WEIGHTED COMPOSITION OPERATORS AND THEIR PRODUCTS ON $L^{2}(\Sigma)$

M. R. Jabbarzadeh* and M. Gheytaran

(Communicated by J. Pečarić)

Abstract

In this paper, we study the ascent and descent of weighted composition operators on $L^{2}(\Sigma)$. In addition, we discuss measure theoretic characterizations of some classical properties for products of these type operators.

1. Introduction and preliminaries

Let (X, Σ, μ) be a complete sigma finite measure space and let \mathscr{A} be a sub-sigma finite algebra of Σ. If $B \subset X$, let $\mathscr{A}_{B}=\mathscr{A} \cap B$ denote the relative completion of the sigma-algebra generated by $\{A \cap B: A \in \mathscr{A}\}$ and denote the complement of B in X by B^{c}. All comparisons between two functions or two sets are to be interpreted as holding up to a μ-null set. We denote the linear spaces of all complex-valued Σ-measurable functions on X by $L^{0}(\Sigma)$. The support of $f \in L^{0}(\Sigma)$ is defined by $\sigma(f)=\{x \in X$: $f(x) \neq 0\}$. Let $u \in L^{0}(\Sigma)$ and let $\varphi: X \rightarrow X$ be a measurable transformation on X, that is, $\varphi^{-1}(A) \in \Sigma$ for all $A \in \Sigma$. Denote by $\mu_{\sigma(u)} \circ \varphi^{-1}$ the positive measure on Σ given by $\mu_{\sigma(u)} \circ \varphi^{-1}(A)=\mu\left(\varphi^{-1}(A) \cap \sigma(u)\right)$ for all $A \in \Sigma$. Put $\mu_{X}=\mu$. We say that φ is nonsingular, if $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ. In this case we write $\mu \circ \varphi^{-1} \ll \mu$, as usual. Let h be the Radon-Nikodym derivative, $h=\frac{d \mu \circ \varphi^{-1}}{d \mu}$.

Let $1 \leqslant p \leqslant \infty$. By a weighted composition operator in $L^{p}(\Sigma)=L^{p}(X, \Sigma, \mu)=$ $L^{p}(\mu)$ we mean a mapping $W=u C_{\varphi}: L^{p}(\Sigma) \supseteq \mathscr{D}(W) \rightarrow L^{p}(\Sigma)$ formally defined by

$$
W f(x)= \begin{cases}u(x) f(\varphi(x)) & x \in \sigma(u) \\ 0 & x \notin \sigma(u),\end{cases}
$$

for all $f \in \mathscr{D}(W)=\left\{f \in L^{p}(\Sigma): u .(f \circ \varphi) \in L^{p}(\Sigma)\right\}$. In general, such operator may not be well-defined. We use the assumption $\mu_{\sigma(u)} \circ \varphi^{-1}=\left.\left(\mu \circ \varphi^{-1}\right)\right|_{\sigma(u)} \ll \mu$ to see that W is well-defined on $\mathscr{D}(W)$, for more details, see [1]. Now, set $u=1$. Then the composition operator C_{φ} defined by $C_{\varphi}(f)=f \circ \varphi$ on $L^{p}(\Sigma)$ is well-defined if and only if the transformation φ is nonsingular. It is known that $C_{\varphi} \in \mathscr{B}\left(L^{p}(\Sigma)\right)$, the

[^0]algebra of all bounded linear operators on $L^{p}(\Sigma)$, if and only if $h \in L^{\infty}(\Sigma)$. In this case $\mathscr{D}\left(C_{\varphi}\right)=L^{p}(\Sigma),\left\|C_{\varphi}\right\|^{p}=\|h\|_{\infty}$ and $W=M_{u} C_{\varphi}$, where M_{u} is a multiplication operator defined by $M_{u}(f)=u f$ on $\mathscr{D}\left(M_{u}\right)=\left\{f \in L^{p}(\Sigma): u . f \in L^{p}(\Sigma)\right\}$. It is known by the closed graph theorem that $\mathscr{D}\left(M_{u}\right)=L^{p}(\Sigma)$ if and only if $u \in L^{\infty}(\Sigma)$, or equivalently, $M_{u} \in \mathscr{B}\left(L^{p}(\Sigma)\right)$. In this case, $\left\|M_{u}\right\|=\|u\|_{\infty}$ (see [22]).

Assume f is a non-negative Σ-measurable function on X. Since \mathscr{A} is sub-sigma finite, by the Radon-Nikodym theorem, there exists a unique \mathscr{A}-measurable function $E^{\mathscr{A}}(f)$ such that $\int_{A} f d \mu=\int_{A} E^{\mathscr{A}}(f) d \mu$, where A is any \mathscr{A}-measurable set for which $\int_{A} f d \mu$ exists. Note that $E(f)$ depends both on μ and \mathscr{A}. A real-valued measurable function $f=f^{+}-f^{-}$is said to be conditionable if $\mu\left(\left\{x \in X: E\left(f^{+}\right)(x)=E\left(f^{-}\right)(x)=\right.\right.$ $\infty\})=0$. If f is complex-valued, then $f \in \mathscr{D}(E)=\left\{f \in L^{0}(\Sigma): f\right.$ is conditionable $\}$ if the real and imaginary parts of f are conditionable and their respective expectations are not both infinite on the same set of positive measure. One can show that every $L^{p}(\Sigma)$ function is conditionable. In the setting of L^{p}-spaces, the conditional expectation operator $E^{\mathscr{A}}$ plays an important role in the study of weighted composition operators. We use the notation $L^{p}(\mathscr{A})$ for $L^{p}\left(X, \mathscr{A}, \mu_{\mid \mathscr{A}}\right)$ and henceforth we write μ in place $\mu_{\mid \mathscr{A}}$. The mapping $E^{\mathscr{A}}: L^{p}(\Sigma) \rightarrow L^{p}(\mathscr{A})$ defined by $f \mapsto E^{\mathscr{A}}(f)$, is called the conditional expectation operator with respect to \mathscr{A}. In the case of $p=2$, it is the orthogonal projection of $L^{2}(\Sigma)$ onto $L^{2}(\mathscr{A})$. For further discussion of the conditional expectation operator see $[1,8,15,19]$.

For each $n \in \mathbb{N}$, let $\Sigma_{n}:=\varphi^{-n}(\Sigma)$ be a sub-sigma finite algebra of Σ and let $\mu \circ \varphi^{-n} \ll \mu$. Set $u_{(n)}=u .(u \circ \varphi) \cdots\left(u \circ \varphi^{n-1}\right),(h)_{n}=d \mu \circ \varphi^{-n} / d \mu, E^{n}=E^{\Sigma_{n}}$ and $(J)_{n}=(h)_{n} E^{n}\left(\left|u_{(n)}\right|^{p}\right) \circ \varphi^{-n}$. We use the symbols h, E and $J=h E\left(|u|^{p}\right) \circ \varphi^{-1}$ instead of $(h)_{1}, E^{1}$ and $(J)_{1}$, respectively. Note that if Σ_{n} is sigma finite so is Σ_{k} for any $k<n$. Let $f \in \mathscr{D}\left(E^{n}\right)$. Since $E^{n}(f)$ is a Σ_{n}-measurable function, there is a $g \in L^{0}(\Sigma)$ such that $E^{n}(f)=g \circ \varphi^{n}$. In general g is not unique. This deficiency can be solved by assuming $\sigma(g) \subseteq \sigma\left((h)_{n}\right)$, because for each $g_{1}, g_{2} \in L^{0}(\Sigma), g_{1} \circ \varphi^{n}=g_{2} \circ \varphi^{n}$ if and only if $g_{1}=g_{2}=g$ on $\sigma\left((h)_{n}\right)$. In this case g is a well-defined and unique. As a notation, we then write $g=E^{n}(f) \circ \varphi^{-n}$. With this setting by the change of variables formula, we obtain $\int_{X} f d \mu=\int_{X}(h)_{n} E^{n}(f) \circ \varphi^{-n} d \mu$, in the sense that if one of the integrals exists then so does the other and they have the same value (see [2]). For $1 \leqslant p<\infty$, define

$$
\begin{aligned}
& \|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{\frac{1}{p}} \\
& \|f\|_{p, h d \mu}=\left(\int_{X}|f|^{p} h d \mu\right)^{\frac{1}{p}} \\
& \|f\|_{p, J d \mu}=\left(\int_{X}|f|^{p} J d \mu\right)^{\frac{1}{p}}
\end{aligned}
$$

It is easy to check that

$$
\begin{align*}
\left\|C_{\varphi}(f)\right\|_{p} & =\left\|M_{\sqrt[p]{h}} f\right\|_{p}=\|f\|_{p, h d \mu}, \quad f \in \mathscr{D}\left(C_{\varphi}\right) \subseteq L^{p}(\Sigma) \\
\|W(f)\|_{p} & =\left\|M_{\sqrt[p]{J}} f\right\|_{p}=\|f\|_{p, J d \mu}, \quad f \in \mathscr{D}(W) \subseteq L^{p}(\Sigma) \tag{1.1}
\end{align*}
$$

Hence $\mathscr{D}\left(C_{\varphi}\right)=L^{p}(\Sigma) \cap L^{p}(h d \mu)$ and $\mathscr{D}(W)=L^{p}(\Sigma) \cap L^{p}(J d \mu)$. Campbell and Hornor in [2] proved that W is a densely defined and closed operator if and only if J is finite valued, that is, $\mu(\{x \in X: J(x)=\infty\})=0$. Also, $\overline{\mathscr{R}(W)}=\{u \cdot(f \circ \varphi)$: $\left.f \in L^{p}(J d \mu)\right\}$. If $J \in L^{\infty}(\Sigma)$, then $L^{p}(\Sigma) \subseteq L^{p}(J d \mu)$, and so $\mathscr{D}(W)=L^{p}(\Sigma)$. Moreover, it follows from (1.1) that $W \in \mathscr{B}\left(L^{p}(\Sigma)\right)$ if and only if $J \in L^{\infty}(\Sigma)$ (see also [9]). In particular, in case $u=1, \overline{\mathscr{D}\left(C_{\varphi}\right)}=L^{p}(\Sigma)$ if and only if $h<\infty$; that is finite valued, and $\mathscr{R}(E)=\overline{\mathscr{R}\left(C_{\varphi}\right)}=L^{p}\left(\varphi^{-1}(\Sigma)\right)=\left\{f \circ \varphi: f \in L^{p}(h d \mu)\right\}$. If $h \in L^{\infty}(\Sigma)$, then $L^{p}(\Sigma) \subseteq L^{p}(h d \mu)$, and so $\mathscr{D}\left(C_{\varphi}\right)=L^{p}(\Sigma)$. Lambert et al. in [9] shows that the adjoint W^{*} of $W \in \mathscr{B}\left(L^{2}(\Sigma)\right)$ is given by $W^{*}(f)=h E(\bar{u} f) \circ \varphi^{-1}$, for each $f \in L^{2}(\Sigma)$. In this case, $W^{*} W=M_{J}$ and $W W^{*}=M_{u .(h \circ \varphi)} E M_{\bar{u}}$.

