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WEIGHTED COMPOSITION OPERATORS

AND THEIR PRODUCTS ON L2(Σ)

M. R. JABBARZADEH ∗ AND M. GHEYTARAN

(Communicated by J. Pečarić)

Abstract. In this paper, we study the ascent and descent of weighted composition operators on
L2(Σ) . In addition, we discuss measure theoretic characterizations of some classical properties
for products of these type operators.

1. Introduction and preliminaries

Let (X ,Σ,μ) be a complete sigma finite measure space and let A be a sub-sigma
finite algebra of Σ . If B ⊂ X , let AB = A ∩B denote the relative completion of the
sigma-algebra generated by {A∩B : A ∈A } and denote the complement of B in X by
Bc . All comparisons between two functions or two sets are to be interpreted as holding
up to a μ -null set. We denote the linear spaces of all complex-valued Σ-measurable
functions on X by L0(Σ) . The support of f ∈ L0(Σ) is defined by σ( f ) = {x ∈ X :
f (x) �= 0} . Let u ∈ L0(Σ) and let ϕ : X → X be a measurable transformation on X ,
that is, ϕ−1(A) ∈ Σ for all A ∈ Σ . Denote by μσ(u) ◦ϕ−1 the positive measure on Σ
given by μσ(u) ◦ϕ−1(A) = μ(ϕ−1(A)∩σ(u)) for all A ∈ Σ . Put μX = μ . We say that

ϕ is nonsingular, if μ ◦ϕ−1 is absolutely continuous with respect to μ . In this case we

write μ ◦ϕ−1 	 μ , as usual. Let h be the Radon-Nikodym derivative, h = dμ◦ϕ−1

dμ .
Let 1 � p � ∞ . By a weighted composition operator in Lp(Σ) = Lp(X ,Σ,μ) =

Lp(μ) we mean a mapping W = uCϕ : Lp(Σ) ⊇ D(W ) → Lp(Σ) formally defined by

W f (x) =
{

u(x) f (ϕ(x)) x ∈ σ(u)
0 x /∈ σ(u),

for all f ∈ D(W ) = { f ∈ Lp(Σ) : u.( f ◦ϕ) ∈ Lp(Σ)} . In general, such operator may
not be well-defined. We use the assumption μσ(u) ◦ϕ−1 = (μ ◦ϕ−1)|σ(u)

	 μ to see

that W is well-defined on D(W ) , for more details, see [1]. Now, set u = 1. Then
the composition operator Cϕ defined by Cϕ( f ) = f ◦ϕ on Lp(Σ) is well-defined if
and only if the transformation ϕ is nonsingular. It is known that Cϕ ∈ B(Lp(Σ)) , the

Mathematics subject classification (2010): Primary 47B20; Secondary 47B38.
Keywords and phrases: Kato operator, conditional expectation, composition operator, multiplication

operator, ascent, descent, polar decomposition, closed range.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-24-21

291

http://dx.doi.org/10.7153/mia-2021-24-21


292 M. R. JABBARZADEH AND M. GHEYTARAN

algebra of all bounded linear operators on Lp(Σ) , if and only if h ∈ L∞(Σ) . In this case
D(Cϕ) =Lp(Σ) , ‖Cϕ‖p = ‖h‖∞ and W = MuCϕ , where Mu is a multiplication operator
defined by Mu( f ) = u f on D(Mu) = { f ∈ Lp(Σ) : u. f ∈ Lp(Σ)} . It is known by the
closed graph theorem that D(Mu) = Lp(Σ) if and only if u ∈ L∞(Σ) , or equivalently,
Mu ∈ B(Lp(Σ)) . In this case, ‖Mu‖ = ‖u‖∞ (see [22]).

