dy

)p

dx

=
∫
{x: 1<|x|h<1+ε}

(
1

|B(0, |x|h)|
∫
{y: 1�|y|h<|x|h}

dy

)p

dx

+
∫
{x: |x|h�1+ε}

(
1

|B(0, |x|h)|
∫
{y: 1�|y|h�1+ε}

dy

)p

dx

=: I1 + I2.
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By simple calculations, we conclude that

I1 = ωQ

∫ 1+ε

1
tQ−1−Qp(tQ −1)pdt � νQ · ((1+ ε)Q−1)p

p−1
·
(
1− (1+ ε)Q(1−p)

)
,

and

I2 = νQ · ((1+ ε)Q−1)p

p−1
· (1+ ε)Q(1−p).

With above estimates, we yield that

((1+ ε)Q−1)p(1+ ε)Q(1−p)

p−1
� ν−1

Q ‖H fε‖p
p � ((1+ ε)Q−1)p

p−1
.

On the other hand, for H ∗ fε , we have

‖H∗ fε‖p
Lp(Hn) =

∫
Hn

(∫
{y: |y|h>|x|h}

χ{y: 1�|y|h�1+ε}(y)

νQ|y|Qh
dy

)p

dx

=
∫
{x: |x|h�1}

(∫
{y: |y|h>|x|h}

χ{y: 1�|y|h�1+ε}(y)

νQ|y|Qh
dy

)p

dx

+
∫
{x: |x|h>1}

(∫
{y: |y|h>|x|h}

χ{y: 1�|y|h�1+ε}(y)

νQ|y|Qh
dy

)p

dx

=: I3 + I4.

It is easy to calculate that

I3 = νQ ·Qp · (ln(1+ ε))p,

and

I4 = Qp ·ωQ

∫ 1+ε

1
tQ−1

(
ln

(
1+ ε

t

))p

dt � νQ ·Qp · (ln(1+ ε))p ((1+ ε)Q−1
)
.

Consequently, above estimates of I3 and I4 force

Qp(ln(1+ ε))p � ν−1
Q ‖H∗ fε‖p

Lp(Hn) � Qp(1+ ε)Q(ln(1+ ε))p.

Applying asymptotic relations (1+ x)α −1 ∼ αx and ln(1+ x) ∼ x as x → 0 for
any α ∈ R , we gain that

lim
ε→0+

‖H fε‖Lp(Hn)

‖H∗ fε‖Lp(Hn)
=
(

1
p−1

)1/p

.

Case II. We shall prove that the constant p− 1 in the left-hand side of (3) and
the right-hand side of (4) is the sharp one. To this end, we need to choose different
functions according to the range of p .
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Let 1 < p < 2. For any ε such that 0 < ε < Q/p , define

fε (x) = |x|ε−Q/p
h χ{x: 0<|x|h�1}(x).

Then we have

‖H fε‖p
Lp(Hn) =

1
ν p

Q

∫
Hn

(
1

|x|Qh

∫
B(0,|x|h)

|y|ε−Q/p
h χ{y: 0<|y|h�1}(y)dy

)p

dx

� 1
ν p

Q

∫
{x: |x|h<1}

1

|x|Qp
h

(∫
{y: 0<|y|h<|x|h}

|y|ε−Q/p
h dy

)p

dx

= Qp ·ωQ · 1
pε

·
(

1
ε +Q(1−1/p)

)p

.

To estimate the Lp(Hn)-norm of H∗ fε , by using polar coordinates, we conclude that

‖H∗ fε‖p
Lp(Hn) =

∫
Hn

(∫
{y: |y|h>|x|h}

|y|ε−Q/p
h χ{y: 0<|y|h�1}(y)

νQ|y|Qh
dy

)p

dx

=
∫
{x: |x|h<1}

(∫
{y: |y|h>|x|h}

|y|ε−Q/p
h χ{y: 0<|y|h�1}(y)

νQ|y|Qh
dy

)p

dx

=
ω p+1

Q

ν p
Q

∫ 1

0

(∫ 1

t
rε−Q/p−1dr

)p

tQ−1dt

=
ω p+1

Q

ν p
Q

· 1
(Q/p− ε)p

∫ 1

0

(
tε−Q/p−1

)p
tQ−1dt

�
ω p+1

Q

ν p
Q

· 1
(Q/p− ε)p

∫ 1

0
t pε−1dt

= Qp ·ωQ · 1
pε

· 1
(Q/p− ε)p .

Therefore,

lim
ε→0+

‖H fε‖Lp(Hn)

‖H∗ fε‖Lp(Hn)
� 1

p−1
.