Products of operators appear often in the service of the study of other operators. Weighted composition operators and their products have been used to provide examples and illustrations of many operator theoretic properties. In several cases major conjectures in operator theory have been reduced to the weighted composition operators. The purpose of this note is to find some characterizations of properties of weighted composition operators on $L^{2}(\Sigma)$ and present a relationship between $W=u C_{\varphi}$ and their products. A good reference for information on the weighted composition operators in L^{2}-spaces is the monograph [1]. In Section 2, we collect some sufficient facts on products of weighted composition operators. In section 3, we investigate semi-Kato type weighted composition operators. Finally, in section 4, we characterize the weighted composition operators on $L^{2}(\Sigma)$ whose ascent and descent is finite.

2. On some classic properties of $W=u C_{\varphi}$ on $L^{2}(\Sigma)$

For $i=1,2$ and $n \in \mathbb{N}$, let $\Sigma_{n}^{i}:=\varphi_{i}^{-n}(\Sigma)$ be a sub-sigma finite algebra of Σ and let $\mu \circ \varphi_{i}^{-n} \ll \mu$. Set $u_{i(n)}=u_{i} .\left(u_{i} \circ \varphi_{i}\right) \cdots\left(u_{i} \circ \varphi_{i}^{n-1}\right),\left(h_{i}\right)_{n}=d \mu \circ \varphi_{i}^{-n} / d \mu, E_{i}^{n}=E^{\Sigma_{n}^{i}}$ and $\left(J_{i}\right)_{n}=\left(h_{i}\right)_{n} E_{i}^{n}\left(\left|u_{i(n)}\right|^{2}\right) \circ \varphi_{i}^{-n}$. We use the symbols h_{i}, E_{i} and $J_{i}=h_{i} E_{i}\left(\left|u_{i}\right|^{2}\right) \circ$ φ_{i}^{-1} instead of $\left(h_{i}\right)_{1}, E_{i}^{1}$ and $\left(J_{i}\right)_{1}$, respectively. Put $\varphi_{3}=\varphi_{1} \circ \varphi_{2}, u_{3}=u_{2} \cdot\left(u_{1} \circ \varphi_{2}\right)$. Then $\mu \circ \varphi_{3}^{-n} \ll \mu$.

REMARK 2.1. For a nonsingular measurable transformation $\varphi_{i}(i=1,2)$, let $h_{i}<\infty$ and $\varphi_{3}^{-1}(\Sigma)$ be a sub-sigma finite algebra of Σ. Then by [1, Lemma 26] we have

$$
\begin{equation*}
h_{3}=h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1} \text { and } \sigma\left(h_{3} \circ \varphi_{3}\right)=X . \tag{2.1}
\end{equation*}
$$

Also, if $C_{\varphi_{3}}^{*}$ is densely defined then so is $C_{\varphi_{3}} C_{\varphi_{3}}^{*}$ (see [20, Theorem 1.8 and 7.2]). In this case $C_{\varphi_{3}} C_{\varphi_{3}}^{*}=M_{h_{3} \circ \varphi_{3}} E_{3}$ (see [1, Theorem 18]). Moreover, if $h_{i} \in L^{\infty}(\Sigma)$ then by [1, Prposition 17], $C_{\varphi_{3}}^{*}(f)=h_{1} E_{1}\left(h_{2} E_{2}(f) \circ \varphi_{2}^{-1}\right) \circ \varphi_{1}^{-1}$ for all $f \in L^{2}(\Sigma)$.

LEMMA 2.2. For a nonsingular measurable transformation $\varphi_{i}(i=1,2)$, let $h_{i} \in$ $L^{\infty}(\Sigma)$. Then

$$
E_{3}(f)=\frac{1}{E_{1}\left(h_{2}\right) \circ \varphi_{2}} E_{1}\left(h_{2} E_{2}(f) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2}, \quad f \in L^{2}(\Sigma)
$$

Proof. Let $f \in L^{2}(\Sigma)$. Then by Remark 2.1 we have

$$
\begin{aligned}
E_{3}(f) & =\frac{1}{h_{3} \circ \varphi_{3}} C_{\varphi_{3}} C_{\varphi_{3}}^{*}(f) \\
& =\frac{h_{1} \circ \varphi_{3}}{h_{3} \circ \varphi_{3}} E_{1}\left(h_{2} E_{2}(f) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2} \\
& =\frac{1}{E_{1}\left(h_{2}\right) \circ \varphi_{2}} E_{1}\left(h_{2} E_{2}(f) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2}
\end{aligned}
$$

For nonsingular measurable transformation φ_{1} and φ_{2}, let $h_{i}<\infty(i=1,2,3)$. Then we have

$$
\begin{aligned}
\mathscr{D}\left(C_{\varphi_{2}} C_{\varphi_{1}}\right) & =\left\{f \in L^{2}(\Sigma): f \in \mathscr{D}\left(C_{\varphi_{1}}\right), f \circ \varphi_{3} \in L^{2}(\Sigma)\right\} \\
& =L^{2}\left(\left(1+h_{1}\right) d \mu\right) \cap L^{2}\left(h_{3} d \mu\right) \\
& =L^{2}\left(\left(1+h_{1}+h_{3}\right) d \mu\right) \\
& =L^{2}\left(\left(1+h_{1}+h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}\right) d \mu\right)
\end{aligned}
$$

and $\mathscr{D}\left(C_{\varphi_{3}}\right)=L^{2}\left(\left(1+h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}\right) d \mu\right)$. Thus, $\mathscr{D}\left(C_{\varphi_{2}} C_{\varphi_{1}}\right) \subseteq \mathscr{D}\left(C_{\varphi_{3}}\right)$. If $E_{1}\left(h_{2}\right) \circ$ $\varphi_{1}^{-1} \geqslant k$ on X for some $k>0$, then for each $f \in \mathscr{D}\left(C_{\varphi_{3}}\right)$,

$$
\int_{X}\left|f \circ \varphi_{1}\right|^{2} d \mu=\int_{X} h_{1}|f|^{2} d \mu \leqslant \frac{1}{k} \int_{X} h_{1} E_{1}\left(h_{2}\right) \circ \varphi_{1}^{-1}|f|^{2} d \mu<\infty .
$$

It follows that $C_{\varphi_{3}}=C_{\varphi_{2}} C_{\varphi_{1}}$.

PROPOSITION 2.3. The following assertions hold.

(a) For nonsingular measurable transformation φ_{1} and φ_{2}, if $\left\{h_{1}, h_{2}\right\} \subseteq L^{\infty}(\Sigma)$, then $J_{3}=h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{1}^{-1}$.
(b) Let $\varphi_{3}^{-1}(\Sigma)$ be a sub-sigma finite algebra of Σ. Then W_{3} is injective if and only if $\sigma\left(h_{1}\right)=\sigma\left(E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right)\right)=X$.

Proof. By assumption, $h_{3} \in L^{\infty}(\Sigma)$. Hence E_{3} is well-defined. Now, (a) is immediate from by (2.1) and Lemma 2.2.

For the proof of the second statement, we know that W_{i} is injective if and only if $\sigma\left(J_{i}\right)=X$. Now, let $A=\left\{x \in X: E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right)=0\right\}$. So $A=\varphi_{1}^{-1}(B)$, for some $B \in \Sigma$. If $\mu(A)>0$, then $\mu(B)>0$ because $\mu \circ \varphi_{1}^{-1} \ll \mu$. Hence

$$
\int_{B} h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{1}^{-1} d \mu=\int_{A} E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) d \mu=0
$$

and so $h_{1}=0$ or $E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{1}^{-1}=0$ on B. Therefore, $h_{1}>0$ and $E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ$ $\varphi_{1}^{-1}>0$ implies that $E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right)>0$. Now, let $E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right)>0$. Since $E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right)$ is a $\varphi_{1}^{-1}(\Sigma)$-measurable, then there exists a unique $g \in L^{0}(\Sigma)$, with $\sigma(g) \subseteq \sigma\left(h_{1}\right)$, such that $E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right)=g \circ \varphi_{1}$. It follows that $0<\int_{X} g \circ \varphi_{1} d \mu=\int_{X} h_{1} g d \mu$, and so $E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{1}^{-1}=g>0$ on $\sigma\left(h_{1}\right)$. We conclude that $\sigma\left(J_{3}\right)=X$ if and only if $\sigma\left(h_{1}\right)=\sigma\left(E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right)\right)=X$.

Lemma 2.4. Let $W_{i} \in \mathscr{B}\left(L^{2}(\Sigma)\right), \varphi_{3}=\varphi_{1} \circ \varphi_{2}$ and $u_{3}=u_{2} \cdot\left(u_{1} \circ \varphi_{2}\right)$. Then the following assertions hold.
(a) $J_{3} \circ \varphi_{3}=\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{2}$.
(b) $W_{3}^{*}(f)=h_{1} E_{1}\left(\bar{u}_{1} h_{2} E_{2}\left(\bar{u}_{2} f\right) \circ \varphi_{2}^{-1}\right) \circ \varphi_{1}^{-1}$.
(c) $W_{3}^{*} W_{3}(f)=\left(h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{1}^{-1}\right) f$.
(d) $W_{3} W_{3}^{*}(f)=u_{3}\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(\bar{u}_{1} h_{2} E_{2}\left(\bar{u}_{2} f\right) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2}$.
(e) $W_{3}^{*} W_{3} W_{3}(f)=\left(u_{3} h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{1}^{-1}\right) f \circ \varphi_{3}$.
$(f) W_{3} W_{3}^{*} W_{3}(f)=\left(u_{3}\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{2}\right) f \circ \varphi_{3}$.
$(g) W_{3} W_{3}^{*}(f)=u_{3}\left(h_{3} \circ \varphi_{3}\right) E_{3}\left(\bar{u}_{3} f\right)$.