Assume f is a non-negative Σ-measurable function on X . Since A is sub-sigma
finite, by the Radon-Nikodym theorem, there exists a unique A -measurable function
EA ( f ) such that

∫
A f dμ =

∫
A EA ( f )dμ , where A is any A -measurable set for which∫

A f dμ exists. Note that E( f ) depends both on μ and A . A real-valued measurable
function f = f +− f− is said to be conditionable if μ({x∈ X : E( f +)(x) = E( f−)(x) =
∞}) = 0. If f is complex-valued, then f ∈D(E) = { f ∈ L0(Σ) : f is conditionable} if
the real and imaginary parts of f are conditionable and their respective expectations are
not both infinite on the same set of positive measure. One can show that every Lp(Σ)
function is conditionable. In the setting of Lp -spaces, the conditional expectation op-
erator EA plays an important role in the study of weighted composition operators. We
use the notation Lp(A ) for Lp(X ,A ,μ|A ) and henceforth we write μ in place μ|A .
The mapping EA : Lp(Σ) → Lp(A ) defined by f �→ EA ( f ) , is called the conditional
expectation operator with respect to A . In the case of p = 2, it is the orthogonal pro-
jection of L2(Σ) onto L2(A ) . For further discussion of the conditional expectation
operator see [1, 8, 15, 19].

For each n ∈ N , let Σn := ϕ−n(Σ) be a sub-sigma finite algebra of Σ and let
μ ◦ ϕ−n 	 μ . Set u(n) = u.(u ◦ ϕ) · · · (u ◦ ϕn−1) , (h)n = dμ ◦ϕ−n/dμ , En = EΣn

and (J)n = (h)nEn(|u(n)|p) ◦ϕ−n . We use the symbols h , E and J = hE(|u|p) ◦ϕ−1

instead of (h)1 , E1 and (J)1 , respectively. Note that if Σn is sigma finite so is Σk

for any k < n . Let f ∈ D(En) . Since En( f ) is a Σn -measurable function, there is a
g ∈ L0(Σ) such that En( f ) = g◦ϕn . In general g is not unique. This deficiency can be
solved by assuming σ(g)⊆σ((h)n) , because for each g1,g2 ∈ L0(Σ) , g1◦ϕn = g2◦ϕn

if and only if g1 = g2 = g on σ((h)n) . In this case g is a well-defined and unique.
As a notation, we then write g = En( f ) ◦ ϕ−n . With this setting by the change of
variables formula, we obtain

∫
X f dμ =

∫
X (h)nEn( f )◦ϕ−ndμ , in the sense that if one

of the integrals exists then so does the other and they have the same value (see [2]). For
1 � p < ∞ , define

‖ f‖p = (
∫

X
| f |pdμ)

1
p ;

‖ f‖p,hdμ = (
∫

X
| f |phdμ)

1
p ;

‖ f‖p,Jdμ = (
∫

X
| f |pJdμ)

1
p .

It is easy to check that

‖Cϕ( f )‖p = ‖M p√h f‖p = ‖ f‖p,hdμ , f ∈ D(Cϕ) ⊆ Lp(Σ);

‖W ( f )‖p = ‖M p√J f‖p = ‖ f‖p,Jdμ , f ∈ D(W ) ⊆ Lp(Σ). (1.1)
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Hence D(Cϕ ) = Lp(Σ) ∩ Lp(hdμ) and D(W ) = Lp(Σ) ∩ Lp(Jdμ) . Campbell and
Hornor in [2] proved that W is a densely defined and closed operator if and only if
J is finite valued, that is, μ({x ∈ X : J(x) = ∞}) = 0. Also, R(W ) = {u.( f ◦ ϕ) :
f ∈ Lp(Jdμ)} . If J ∈ L∞(Σ) , then Lp(Σ) ⊆ Lp(Jdμ) , and so D(W ) = Lp(Σ) . More-
over, it follows from (1.1) that W ∈ B(Lp(Σ)) if and only if J ∈ L∞(Σ) (see also [9]).
In particular, in case u = 1, D(Cϕ) = Lp(Σ) if and only if h < ∞ ; that is finite val-
ued, and R(E) = R(Cϕ ) = Lp(ϕ−1(Σ)) = { f ◦ϕ : f ∈ Lp(hdμ)} . If h ∈ L∞(Σ) , then
Lp(Σ) ⊆ Lp(hdμ) , and so D(Cϕ) = Lp(Σ) . Lambert et al. in [9] shows that the adjoint
W ∗ of W ∈B(L2(Σ)) is given by W ∗( f ) = hE(u f )◦ϕ−1 , for each f ∈ L2(Σ) . In this
case, W ∗W = MJ and WW ∗ = Mu.(h◦ϕ)EMu .