It implies the constant 1/(p−1) in the left side of (3) is the best possible.
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At last we now deal with the case of p > 2. For any ε satisfying 0 < ε < Q(1−
1/p) , take fε (x) = |x|−ε−Q/p

h χ{x: |x|h�1}(x). Then we have

‖H fε‖p
Lp(Hn) =

1
ν p

Q

∫
Hn

(
1

|x|Qh

∫
B(0,|x|h)

|y|−ε−Q/p
h χ{y: |y|h�1}(y)dy

)p

dx

=
ω p+1

Q

ν p
Q

∫ ∞

1

(∫ t

1
r−ε+Q(1−1/p)−1dr

)p

tQ(1−p)−1dt

=
ω p+1

Q

ν p
Q

· 1
(Q(1−1/p)− ε)p

∫ ∞

1

(
tQ(1−1/p)−ε −1

)p
tQ(1−p)−1dt

�
ω p+1

Q

ν p
Q

· 1
(Q(1−1/p)− ε)p

∫ ∞

1
t−pε−1dt

= Qp ·ωQ · 1
pε

· 1
(Q(1−1/p)− ε)p .

In the same way as above, we have

‖H∗ fε‖p
Lp(Hn) =

∫
Hn

(∫
{y: |y|h>|x|h}

|y|−ε−Q/p
h χ{y: |y|h�1}(y)

νQ|y|Qh
dy

)p

dx

�
∫
{x: |x|h�1}

(∫
{y: |y|h>|x|h}

|y|−ε−Q/p
h

νQ|y|Qh
dy

)p

dx

= Qp ·ωQ · 1
pε

· 1
(Q/p+ ε)p .

Letting ε → 0+ , we obtain that

lim
ε→0+

‖H∗ fε‖Lp(Hn)

‖H fε‖Lp(Hn)
� p−1.

The sharpness assertion in the left side of (4) is thereby established. Combining all
estimates together, we finish the proof.

REMARK 1. It is worth noting that we do not need to assume f ∈ Lp(Hn) in
Theorem 1. We can easily see that the condition H f ∈ Lp(Hn) does not imply that
f ∈ Lp(Hn) . Indeed, set f (x) = (|x|h−1)−1/p χ{x: 1�|x|h�2}(x), p > 1. Obviously,

H f (x) = 0 for 0 < |x|h � 1.
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So we have

‖H f‖p
Lp(Hn) =

∫
{x: |x|h�1}

(H f (x))p dx

=
∫
{x: |x|h�1}

(
1

|B(0, |x|h)|
∫

B(0,|x|h)
(|y|h−1)−1/p χ{y: 1�|y|h�2}(y)dy

)p

dx

�
∫
{x: |x|h�1}

(
2Q−1ωQ

νQ
· p
p−1

· 1

|x|Qh

)p

dx

=
(

2Q−1ωQ

νQ
· p
p−1

)p

· νQ

p−1
.

Hence, H f ∈ Lp(Hn) . However, a simple estimate shows that

‖ f‖p
Lp(Hn) =

∫
Hn

((|x|h−1)−1/p χ{x: 1�|x|h�2}(x))pdx

= ωQ

∫ 2

1
tQ−1(t−1)−1dt

� ωQ

∫ 2

1
(t−1)−1dt

= ∞,

which implies f �∈ Lp(Hn).

Proof of Theorem 2. With the help of Lemma 2, the proof of Theorem 2 will be
essentially similar to that of Theorem 1 and we omit the details.

Acknowledgement. The research was supported by National Natural Science Foun-
dation of China (Grant Nos. 11871108, 11971295) and Natural Science Foundation of
Shanghai (No. 19ZR1417600).

The authors would like to thank the referees for some valuable comments and
useful suggestions.

RE F ER EN C ES

[1] M. CHRIST AND L. GRAFAKOS, Best constants for two nonconvolution inequalities, Proc. Amer.
Math. Soc., 123, (1995), 1687–1693.
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[3] P. DRÁBEK, H. P. HEINIG AND A. KUFNER, Higher dimensional Hardy inequality, Internat. Ser.
Numer. Math., 123, (1997), 537–556.

[4] G. B. FOLLAND AND E. M. STEIN, Hardy spaces on homogeneous groups, Princeton, N. J. Princeton
University Press, (1982).

[5] Z. FU, L. GRAFAKOS, S. LU AND F. ZHAO, Sharp bounds for m-linear Hardy and Hilbert operators,
Houston J. Math., 38, (2012), 225–244.

[6] G. H. HARDY, Notes on some points in the integral calculus, LX. An inequality between integrals,
Messenger of Math., 54, (1925), 150–156.



THE HIGHER DIMENSIONAL HARDY OPERATOR AND ITS DUAL OPERATOR 289
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