Proof. Part (a) follows from (2.1) and Lemma 2.2. To prove (b), let $f \in L^{2}(\Sigma)$. Then

$$
\begin{aligned}
W_{3}^{*}(f)=W_{1}^{*}\left(W_{2}^{*}(f)\right) & =W_{1}^{*}\left(h_{2} E_{2}\left(\bar{u}_{2} f\right) \circ \varphi_{2}^{-1}\right) \\
& =h_{1} E_{1}\left(\bar{u}_{1} h_{2} E_{2}\left(\bar{u}_{2} f\right) \circ \varphi_{2}^{-1}\right) \circ \varphi_{1}^{-1}
\end{aligned}
$$

The reminder of the proof is left to the reader.
In [6], Douglas proved that when $A, B \in \mathscr{B}(\mathscr{H})$, then $A A^{*} \leqslant \lambda B B^{*}$ for some $\lambda \geqslant 0$; if and only if $A=B C$ for some $C \in \mathscr{B}(\mathscr{H})$.

PROPOSITION 2.5. Let for $i=1,2, W_{i}=u_{i} C_{\varphi_{i}} \in \mathscr{B}\left(L^{2}(\Sigma)\right)$. Then $J_{3} \leqslant \lambda_{1} J_{1}$ a.e. $[\mu]$ and $J_{3} \circ \varphi_{3} \leqslant \lambda_{2}\left(J_{2} \circ \varphi_{2}\right)$ a.e. $\left[\left.\mu\right|_{\varphi_{3}^{-1}(\Sigma)}\right]$ on $\sigma\left(u_{3}\right)$ for some $\lambda_{i} \geqslant 0$.

Proof. Since $W_{3}=W_{2} W_{1}$, by Douglas' theorem, there exists $\lambda_{i} \geqslant 0$ such that $W_{3}^{*} W_{3} \leqslant \lambda_{1} W_{1}^{*} W_{1}$ and $W_{3} W_{3}^{*} \leqslant \lambda_{2} W_{2} W_{2}^{*}$. Then for each $f, g \in L^{2}(\Sigma)$ we have $\left\langle J_{3} f, f\right\rangle \leqslant$ $\left\langle\lambda_{1} J_{1} f, f\right\rangle$ and $\left\langle u_{3}\left(h_{3} \circ \varphi_{3}\right) E_{3}\left(\overline{u_{3}} g\right), g\right\rangle \leqslant\left\langle\lambda_{2} u_{2}\left(h_{2} \circ \varphi_{2}\right) E_{2}\left(\overline{u_{2}} g\right), g\right\rangle$. For $A \in \Sigma$ with $\mu(A)<\infty$, take $f=\chi_{A}$ and $g=\chi_{\varphi_{3}^{-1}(A)} u_{3}$. Since $E_{3}\left(\overline{u_{3}} g\right)=\chi_{\varphi_{3}^{-1}(A)} E_{3}\left(\left|u_{3}\right|^{2}\right)$ and $E_{2}\left(\overline{u_{2}} g\right)=\chi_{\varphi_{3}^{-1}(A)}\left(u_{1} \circ \varphi_{2}\right) E_{2}\left(\left|u_{2}\right|^{2}\right)$, we obtain

$$
\int_{\varphi_{3}^{-1}(A)}\left|u_{3}\right|^{2}\left(J_{3} \circ \varphi_{3}\right) d \mu \leqslant \int_{\varphi_{3}^{-1}(A)} \lambda_{2}\left|u_{3}\right|^{2}\left(J_{2} \circ \varphi_{2}\right) d \mu
$$

This completes the proof.
Let $[T, S]=T S-S T$ for T and S in $\mathscr{B}(\mathscr{H})$. An operator $T \in \mathscr{B}(\mathscr{H})$ is said to be normal if $\left[T, T^{*}\right]=0$, quasinormal if $\left[T, T^{*} T\right]=0$ and hyponormal if $\left[T, T^{*}\right] \geqslant 0$. Normal, quasinormal and hyponormal bounded weighted composition operators have been characterized in $[2,14]$ as follows:

Lemma 2.6. Let $W=u C_{\varphi} \in \mathscr{B}\left(L^{2}(\Sigma)\right)$. Then the following assertions hold.
(a) W is normal if and only if $\left(\varphi^{-1}(\Sigma)\right)_{\sigma(u)}=\Sigma_{\sigma(u)}$ and $J=\chi_{\sigma(u)} J \circ \varphi$.
(b) W is quasinormal if and only if $J=J \circ \varphi$ on $\sigma(u)$.
(c) W is hyponormal if and only if $\sigma(u)=\sigma(J)$ and $(h \circ \varphi) E\left(\frac{|u|^{2}}{J}\right) \leqslant 1$.

Proposition 2.7. Let $W_{i}=u_{i} C_{\varphi_{i}} \in \mathscr{B}\left(L^{2}(\Sigma)\right)$ with $J_{1} \circ \varphi_{2}=J_{1}$ and $J_{2} \circ \varphi_{1}=$ J_{2}.
(a) If W_{1} and W_{2} are normal (quasinormal), then W_{3} is a normal (quasinormal) operator.
(b) If W_{1} and W_{2} are hyponormal and $h_{2} E_{2}\left(\frac{\left|u_{2}\right|^{2}}{J_{2}}\right) \circ \varphi_{2}^{-1}$ is a $\varphi_{1}^{-1}(\Sigma)$-measurable function, then W_{3} is a hyponormal operator.

Proof. (a) Let W_{i} be normal operator. Then by Lemma 2.6(a), $\left(\varphi_{i}^{-1}(\Sigma)\right)_{\sigma\left(u_{i}\right)}=$ $\Sigma_{\sigma\left(u_{i}\right)}$ and $J_{i}=\chi_{\sigma\left(u_{i}\right)} J_{i} \circ \varphi_{i}$. Also, by hypotheses we get that

$$
\begin{aligned}
\left(\varphi_{3}^{-1}(\Sigma)\right)_{\sigma\left(u_{3}\right)} & =\varphi_{2}^{-1}\left(\varphi_{1}^{-1}(\Sigma)\right) \cap \sigma\left(u_{3}\right)=\varphi_{2}^{-1}\left(\varphi_{1}^{-1}(\Sigma)\right) \cap \sigma\left(u_{2}\right) \cap \varphi_{2}^{-1}\left(\sigma\left(u_{1}\right)\right) \\
& =\varphi_{2}^{-1}\left(\varphi_{1}^{-1}(\Sigma) \cap \sigma\left(u_{1}\right)\right) \cap \sigma\left(u_{2}\right)=\varphi_{2}^{-1}\left(\Sigma \cap \sigma\left(u_{1}\right)\right) \cap \sigma\left(u_{2}\right) \\
& =\left(\varphi_{2}^{-1}(\Sigma) \cap \sigma\left(u_{2}\right)\right) \cap \sigma\left(u_{1} \circ \varphi_{2}\right)=\Sigma \cap \sigma\left(u_{2}\right) \cap \sigma\left(u_{1} \circ \varphi_{2}\right) \\
& =\Sigma \cap \sigma\left(u_{2}\left(u_{1} \circ \varphi_{2}\right)\right)=\Sigma \cap \sigma\left(u_{3}\right)=\Sigma_{\sigma\left(u_{3}\right)},
\end{aligned}
$$

and $J_{3}=h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{1}^{-1}=h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2} \circ \varphi_{1}\right) \circ \varphi_{1}^{-1}=J_{2} J_{1}$. Since W_{1} and W_{2} are normal, we have

$$
\begin{aligned}
\chi_{\sigma\left(u_{3}\right)} J_{3} \circ \varphi_{3} & =\chi_{\sigma\left(u_{2}\right) \cap \sigma\left(u_{1} \circ \varphi_{2}\right)} J_{3} \circ \varphi_{3} \\
& =\left\{\chi_{\sigma\left(u_{2}\right)} J_{2} \circ \varphi_{1} \circ \varphi_{2}\right\}\left\{\chi_{\sigma\left(u_{1} \circ \varphi_{2}\right)} J_{1} \circ \varphi_{1} \circ \varphi_{2}\right\} \\
& =\left\{\chi_{\sigma\left(u_{2}\right)} J_{2} \circ \varphi_{2}\right\}\left\{\chi_{\sigma\left(u_{1}\right)} J_{1} \circ \varphi_{1}\right\} \circ \varphi_{2} \\
& =J_{2} J_{1} \circ \varphi_{2}=J_{2} J_{1}=J_{3} .
\end{aligned}
$$

Thus, W_{3} is normal.
(b) By hypotheses, $\sigma\left(u_{i}\right)=\sigma\left(J_{i}\right)$ and $\left(h_{i} \circ \varphi_{i}\right) E_{i}\left(\frac{\left|u_{i}\right|^{2}}{J_{i}}\right) \leqslant 1$ for $i=1,2$. Hence we obtain

$$
\begin{gathered}
\sigma\left(J_{3}\right)=\sigma\left(J_{2} J_{1}\right)=\varphi_{2}^{-1}\left(\sigma\left(J_{1}\right)\right) \cap \sigma\left(J_{2}\right)=\sigma\left(u_{3}\right) \\
E_{2}\left(J_{1}\right)=J_{1}=E_{2}\left(J_{1}\right) \circ \varphi_{2}^{-1}, \quad E_{1}\left(J_{2}\right)=J_{2}=E_{1}\left(J_{2}\right) \circ \varphi_{1}^{-1}
\end{gathered}
$$

and

$$
E_{2}\left(\frac{1}{J_{1}}\right) \circ \varphi_{2}^{-1}=\frac{1}{J_{1}} \in L^{0}\left(\varphi_{2}^{-1}(\Sigma)\right)
$$

Since $h_{3} \circ \varphi_{3}=\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2}\right) \circ \varphi_{2}$ and $\sigma\left(E_{i}\left(h_{i}\right) \circ \varphi_{i}\right)=X$ (see [11]), we have

$$
\begin{aligned}
\left(h_{3} \circ \varphi_{3}\right) E_{3}\left(\frac{\left|u_{3}\right|^{2}}{J_{3}}\right) & =\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(h_{2} E_{2}\left(\frac{\left|u_{2}\right|^{2}\left|u_{1}\right|^{2} \circ \varphi_{2}}{J_{2} J_{1}}\right) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2} \\
& =\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(\left|u_{1}\right|^{2} h_{2} E_{2}\left(\frac{\left|u_{2}\right|^{2}}{J_{2} J_{1}}\right) \circ \varphi_{2}^{-1}\right) \circ \varphi_{2} \\
& =\left\{\left(h_{1} \circ \varphi_{3}\right) E_{1}\left(\frac{\left|u_{1}\right|^{2}}{J_{1}}\right) \circ \varphi_{2}\right\}\left\{h_{2} E_{2}\left(\frac{\left|u_{2}\right|^{2}}{J_{2}}\right) \circ \varphi_{2}^{-1}\right\} \circ \varphi_{2} \\
& =\left\{\left(h_{1} \circ \varphi_{1}\right) E_{1}\left(\frac{\left|u_{1}\right|^{2}}{J_{1}}\right)\right\} \circ \varphi_{2}\left\{\left(h_{2} \circ \varphi_{2}\right) E_{2}\left(\frac{\left|u_{2}\right|^{2}}{J_{2}}\right)\right\} \leqslant 1
\end{aligned}
$$

This completes the proof.