Products of operators appear often in the service of the study of other operators.
Weighted composition operators and their products have been used to provide examples
and illustrations of many operator theoretic properties. In several cases major conjec-
tures in operator theory have been reduced to the weighted composition operators. The
purpose of this note is to find some characterizations of properties of weighted com-
position operators on L2(Σ) and present a relationship between W = uCϕ and their
products. A good reference for information on the weighted composition operators in
L2 -spaces is the monograph [1]. In Section 2, we collect some sufficient facts on prod-
ucts of weighted composition operators. In section 3, we investigate semi-Kato type
weighted composition operators. Finally, in section 4, we characterize the weighted
composition operators on L2(Σ) whose ascent and descent is finite.

2. On some classic properties of W = uCϕ on L2(Σ)

For i = 1,2 and n∈N , let Σi
n := ϕ−n

i (Σ) be a sub-sigma finite algebra of Σ and let

μ ◦ϕ−n
i 	 μ . Set ui(n) = ui.(ui ◦ϕi) · · · (ui ◦ϕn−1

i ) , (hi)n = dμ ◦ϕ−n
i /dμ , En

i = EΣi
n

and (Ji)n = (hi)nEn
i (|ui(n)|2) ◦ϕ−n

i . We use the symbols hi , Ei and Ji = hiEi(|ui|2) ◦
ϕ−1

i instead of (hi)1 , E1
i and (Ji)1 , respectively. Put ϕ3 = ϕ1 ◦ϕ2 , u3 = u2.(u1 ◦ϕ2) .

Then μ ◦ϕ−n
3 	 μ .

REMARK 2.1. For a nonsingular measurable transformation ϕi (i = 1,2) , let
hi < ∞ and ϕ−1

3 (Σ) be a sub-sigma finite algebra of Σ . Then by [1, Lemma 26] we
have

h3 = h1E1(h2)◦ϕ−1
1 and σ(h3 ◦ϕ3) = X . (2.1)

Also, if C∗
ϕ3

is densely defined then so is Cϕ3C
∗
ϕ3

(see [20, Theorem 1.8 and 7.2]). In
this case Cϕ3C

∗
ϕ3

= Mh3◦ϕ3E3 (see [1, Theorem 18]). Moreover, if hi ∈ L∞(Σ) then by

[1, Prposition 17], C∗
ϕ3

( f ) = h1E1(h2E2( f )◦ϕ−1
2 )◦ϕ−1

1 for all f ∈ L2(Σ) .

LEMMA 2.2. For a nonsingular measurable transformation ϕi (i = 1,2) , let hi ∈
L∞(Σ) . Then

E3( f ) =
1

E1(h2)◦ϕ2
E1(h2E2( f )◦ϕ−1

2 )◦ϕ2, f ∈ L2(Σ).
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Proof. Let f ∈ L2(Σ) . Then by Remark 2.1 we have

E3( f ) =
1

h3 ◦ϕ3
Cϕ3C

∗
ϕ3

( f )

=
h1 ◦ϕ3

h3 ◦ϕ3
E1(h2E2( f )◦ϕ−1

2 )◦ϕ2

=
1

E1(h2)◦ϕ2
E1(h2E2( f )◦ϕ−1

2 )◦ϕ2. �

For nonsingular measurable transformation ϕ1 and ϕ2 , let hi < ∞ (i = 1,2,3) .
Then we have

D(Cϕ2Cϕ1) = { f ∈ L2(Σ) : f ∈ D(Cϕ1), f ◦ϕ3 ∈ L2(Σ)}
= L2((1+h1)dμ)∩L2(h3dμ)

= L2((1+h1 +h3)dμ)

= L2((1+h1 +h1E1(h2)◦ϕ−1
1 )dμ)

and D(Cϕ3) = L2((1+h1E1(h2)◦ϕ−1
1 )dμ) . Thus, D(Cϕ2Cϕ1) ⊆ D(Cϕ3) . If E1(h2)◦

ϕ−1
1 � k on X for some k > 0, then for each f ∈ D(Cϕ3) ,∫

X
| f ◦ϕ1|2dμ =

∫
X

h1| f |2dμ � 1
k

∫
X

h1E1(h2)◦ϕ−1
1 | f |2dμ < ∞.