An atom of the measure μ is an element $B \in \Sigma$ with $\mu(B)>0$ such that for each $F \in \Sigma$, if $F \subset B$ then either $\mu(F)=0$ or $\mu(F)=\mu(B)$. A measure with no atoms is called non-atomic. Write $X=\left(\cup_{n \in \mathbb{N}} A_{n}\right) \cup B$, where $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint atoms and B, being disjoint from each A_{n}, is non-atomic (see [25]). In [4] Chan proved that M_{u} is compact on $L^{2}(\Sigma)$ if and only if for any $\varepsilon>0$, the set $\{x \in X:|u(x)| \geqslant \varepsilon\}$ consists of finitely many atoms. In the following, we give a sufficient condition for the product of a weighted composition operator W_{1} with the adjoint of a weighted composition operator W_{2}^{*} on $L^{2}(\Sigma)$ to be compact. The order of the product gives rise to two different cases (see [5, 24]).

Proposition 2.8. For $i=1,2$, let $W_{i}=u_{i} C_{\varphi_{i}} \in \mathscr{B}\left(L^{2}(\Sigma)\right)$. Then the following assertions hold.
(a) Iffor each $\varepsilon>0$, the set $A=\left\{x \in X:\left(\left|u_{2}\right|^{2}\left(J_{1} \circ \varphi_{2}\right)\left(h_{1} \circ \varphi_{2}\right)\right)(x) \geqslant \varepsilon\right\}$ consists of finitely many atoms, then $W_{1} W_{2}^{*}$ is compact.
(b) Iffor each $\varepsilon>0$, the set $B=\left\{x \in X: h_{1}(x)\left(E_{1}\left(\left|u_{1}\right|^{2}\left(h_{2} \circ \varphi_{2}\right)\right) \circ \varphi_{1}^{-1}\right)(x) \geqslant \varepsilon\right\}$ consists of finitely many atoms and $u_{2} \in L^{0}\left(\Sigma_{2}\right)$, then $W_{2}^{*} W_{1}$ is compact.

Proof. Let $f \in L^{2}(\Sigma)$. Then

$$
\begin{aligned}
& W_{1} W_{2}^{*}(f)=u_{1}\left(h_{2} \circ \varphi_{1}\right)\left(E_{2}\left(\overline{u_{2}} f\right) \circ \varphi_{2}^{-1}\right) \circ \varphi_{1} \\
& W_{2}^{*} W_{1}(f)=h_{2} E_{2}\left(\overline{u_{2}} u_{1}\left(f \circ \varphi_{1}\right)\right) \circ \varphi_{2}^{-1} .
\end{aligned}
$$

Using change of variable formula and inequality $\left|E_{2}(f)\right|^{2} \leqslant E_{2}\left(|f|^{2}\right)$, we obtain

$$
\begin{aligned}
\left\|W_{1} W_{2}^{*}(f)\right\|^{2} & =\int_{X}\left|u_{1}\right|^{2} h_{2}^{2} \circ \varphi_{1}\left|E_{2}\left(\overline{u_{2}} f\right) \circ \varphi_{2}^{-1}\right|^{2} \circ \varphi_{1} d \mu \\
& =\int_{X}\left(h_{1} E_{1}\left(\left|u_{1}\right|^{2}\right) \circ \varphi_{1}^{-1}\right) h_{2}^{2}\left|E_{2}\left(\overline{u_{2}} f\right) \circ \varphi_{2}^{-1}\right|^{2} d \mu \\
& =\int_{X} J_{1} h_{2}^{2}\left|E_{2}\left(\overline{u_{2}} f\right)\right|^{2} \circ \varphi_{2}^{-1} d \mu \\
& =\int_{X}\left(J_{1} \circ \varphi_{2}\right)\left(h_{2} \circ \varphi_{2}\right)\left|E_{2}\left(\overline{u_{2}} f\right)\right|^{2} d \mu \\
& \leqslant \int_{X}\left(J_{1} \circ \varphi_{2}\right)\left(h_{2} \circ \varphi_{2}\right) E_{2}\left(\left|u_{2}\right|^{2}|f|^{2}\right) d \mu \\
& =\| M_{\sqrt{\left|u_{2}\right|^{2}\left(J_{1} \circ \varphi_{2}\right)\left(h_{2} \circ \varphi_{2}\right)} f\left\|^{2}=\right\| M_{\sqrt{U_{1}}} \|^{2}}
\end{aligned}
$$

where $U_{1}:=\sqrt{\left|u_{2}\right|^{2}\left(J_{1} \circ \varphi_{2}\right)\left(h_{2} \circ \varphi_{2}\right)}$. Similarly,

$$
\begin{aligned}
\left\|W_{2}^{*} W_{1}(f)\right\|^{2} & =\int_{X} h_{2}^{2}\left|E_{2}\left(\overline{u_{2}} u_{1}\left(f \circ \varphi_{1}\right)\right) \circ \varphi_{2}^{-1}\right|^{2} d \mu \\
& =\int_{X}\left(h_{2} \circ \varphi_{2}\right)\left|E_{2}\left(\overline{u_{2}} u_{1}\left(f \circ \varphi_{1}\right)\right)\right|^{2} d \mu \\
& \leqslant \int_{X}\left(h_{2} \circ \varphi_{2}\right) E_{2}\left(\left|u_{2}\right|^{2}\left|u_{1}\right|^{2}|f|^{2} \circ \varphi_{1}\right) d \mu \\
& \leqslant \int_{X} h_{2}^{2} E_{2}\left(\left|u_{2}\right|^{2}\right) \circ \varphi_{2}^{-1} E_{2}\left(\left|u_{1}\right|^{2}|f|^{2} \circ \varphi_{1}\right) \circ \varphi_{2}^{-1} d \mu
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{X} h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2} \circ \varphi_{2}\right) \circ \varphi_{1}^{-1}|f|^{2} d \mu \\
& =\left\|M_{\sqrt{h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2} \circ \varphi_{2}\right) \circ \varphi_{1}^{-1}}} f\right\|^{2}=\left\|M_{\sqrt{U_{2}}}\right\|^{2},
\end{aligned}
$$

where $U_{2}:=\sqrt{h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2} \circ \varphi_{2}\right) \circ \varphi_{1}^{-1}}$. Since sets A and B consist of finitely many atoms, hence the corresponding multiplication operators are compact. It follows that $W_{1} W_{2}^{*}$ and $W_{2}^{*} W_{1}$ are compact operators on $L^{2}(\Sigma)$.

Proposition 2.9. Let $W_{i} \in \mathscr{B}\left(L^{2}(\Sigma)\right)$ for $i=1,2$. Then the following assertions hold.
(a) If J_{3} is bounded away from zero on $\sigma\left(J_{3}\right), \sigma\left(E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{1}^{-1}\right)=X$ and $\sigma\left(E_{1}\left(\left|u_{1}\right|^{2}\right) \circ \varphi_{1}^{-1}\right)=X$, then $\mathscr{R}\left(W_{1}\right)$ is closed.
(b) Let W_{1} and W_{2} have closed range. If $\sigma\left(J_{2}\right)=X$ or $\sigma\left(J_{2}\right)^{c}$ is contained in union of a finite number of atoms, then W_{3} has closed range.

Proof. (a) Let $f \in L^{2}(\Sigma)$. Then

$$
\begin{aligned}
\left\|M_{\sqrt{J_{3}}} f\right\|_{2}^{2} & =\int_{X} h_{1} E_{1}\left(\left|u_{1}\right|^{2} J_{2}\right) \circ \varphi_{1}^{-1}|f|^{2} d \mu \\
& =\int_{X}\left|u_{1}\right|^{2} J_{2}|f|^{2} \circ \varphi_{1} d \mu \\
& \leqslant\left\|J_{2}\right\|_{\infty} \int_{X}\left|u_{1}\right|^{2}|f|^{2} \circ \varphi_{1} d \mu \\
& =\left\|W_{2}\right\|^{2}\left\|M_{\sqrt{J_{1}}} f\right\|_{2}^{2}
\end{aligned}
$$

Recall that for $u \in L^{\infty}(\Sigma), \mathscr{R}\left(M_{u}\right)$ is closed in $L^{2}(\Sigma)$ if and only if u is bounded away from zero on $\sigma(u)$ (see [21]). Thus there exists $\lambda \geqslant 0$ such that $\lambda\|f\| \leqslant\left\|M_{\sqrt{J}_{1}} f\right\|$ for each $f \in L^{2}\left(\sigma\left(J_{3}\right)\right)$. By hypotheses, we have $\sigma\left(J_{3}\right)=\sigma\left(h_{1}\right), \sigma\left(J_{1}\right)=\sigma\left(h_{1}\right)$ and so $\sigma\left(J_{1}\right)=\sigma\left(J_{3}\right)$. It follows that $\mathscr{R}\left(W_{1}\right)$ is closed.
(b) It is a classical fact that W_{3} has closed range if and only if $\mathscr{N}\left(W_{2}\right)+\mathscr{R}\left(W_{1}\right)$ is closed (see [18, Corollary 1]). Now, by assumptions, $\mathscr{N}\left(W_{2}\right)=\{0\}$ or $\mathscr{N}\left(W_{2}\right)$ is a finite dimensional subspace of $L^{2}(\Sigma)$ and hence W_{3} has closed range.

3. Semi-Kato type weighted composition operators

Definition 3.1. We say that $T \in \mathscr{B}(\mathscr{H})$ is an operator of semi-Kato type, if the null space of T is contained in $\bigcap_{n=1}^{\infty} \overline{\mathscr{R}\left(T^{n}\right)} . T \in \mathscr{B}(\mathscr{H})$ is called Kato if $\mathscr{R}(T)$ is closed and $\mathscr{N}(T) \subseteq \bigcap_{n=1}^{\infty} \mathscr{R}\left(T^{n}\right)$.

Any bounded operator that is either onto or bounded below is Kato (see [17]). The set of all semi-Kato and Kato type operators will be denoted by $\mathscr{S} \mathscr{K}(\mathscr{H})$ and $\mathscr{K}(\mathscr{H})$ respectively. Obviously, $\mathscr{K}(\mathscr{H}) \subseteq \mathscr{S} \mathscr{K}(\mathscr{H})$. Also, if $T \in \mathscr{S} \mathscr{K}(\mathscr{H})$ and for each
$n \in \mathbb{N}, T^{n}$ has closed range, then $T \in \mathscr{K}(\mathscr{H})$. Now, for $W=u C_{\varphi} \in \mathscr{B}\left(L^{2}(\Sigma)\right)$, Campbell and Hornor in [2] proved that

$$
\begin{equation*}
\overline{\mathscr{R}\left(W^{n}\right)}=\text { c.l.s }\left\{c_{n} \chi_{A}: A \in\left(\varphi^{-n}(\Sigma)\right)_{\sigma\left(c_{n}\right)}\right\} \tag{3.1}
\end{equation*}
$$

where $c_{n}=u_{(n)}=\prod_{i=1}^{n-1} u \circ \varphi^{i}$. This holds even in case W is a densely defined unbounded operator [2, Lemma 6.2]. It is easy to check that $\left\|W^{n} f\right\|=\left\|M_{\sqrt{(J)_{n}}} f\right\|$, for all $f \in$ $L^{2}(\Sigma)$. This implies that

$$
\begin{align*}
\mathscr{N}\left(W^{n}\right) & =\text { c.l.s }\left\{\chi_{X \backslash \sigma\left((J)_{n}\right)} L^{2}(\Sigma)\right\} \tag{3.2}\\
& =\text { c.l.s }\left\{f \in L^{2}(\Sigma): f=0 \text { on } \sigma\left((J)_{n}\right)\right\} \\
& :=L^{2}\left(\Sigma \cap \sigma\left((J)_{n}\right)^{c}\right) .
\end{align*}
$$

Also, we deduce that W^{n} has closed range if and only if $(J)_{n}$ is bounded away from zero on $\sigma\left((J)_{n}\right)$ (e.g., see [10]).

THEOREM 3.2. Let $W=u C_{\varphi} \in \mathscr{B}\left(L^{2}(\Sigma)\right), \Sigma_{\infty}:=\bigcap_{n=1}^{\infty}\left(\varphi^{-n}(\Sigma)\right)_{\sigma\left(c_{n}\right)}$ and let $\| c_{n}-$ $1 \|_{2} \rightarrow 0$ as $n \rightarrow \infty$. Then the following assertions hold.
(a) $W \in \mathscr{S} \mathscr{K}\left(L^{2}(\Sigma)\right)$ if and only if $\Sigma \cap(\sigma(J))^{c} \subseteq \Sigma_{\infty}$.
(b) $W \in \mathscr{K}\left(L^{2}(\Sigma)\right)$ if and only if, for each $n \in \mathbb{N},(J)_{n}$ is bounded away from zero on $\sigma\left((J)_{n}\right)$ and $\Sigma \cap(\sigma(J))^{c} \subseteq \Sigma_{\infty}$.

Proof. (a) Using (3.1) and (3.2) we have

$$
\overline{\mathscr{R}\left(W^{n}\right)}=\text { c.l.s }\left\{c_{n} L^{2}\left(\left(\varphi^{-n}(\Sigma)\right)_{\sigma\left(c_{n}\right)}\right)\right\}
$$

and $\mathscr{N}(W)=L^{2}\left(\Sigma \cap(\sigma(J))^{c}\right)$. It follows that $W \in \mathscr{S} \mathscr{K}\left(L^{2}(\Sigma)\right)$ whenever $L^{2}(\Sigma \cap$ $\left.(\sigma(J))^{c}\right) \subseteq \bigcap_{n=1}^{\infty} \overline{R\left(W^{n}\right)}=$ c.l.s $\left\{c_{\infty} L^{2}\left(\bigcap_{n=1}^{\infty}\left(\varphi^{-n}(\Sigma)\right)_{\sigma\left(c_{n}\right)}\right)\right.$, where $c_{\infty}=\prod_{i=1}^{\infty} u \circ \varphi^{i}$. But by hypothesis $c_{\infty}=1$ (a.e.). Hence $L^{2}\left(\Sigma \cap(\sigma(J))^{c}\right) \subseteq L^{2}\left(\Sigma_{\infty}\right)$, and so $\Sigma \cap(\sigma(J))^{c} \subseteq \Sigma_{\infty}$. Conversely, if $\Sigma \cap(\sigma(J))^{c} \subseteq \Sigma_{\infty}$ then we obtain

$$
\begin{aligned}
L^{2}\left(\Sigma \cap(\sigma(J))^{c}\right) & \subseteq L^{2}\left(\Sigma_{\infty}\right)=c_{\infty} L^{2}\left(\bigcap_{n=1}^{\infty}\left(\varphi^{-n}(\Sigma)\right)_{\sigma\left(c_{n}\right)}\right) \\
& =\bigcap_{n=1}^{\infty}\left\{c . l . s\left\{c_{n} L^{2}\left(\left(\varphi^{-n}(\Sigma)\right)_{\sigma\left(c_{n}\right)}\right)\right\}\right\}=\bigcap_{n=1}^{\infty} \overline{\mathscr{R}\left(W^{n}\right)} .
\end{aligned}
$$

(b) Let $W \in \mathscr{K}\left(L^{2}(\Sigma)\right)$. Then for each $n \in \mathbb{N}, \mathscr{R}\left(W^{n}\right)$ is closed. So $(J)_{n}$ is bounded away from zero on $\sigma\left((J)_{n}\right)$. Moreover, $L^{2}\left(\Sigma \cap(\sigma(J))^{c}\right)=\mathscr{N}(W) \subseteq \bigcap_{n=1}^{\infty} \overline{\mathscr{R}\left(W^{n}\right)}=$ $L^{2}\left(\Sigma_{\infty}\right)$. Conversely, if for each $n \in \mathbb{N},(J)_{n}$ is bounded away from zero on $\sigma\left((J)_{n}\right)$ and $\Sigma \cap(\sigma(J))^{c} \subseteq \Sigma_{\infty}$. Then $\overline{\mathscr{R}\left(W^{n}\right)}=\mathscr{R}\left(W^{n}\right)$ and $\mathscr{N}(W) \subseteq \bigcap_{n=1}^{\infty} \mathscr{R}\left(W^{n}\right)$.

Recall that $\varphi_{3}=\varphi_{1} \circ \varphi_{2}, u_{3}=u_{2} .\left(u_{1} \circ \varphi_{2}\right)$ and $u_{j(n)}=\prod_{i=1}^{n-1}\left(u_{j} \circ \varphi_{j}^{i}\right)$. Hence

$$
u_{3(n)}=\prod_{i=1}^{n-1}\left(u_{2} \circ \varphi_{3}^{i}\right)\left(u_{1} \circ \varphi_{2} \circ \varphi_{3}^{i}\right)
$$

Let $\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}$. Then $u_{3(n)}=\left(\prod_{i=1}^{n-1} u_{2} \circ \varphi_{1}^{i} \circ \varphi_{2}^{i}\right)\left(\prod_{i=1}^{n-1} u_{1} \circ \varphi_{2}^{i+1} \circ \varphi_{1}^{i}\right)$. In this case if $u_{2} \circ \varphi_{1}=u_{2}$, then $\sigma\left(u_{3(n)}\right) \subseteq \sigma\left(\prod_{i=1}^{n-1} u_{2} \circ \varphi_{2}^{i}\right)=\sigma\left(u_{2(n)}\right)$. Moreover, if $u_{1} \circ \varphi_{2}=u_{1}$, then $u_{3(n)}=\left(u_{2(n)}\right) \cdot\left(u_{1(n)}\right)$ and hence $\sigma\left(u_{3(n)}\right)=\sigma\left(u_{2(n)}\right) \cap \sigma\left(u_{1(n)}\right)$. For $i \in\{1,2,3\}$, define $\Sigma_{\infty}^{i}:=\bigcap_{n=1}^{\infty}\left(\varphi_{i}^{-n}(\Sigma)\right)_{\sigma\left(u_{i(n)}\right)}$. Then

$$
\left.\Sigma_{\infty}^{3}=\bigcap_{n=1}^{\infty}\left(\varphi_{2}^{-n}\left(\varphi_{1}^{-n}(\Sigma)\right)\right)_{\sigma\left(u_{3(n)}\right)} \subseteq \bigcap_{n=1}^{\infty}\left(\varphi_{2}^{-n}(\Sigma)\right)_{\sigma\left(u_{2(n)}\right)}\right)
$$

also, $\Sigma_{\infty}^{3} \subseteq \Sigma_{\infty}^{1}$. So, if $\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}, u_{1} \circ \varphi_{2}=u_{1}$ and $u_{2} \circ \varphi_{1}=u_{2}$, then $\Sigma_{\infty}^{3} \subseteq$ $\Sigma_{\infty}^{1} \cap \Sigma_{\infty}^{2}$.

THEOREM 3.3. For $i \in\{1,2\}$, let $W_{i}=u_{i} C_{\varphi_{i}} \in \mathscr{B}\left(L^{2}(\Sigma)\right)$ and let $\left\|u_{i(n)}-1\right\|_{2} \rightarrow$ 0 as $n \rightarrow \infty$. Then the following assertions hold.
(a) If $W_{i} \in \mathscr{S} \mathscr{K}\left(L^{2}(\Sigma)\right), \sigma\left(E_{1}\left(u_{1}^{2} J_{2}\right) \circ \varphi_{1}^{-1}\right)=\sigma\left(E_{1}\left(J_{2}\right)\right)$ and $\Sigma_{\infty}^{1} \cup \Sigma_{\infty}^{2} \subseteq \Sigma_{\infty}^{3}$, then $W_{3} \in \mathscr{S} \mathscr{K}\left(L^{2}(\Sigma)\right)$.
(b) If $W_{3} \in \mathscr{S} \mathscr{K}\left(L^{2}(\Sigma)\right), \varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}, u_{2} \circ \varphi_{1}=u_{2}$ and $u_{1} \circ \varphi_{2}=u_{1}$, then $W_{1} \in \mathscr{S} \mathscr{K}\left(L^{2}(\Sigma)\right)$.

Proof. (a) Recall that $J_{3}=h_{1} E_{1}\left(u_{1}^{2} J_{2}\right) \circ \varphi_{1}^{-1}$ and $\sigma\left(J_{1}\right) \subseteq \sigma\left(h_{1}\right)$. Then by hypothesis and Theorem 3.2(a), we have $\Sigma \cap\left(\sigma\left(J_{3}\right)\right)^{c}=\Sigma \cap\left\{\sigma\left(h_{1}\right) \cap \sigma\left(E_{1}\left(J_{2}\right)\right)\right\}^{c}=$ $\Sigma \cap\left\{\left(\sigma\left(h_{1}\right)\right)^{c} \cup\left(\sigma\left(J_{2}\right)\right)^{c}\right\} \subseteq \Sigma_{\infty}^{1} \cup \Sigma_{\infty}^{2} \subseteq \Sigma_{\infty}^{3}$, and so $W_{3} \in \mathscr{S} \mathscr{K}\left(L^{2}(\Sigma)\right)$.
(b) By our assumptions $\Sigma_{\infty}^{3} \subseteq \Sigma_{\infty}^{1}$ and $u_{3(n)}=\left(u_{2(n)}\right) \cdot\left(u_{1(n)}\right)$ for all $n \in \mathbb{N}$. It follows that $u_{3(\infty)}=\lim _{n \rightarrow \infty} u_{3(n)}=\left(u_{2(\infty)}\right) \cdot\left(u_{1(\infty)}\right)=1$, and so

$$
\begin{aligned}
\mathscr{N}\left(W_{1}\right) & \subseteq \mathscr{N}\left(W_{3}\right) \subseteq \bigcap_{n=1}^{\infty} \overline{\mathscr{R}\left(W_{3}^{n}\right)} \\
& =\bigcap_{n=1}^{\infty} c . l . s\left\{u_{3(n)} L^{2}\left(\left(\varphi_{3}^{-n}(\Sigma)\right)_{\sigma\left(u_{3(n)}\right)}\right)\right\} \\
& =L^{2}\left(\bigcap_{n=1}^{\infty}\left(\varphi_{3}^{-n}(\Sigma)\right)_{\sigma\left(u_{3(n)}\right)}\right) \\
& =L^{2}\left(\Sigma_{\infty}^{3}\right) \subseteq L^{2}\left(\Sigma_{\infty}^{1}\right) \\
& =\bigcap_{n=1}^{\infty} c . l . s\left\{u_{1(n)} L^{2}\left(\left(\varphi_{1}^{-n}(\Sigma)\right)_{\sigma\left(u_{1(n)}\right)}\right)\right\} \\
& =\bigcap_{n=1}^{\infty} \overline{\mathscr{R}\left(W_{1}^{n}\right)} .
\end{aligned}
$$

Thus, $W_{1} \in \mathscr{S} \mathscr{K}\left(L^{2}(\Sigma)\right)$.

4. Ascent and descent of weighted composition operators

Let T be a bounded linear operator on a Banach space \mathscr{B}. Recall that for each non-negative integer $k, \mathscr{N}\left(T^{k}\right) \subseteq \mathscr{N}\left(T^{k+1}\right)$ and $\mathscr{R}\left(T^{k+1}\right) \subseteq \mathscr{R}\left(T^{k}\right)$. The ascent $\alpha(T)$ of T is the least non-negative integer such that $\mathscr{N}\left(T^{k}\right)=\mathscr{N}\left(T^{k+1}\right)$, for all $k \geqslant$ $\alpha(T)$ and the descent $d(T)$ of T is the least non-negative integer such that $\mathscr{R}\left(T^{k}\right)=$
$\mathscr{R}\left(T^{k+1}\right)$, for all $k \geqslant d(T)$. It is a classical fact that if $\alpha(T)<\infty$ and $d(T)<\infty$ then $\alpha(T)=d(T)$. For more comprehensive study, we reefer the reader to [23].

Let $n \in \mathbb{N}, \varphi$ be nonsingular and let $W=u C_{\varphi} \in \mathscr{B}\left(L^{2}(\Sigma)\right)$. For this u and φ, we define the measure $\mu_{u, \varphi}^{n}$ by

$$
\mu_{u, \varphi}^{n}(A)= \begin{cases}\int_{\varphi^{-1}(A)}|u|^{2} d \mu & n=1 \\ \int_{\varphi^{-1}(A)}|u|^{2} d \mu_{u, \varphi}^{n-1} & n \geqslant 2\end{cases}
$$

It is easy to check that

$$
\begin{aligned}
\mu_{u, \varphi}^{2} & \ll \mu_{u, \varphi} \circ \varphi^{-1} \ll \mu \circ \varphi^{-2} \ll \mu \circ \varphi^{-1} \ll \mu ; \\
\mu_{u, \varphi}^{n+1} & \ll \mu_{u, \varphi}^{n} \circ \varphi^{-1} \ll \mu_{u, \varphi}^{n-1} \circ \varphi^{-2} \ll \cdots \ll \mu_{u, \varphi}^{1} \circ \varphi^{-n} \\
& \ll \mu \circ \varphi^{-(n+1)} \ll \mu \circ \varphi^{-n} \ll \cdots \ll \mu \circ \varphi^{-1} \ll \mu .
\end{aligned}
$$

We prove by induction that

$$
\mu_{u, \varphi}^{n}(A)=\int_{A}(J)_{n} d \mu, \quad n \in \mathbb{N}, A \in \Sigma
$$

It is clear that $d \mu_{u, \varphi}=J d \mu$. Suppose $d \mu_{u, \varphi}^{k}=(J)_{k} d \mu$ holds for $k=1,2, \cdots, n-1$. Then we have

$$
\begin{aligned}
\mu_{u, \varphi}^{n}(A) & =\int_{\varphi^{-1}(A)}|u|^{2} d \mu_{u, \varphi}^{n-1} \\
& =\int_{\varphi^{-1}(A)}|u|^{2}(J)_{n-1} d \mu \\
& =\int_{\varphi^{-1}(A)}|u|^{2} E^{n-1}\left(\left|u_{(n-1)}\right|^{2}\right) \circ \varphi^{-(n-1)} d \mu \circ \varphi^{-(n-1)} \\
& =\int_{\varphi^{-n}(A)}\left|u \circ \varphi^{(n-1)}\right|^{2} E^{n-1}\left(\left|u_{(n-1)}\right|^{2}\right) d \mu \\
& =\int_{\varphi^{-n}(A)}\left|u_{(n)}\right|^{2} d \mu \\
& =\int_{A}(h)_{n} E^{n}\left(\left|u_{(n)}\right|^{2}\right) \circ \varphi^{-n} d \mu \\
& =\int_{A}(J)_{n} d \mu .
\end{aligned}
$$

Hence, $d \mu_{u, \varphi}^{n} / d \mu=(J)_{n}$. Now, set $Q_{0}=J_{0}=1$ and $Q_{n}=h E\left(Q_{n-1}|u|^{2}\right) \circ \varphi^{-1}$. Then $Q_{1}=J=(J)_{1}$, and so $d \mu_{u, \varphi}=Q_{1} d \mu$. Suppose $d \mu_{u, \varphi}^{k}=Q_{k} d \mu$ holds for $k=$ $1,2, \cdots, n-1$. Then for each $A \in \Sigma$ we have

$$
\begin{aligned}
\mu_{u, \varphi}^{n}(A) & =\int_{\varphi^{-1}(A)}|u|^{2} d \mu_{u, \varphi}^{n-1}=\int_{\varphi^{-1}(A)}|u|^{2} Q_{n-1} d \mu \\
& =\int_{A} h E\left(Q_{n-1}|u|^{2}\right) \circ \varphi^{-1} d \mu=\int_{A} Q_{n} d \mu
\end{aligned}
$$

So, $d \mu_{u, \varphi}^{n} / d \mu=Q_{n}$. Thus, we conclude that

$$
(J)_{n}=(h)_{n} E^{n}\left(\left|u_{(n)}\right|^{2}\right) \circ \varphi^{-n}=h E\left(Q_{n-1}|u|^{2}\right) \circ \varphi^{-1}=Q_{n} .
$$

The measure v and μ are called equivalent on Σ if $\mu \ll v \ll \mu$ and denoted by $\mu \simeq v$. In [13] Kumar has characterized the weighted composition operators on $L^{2}(\Sigma)$ whose ascent and descent is 1 . The following theorem characterizes weighted composition operators with finite ascent.

THEOREM 4.1. $W \in \mathscr{B}\left(L^{2}(\Sigma)\right)$. Then $\alpha(W)=n_{0}$ if and only if $\mu_{u, \varphi^{n_{0}+1}} \simeq$ $\mu_{u, \varphi^{n} 0}$.

Proof. Recall that $\mathscr{N}\left(W^{n}\right)=\chi_{X_{n}} L^{2}(\Sigma)=L^{2}\left(X_{n}\right)$, where $X_{n}=\left\{x \in X:(J)_{n}(x)=\right.$ $0\}$. Now, suppose $\alpha(W)=n_{0}$. Thus $\mathscr{N}\left(W^{n_{0}}\right)=\mathscr{N}\left(W^{n_{0}+1}\right)$, by definition. Then we have

$$
\begin{aligned}
\alpha(W)=n_{0} & \Longleftrightarrow \mathscr{N}\left(W^{n_{0}}\right)=\mathscr{N}\left(W^{n_{0}+1}\right) \\
& \Longleftrightarrow L^{2}\left(X_{n_{0}}\right)=L^{2}\left(X_{n_{0}+1}\right) \\
& \Longleftrightarrow X_{n_{0}}=X_{n_{0}+1} \\
& \left.\left.\Longleftrightarrow(J)_{n_{0}}\right|_{A}=\left.0 \Leftrightarrow(J)_{n_{0}+1}\right|_{A}=0, \forall A \in \Sigma\right) \\
& \Longleftrightarrow\left(\mu_{u, \varphi}^{n_{0}}(A)=\int_{A}(J)_{n_{0}} d \mu=0 \Leftrightarrow \mu_{u, \varphi}^{n_{0}+1}(A)=\int_{A}(J)_{n_{0}+1} d \mu=0, \forall A \in \Sigma\right) \\
& \Longleftrightarrow \mu_{u, \varphi}^{n_{0}+1} \simeq \mu_{u, \varphi}^{n_{0}}
\end{aligned}
$$

This completes the proof.
THEOREM 4.2. Let $W \in \mathscr{B}\left(L^{2}(\Sigma)\right), A_{n}:=\sigma\left(u_{(n)}\right)$ and let, for all $n \in \mathbb{N}, \Sigma_{n}=$ $\varphi^{-n}(\Sigma)$ be a sub-sigma finite algebra of Σ. Then $d(W)=n_{0}<\infty$ if and only if the following assertions hold.
(a) $\Sigma_{n_{0}+1} \cap A_{n_{0}+1}=\Sigma_{n_{0}} \cap A_{n_{0}}$, and
(b) $L^{2}\left(\Sigma_{n_{0}} \cap A_{n_{0}}\right)$ is an invariant subspace for $M_{\frac{\chi_{A n_{0}}}{u \circ \varphi^{n} 0}}$.

Proof. Let $d(W)=n_{0}$. Since $\Sigma_{n_{0}+1} \subseteq \Sigma_{n_{0}}$ and $A_{n_{0}+1} \subseteq A_{n_{0}}$, so $\Sigma_{n_{0}+1} \cap A_{n_{0}+1} \subseteq$ $\Sigma_{n_{0}} \cap A_{n_{0}}$. Let $A \in \Sigma$ and take $u_{\left(n_{0}\right)}=u(u \circ \varphi)\left(u \circ \varphi^{2}\right) \cdots\left(u \circ \varphi^{n_{0}-1}\right)$. We shall show that $A_{n_{0}} \cap \varphi^{-n_{0}}(A) \in \Sigma_{n_{0}+1} \cap A_{n_{0}+1}$. By hypothesis $R\left(W^{n_{0}}\right)=R\left(W^{n_{0}+1}\right)$ and n_{0} is finite. Hence W has closed range. Thus

$$
\begin{aligned}
\mathscr{R}\left(W^{n_{0}}\right) & =\left\{u_{\left(n_{0}\right)} f: \quad f \in L^{2}\left(\Sigma_{n_{0}} \cap A_{n_{0}}\right)\right\} ; \\
\mathscr{R}\left(W^{n_{0}+1}\right) & =\left\{u_{\left(n_{0}+1\right)} g: \quad g \in L^{2}\left(\Sigma_{n_{0}+1} \cap A_{n_{0}+1}\right)\right\} .
\end{aligned}
$$

Take $B=\varphi^{-n_{0}}(A) \cap A_{n_{0}}$ and choose $f=\chi_{B} \in L^{2}\left(\Sigma_{n_{0}} \cap A_{n_{0}}\right)$. Hence there exists $g \in$ $L^{2}\left(\Sigma_{n_{0}+1} \cap A_{n_{0}+1}\right)$ such that $u_{\left(n_{0}\right)} f=u_{\left(n_{0}+1\right)} g$. Since $A_{n_{0}}=\sigma\left(u_{\left(n_{0}\right)}\right), B=\sigma\left(u_{\left(n_{0}\right)} \chi_{B}\right)=$ $\sigma(g) \cap A_{n_{0}+1}$. But $\sigma(g) \cap A_{n_{0}+1} \in\left(\Sigma_{n_{0}+1} \cap A_{n_{0}+1}\right)$. Consequently, $\Sigma_{n_{0}} \cap A_{n_{0}} \subseteq \Sigma_{n_{0}+1} \cap$ $A_{n_{0}+1}$. This proves (a).

To prove (b), suppose $f \in L^{2}\left(\Sigma_{n_{0}} \cap A_{n_{0}}\right)$. Then, by hypothesis, $u_{\left(n_{0}\right)} f=u_{\left(n_{0}+1\right)} g$ for some $g \in L^{2}\left(\Sigma_{n_{0}+1} \cap A_{n_{0}+1}\right)$.

It follows that $f \chi_{A_{n_{0}}}=\left(u \circ \varphi^{n_{0}}\right) \chi_{A_{n_{0}}} g$, and so

$$
\chi_{A_{n_{0}+1}} g=\frac{f}{u \circ \varphi^{n_{0}}} \chi_{A_{n_{0}+1}} \in L^{2}\left(\Sigma_{n_{0}+1} \cap A_{n_{0}+1}\right) .
$$

This implies $\frac{f}{u \circ \varphi^{0_{0}}} \chi_{A_{n_{0}+1}} \in L^{2}\left(\left(\Sigma_{n_{0}} \cap A_{n_{0}}\right)\right.$, by part (a).
Conversely, assume that (a) and (b) hold. From (a) we see that $L^{2}\left(\Sigma_{n_{0}} \cap A_{n_{0}}\right)=$ $L^{2}\left(\Sigma_{n_{0}+1} \cap A_{n_{0}+1}\right)$, and so $A_{n_{0}}=A_{n_{0}+1}$. Since $\mathscr{R}\left(W^{n_{0}+1}\right) \subseteq \mathscr{R}\left(W^{n_{0}}\right)$, it will thus be sufficient to prove $\mathscr{R}\left(W^{n_{0}}\right) \subseteq \mathscr{R}\left(W^{n_{0}+1}\right)$. Let $u_{\left(n_{0}\right)} f \in \mathscr{R}\left(W^{n_{0}}\right)$ for some $f \in L^{2}\left(\Sigma_{n_{0}} \cap\right.$ $\left.A_{n_{0}}\right)$. Then $g=\left(f /\left(u \circ \varphi^{n_{0}}\right)\right) \chi_{A_{n_{0}}} \in L^{2}\left(\Sigma_{n_{0}} \cap A_{n_{0}}\right)$, by part (b). But, this implies that $u_{\left(n_{0}+1\right)} g=u_{\left(n_{0}\right)} f \in \mathscr{R}\left(W^{n_{0}+1}\right)$. This the completes proof.

Let $W \in \mathscr{B}\left(L^{2}(\Sigma)\right)$ and $\alpha(W)=d(W)=n_{0}<\infty$. Then by [12, Theorem 1.12], $L^{2}(\Sigma)=L^{2}\left(X_{n_{0}}\right) \oplus \mathscr{R}\left(W^{n_{0}}\right)$ and the restriction of W to $L^{2}\left(X_{n_{0}}\right)$ is nilpotent and W, when restricted to $\mathscr{R}\left(W^{n_{0}}\right)$, is bijection. Note that, in the proof of surjectivity of W on $\mathscr{R}\left(W^{n_{0}}\right)$ we need not to have $\alpha(W)=n_{0}<\infty$. Moreover, since $\frac{L^{2}(\Sigma)}{\mathcal{N}\left(W^{n_{0}}\right)}$ algebraically isomorphic with $\chi_{\sigma\left((J)_{n_{0}}\right)} L^{2}(\Sigma):=L^{2}\left(X_{n_{0}}^{c}\right)$, so $L^{2}\left(X_{n_{0}}^{c}\right)$ isomorphic with $\mathscr{R}\left(W^{n_{0}}\right)=$ $\left\{u_{\left(n_{0}\right)} \cdot\left(f \circ \varphi^{n_{0}}\right): f \in L^{2}\left((J)_{n_{0}} d \mu\right)\right\}$.

Proposition 4.3. Let $W \in \mathscr{B}\left(L^{2}(\Sigma)\right)$. Then $d(W)<\infty$ if and only if W, when restricted to $\mathscr{R}\left(W^{n_{0}}\right)$, is onto mapping of $\mathscr{R}\left(W^{n_{0}}\right)$ to all of itself for some $n_{0} \in \mathbb{N}$.

Proof. Let $d(W)=n_{0}<\infty$ and choose $f \in \mathscr{R}\left(W^{n_{0}}\right)$. Since $\mathscr{R}\left(W^{n_{0}}\right)=\mathscr{R}\left(W^{n_{0}+1}\right)$, there exists $g \in L^{2}(\Sigma)$ such that $W\left(W^{n_{0}}(g)\right)=f$ and $W^{n_{0}}(g) \in \mathscr{R}\left(W^{n_{0}}\right)$. This implies that $W: \mathscr{R}\left(W^{n_{0}}\right) \rightarrow \mathscr{R}\left(W^{n_{0}}\right)$ is onto. Conversely, if for some non-negative integer n_{0}, $W: \mathscr{R}\left(W^{n_{0}}\right) \rightarrow \mathscr{R}\left(W^{n_{0}}\right)$ is onto, then $\mathscr{R}\left(W^{n_{0}+1}\right)=W\left(\mathscr{R}\left(W^{n_{0}}\right)\right)=\mathscr{R}\left(W^{n_{0}}\right)$, and thus $d(W) \leqslant n_{0}<\infty$.

In [16] Morrel and Muhly introduced the concept of a centered operator. Let H be the infinite dimensional complex Hilbert space. An operator T on a Hilbert space H is said to be centered if the doubly infinite sequence $\left\{T^{n} T^{* n}, T^{* m} T^{m}: n, m \geqslant 0\right\}$ consists of mutually commuting operators. Let $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ be normal operators and let $\varphi_{1} \circ \varphi_{2}=\varphi_{2} \circ \varphi_{1}$. By Fuglede-Putnam theorem we have $C_{\varphi_{j}} C_{\varphi_{i}}^{*}=C_{\varphi_{i}}^{*} C_{\varphi_{j}}$. Since normal operators are centered, it follows that $C_{\varphi_{3}}=C_{\varphi_{2}} C_{\varphi_{1}}$ is centered. In [7], EmbryWardrop and Lambert proved that the composition operator $C_{\varphi} \in B\left(L^{2}(\Sigma)\right)$ is centered if and only if h is Σ_{∞}-measurable, where $\Sigma_{\infty}=\cap_{n=1}^{\infty} \Sigma_{n}$.

Proposition 4.4. Let $C_{\varphi} \in \mathscr{B}\left(L^{2}(\Sigma)\right)$ and for all $n \in \mathbb{N}, \Sigma_{n}$ is a sub-sigma finite algebra of Σ. If $d\left(C_{\varphi}\right)=k$ and h is Σ_{k}-measurable, then C_{φ} is centered.

Proof. By hypothesis, $L^{2}\left(\Sigma_{k}\right)=L^{2}\left(\Sigma_{n}\right)$ for all $n \geqslant k$. Thus $\Sigma_{\infty}=\Sigma_{k}$. Now, the desired conclusion follows from [7, Theorem 5].

Let $w=\left\{m_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive real numbers such that for all $n \in \mathbb{N}$, $0<\alpha \leqslant m_{n} \leqslant \beta$. Set $l^{2}(w)=L^{2}\left(\mathbb{N}, 2^{\mathbb{N}}, \mu\right)$, where $2^{\mathbb{N}}$ is the power set of natural numbers and μ is a measure on $2^{\mathbb{N}}$ defined by $\mu(\{n\})=m_{n}$. For $\varphi: \mathbb{N} \rightarrow \mathbb{N}$, suppose $C_{\varphi} \in \mathscr{B}\left(l^{2}(w)\right)$. In the following we give a characterization of C_{φ} on $l^{2}(w)$ whose ascent and descent are infinite.

Proposition 4.5. Let $C_{\varphi} \in \mathscr{B}\left(l^{2}(w)\right)$. Then the following assertions are hold.
(a) $\alpha\left(C_{\varphi}\right)=\infty$ if and only if for all $k \in \mathbb{N}$, there exists a sequence of distinct integers $\left\{n_{k}\right\}$ such that $n_{k} \in \mathscr{R}\left(\varphi^{k}\right)$ but $n_{k} \notin \mathscr{R}\left(\varphi^{k+1}\right)$.
(b) $d\left(C_{\varphi}\right)=\infty$ if and only if φ, when restricted to $\mathscr{R}\left(\varphi^{k}\right)$, is not injective for all $k \in \mathbb{N}$.

Proof. (a) Set $X_{k}=\left\{n \in \mathbb{N}:(h)_{k}(n)=0\right\}$. Because $(h)_{k+1}=(h)_{k}\left(E_{k}(h)\right) \circ \varphi^{-1}$, $X_{k} \subseteq X_{k+1}$ for each $k \in \mathbb{N}$. Since $(h)_{k}(n)=\frac{1}{m_{n}} \sum_{j \in \varphi^{-k}(n)} m_{j},(h)_{k}(n)=0$ if and only if $n \notin \mathscr{R}\left(\varphi^{k}\right)$. Thus, $X_{k}=\left\{n \in \mathbb{N}: n \notin \mathscr{R}\left(\varphi^{k}\right)\right\}$. Therefore,

$$
\begin{aligned}
\alpha\left(C_{\varphi}\right)=\infty & \Longleftrightarrow L^{2}\left(X_{k}\right) \subset L^{2}\left(X_{k+1}\right), \forall k \in \mathbb{N} \\
& \Longleftrightarrow X_{k} \subset X_{k+1}, \forall k \in \mathbb{N} \\
& \Longleftrightarrow \forall k \in \mathbb{N} \quad \exists n_{k} \in \mathbb{N}: n_{k} \in \mathscr{R}\left(\varphi^{k}\right) \backslash \mathscr{R}\left(\varphi^{k+1}\right)
\end{aligned}
$$

Note that $\left(\mathscr{R}\left(\varphi^{k}\right) \backslash \mathscr{R}\left(\varphi^{k+1}\right)\right) \cap\left(\mathscr{R}\left(\varphi^{k-1}\right) \backslash \mathscr{R}\left(\varphi^{k}\right)\right)=\emptyset$, for all $k \in \mathbb{N}$.
(b) Let $n_{0} \in \mathbb{N}$ and $n \in \mathscr{R}\left(\varphi^{n_{0}}\right)$. Then $\varphi^{n_{0}}(p)=n$, for some $p \in \mathbb{N}$. Then

$$
(h)_{n_{0}}(n)=\frac{1}{m_{n}} \sum_{j \in \varphi^{-n_{0}}(n)} m_{j} \geqslant \frac{m_{p}}{m_{n}} .
$$

Thus $(h)_{n_{0}} \geqslant \frac{\alpha}{\beta}$ on $\sigma\left((h)_{n_{0}}\right)=\mathscr{R}\left(\varphi^{n_{0}}\right)$, and so $C_{\varphi^{n_{0}}}$ has closed range. First, we show that $\mathscr{R}\left(C_{\varphi^{n_{0}}}\right)=L^{2}\left(X_{n_{0}}^{c}\right)$, where $X_{n_{0}}^{c}=\sigma\left((h)_{n_{0}}\right)$. For this, let $f \in L^{2}(\Sigma)$. Then $\left\|C_{\varphi^{n_{0}}}(f)\right\|^{2}=\left\|\chi_{X_{n_{0}}} f\right\|_{(h)_{n_{0}} d \mu}$. This implies that the mapping $\Lambda\left(\chi_{X_{n_{0}}^{c}} f\right)=f \circ \varphi^{n_{0}}$ from $L^{2}\left(X_{n_{0}}^{c}\right)$ onto $\mathscr{R}\left(C_{\varphi^{n_{0}}}\right)=\left\{f \circ \varphi^{n_{0}}: f \in L^{2}\left((h)_{n_{0}} d \mu\right)\right\}$ is an isometry isomorphism. Now, by Proposition 4.3, $d\left(C_{\varphi}\right)=n_{0}<\infty$ if and only if $C_{\varphi}: L^{2}\left(X_{n_{0}}^{c}\right) \rightarrow L^{2}\left(X_{n_{0}}^{c}\right)$ is onto. But, it is a classical fact that $C_{\varphi} \in \mathscr{B}\left(L^{2}\left(X_{n_{0}}^{c}\right)\right)$ is surjective if and only if $\varphi^{n_{0}}: X_{n_{0}}^{c} \rightarrow$ $X_{n_{0}}^{c}$ is injective (see [22]). But, $X_{n_{0}}^{c}=\left\{k \in \mathbb{N}:(h)_{n_{0}}(k)>0\right\}=\left\{k \in \mathbb{N}: k \in \mathscr{R}\left(\varphi^{n_{0}}\right)\right\}$. This completes the proof.

Acknowledgement. We would like to thank the referees for their careful reading and constructive comments.

REFERENCES

[1] P. BudZyński, Z. J. JabŁoński, I. B. Jung, J. Stochel, Unbounded weighted composition operators in L^{2}-spaces, Lecture Notes in Mathematics, 2209. Springer, 2018.
[2] J. T. Campbell and W. E. Hornor, Seminormal composition operators, J. Operator Theory 29 (1993), 323-343.
[3] J. T. Campbell and J. Jamison, On some classes of weighted composition operators, Glasgow Math. J. 32 (1990), 87-94.
[4] J. T. ChAn, A note on compact weighted composition operators on $L^{p}(\mu)$, Acta Sci. Math. (Szeged) 56 (1992), 165-168.
[5] J. H. Clifford, T. Le and A. Wiggins, Invertible composition operators: the product of a composition operator with the adjoint of a composition operator, Complex Anal. Oper. Theory 8 (2014), 1699-1706.
[6] R. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
[7] M. Embry-Wardrop, A. Lambert, Measurable transformations and centred composition operators, Proc. Roy. Irish Acad. Sect A, 90 (1990), 165-172.
[8] J. Herron, Weighted conditional expectation operators on L^{p} spaces, UNC Charlotte Doctoral Dissertation, 2004.
[9] T. Hoover, A. Lambert and J. Quinn, The Markov process determined by a weighted composition operator, Stdia. Math. LXXII (1982), 225-235.
[10] M. R. JabBarZadeh and M. Jafari BakhshKandi, Stability constants for weighted composition operators on $L^{p}(\Sigma)$, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 271-281.
[11] M. R. Jabbarzadeh and S. Karimi, Composition operator and their products on $L^{2}(\Sigma)$, Mat. Vesnik 69 (2017), 1-11.
[12] D. Kitson, Ascent and descent for sets of operators, Studia Math. 191 (2009), 151-161.
[13] R. Kumar, Ascent and descent of weighted composition operators on L^{p}-spaces, Mat. Vesnik $\mathbf{6 0}$ (2008), 47-51.
[14] A. Lambert, Hyponormal composition operators, Bull. London Math. Soc. 18 (1986), 395-400.
[15] A. Lambert, Localising sets for sigma-algebras and related point transformations, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 111-118.
[16] B. B. Morrel and P. S. Muhly, Centered operators, Studia Math. 51 (1974), 251-263.
[17] V. MÜLLER, Spectral theory of linear operators, operator theory advances and applications, vol. 139, Birkhäuser Verlag, Basel-Boston-New York, 2003.
[18] G. NiKAIDO, Remarks on the lower bound of linear operators, Proc. Japan Acad. 56 (1980), 321-323.
[19] M. M. RaO, Conditional measure and applications, Marcel Dekker, New York, 1993.
[20] K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space, Springer, Dordrecht, 2012.
[21] R. K. Singh and A. Kumar, Multiplication operators and composition operators with closed ranges, Bull. Austral. Math. Soc. 16 (1977), 247-252.
[22] R. K. Singh and J. S. Manhas, Composition operators on function spaces, North Holland Math. Studies 179, Amsterdam 1993.
[23] A. E. Taylor and D. C. Lay, Introduction to functional analysis, Wiley, New York, 1980.
[24] M. F. WANG AND P. D. Liu, Compactness of product operators on the Bergman space, Acta Math. Sin. (Engl. Ser.) 21 (2005), 723-732.
[25] A. C. ZaANEN, Integration, 2nd ed., North-Holland, Amsterdam, 1967.

M. R. Jabbarzadeh
Faculty of Mathematical Sciences
University of Tabriz
51666-15648, Tabriz, Iran
e-mail: mjabbar@tabrizu.ac.ir
M. Gheytaran
Faculty of Mathematical Sciences
University of Tabriz
51666-15648, Tabriz, Iran
e-mail: m.geytaran@tabrizu.ac.ir

[^0]: Mathematics subject classification (2010): Primary 47B20; Secondary 47B38.
 Keywords and phrases: Kato operator, conditional expectation, composition operator, multiplication operator, ascent, descent, polar decomposition, closed range.

 * Corresponding author.