It follows that Cϕ3 = Cϕ2Cϕ1 .

PROPOSITION 2.3. The following assertions hold.
(a) For nonsingular measurable transformation ϕ1 and ϕ2 , if {h1,h2} ⊆ L∞(Σ) ,

then J3 = h1E1(|u1|2J2)◦ϕ−1
1 .

(b) Let ϕ−1
3 (Σ) be a sub-sigma finite algebra of Σ . Then W3 is injective if and

only if σ(h1) = σ(E1(|u1|2J2)) = X .

Proof. By assumption, h3 ∈ L∞(Σ) . Hence E3 is well-defined. Now, (a) is imme-
diate from by (2.1) and Lemma 2.2.

For the proof of the second statement, we know that Wi is injective if and only if
σ(Ji) = X . Now, let A = {x ∈ X : E1(|u1|2J2) = 0} . So A = ϕ−1

1 (B) , for some B ∈ Σ .
If μ(A) > 0, then μ(B) > 0 because μ ◦ϕ−1

1 	 μ . Hence∫
B
h1E1(|u1|2J2)◦ϕ−1

1 dμ =
∫

A
E1(|u1|2J2)dμ = 0,

and so h1 = 0 or E1(|u1|2J2) ◦ϕ−1
1 = 0 on B . Therefore, h1 > 0 and E1(|u1|2J2) ◦

ϕ−1
1 > 0 implies that E1(|u1|2J2) > 0. Now, let E1(|u1|2J2) > 0. Since E1(|u1|2J2)

is a ϕ−1
1 (Σ)-measurable, then there exists a unique g ∈ L0(Σ) , with σ(g) ⊆ σ(h1) ,

such that E1(|u1|2J2) = g ◦ ϕ1 . It follows that 0 <
∫
X g ◦ϕ1dμ =

∫
X h1gdμ , and so

E1(|u1|2J2) ◦ ϕ−1
1 = g > 0 on σ(h1) . We conclude that σ(J3) = X if and only if

σ(h1) = σ(E1(|u1|2J2)) = X . �
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LEMMA 2.4. Let Wi ∈ B(L2(Σ)) , ϕ3 = ϕ1 ◦ϕ2 and u3 = u2.(u1 ◦ϕ2) . Then the
following assertions hold.

(a) J3 ◦ϕ3 = (h1 ◦ϕ3)E1(|u1|2J2)◦ϕ2 .
(b) W ∗

3 ( f ) = h1E1(u1h2E2(u2 f )◦ϕ−1
2 )◦ϕ−1

1 .
(c) W ∗

3 W3( f ) = (h1E1(|u1|2J2)◦ϕ−1
1 ) f .

(d) W3W ∗
3 ( f ) = u3(h1 ◦ϕ3)E1(u1h2E2(u2 f )◦ϕ−1

2 )◦ϕ2 .
(e) W ∗

3 W3W3( f ) = (u3h1E1(|u1|2J2)◦ϕ−1
1 ) f ◦ϕ3 .

(f) W3W ∗
3 W3( f ) = (u3(h1 ◦ϕ3)E1(|u1|2J2)◦ϕ2) f ◦ϕ3 .

(g) W3W ∗
3 ( f ) = u3(h3 ◦ϕ3)E3(u3 f ) .

Proof. Part (a) follows from (2.1) and Lemma 2.2. To prove (b), let f ∈ L2(Σ) .
Then

W ∗
3 ( f ) = W ∗

1 (W ∗
2 ( f )) = W ∗

1 (h2E2(u2 f )◦ϕ−1
2 )

= h1E1(u1h2E2(u2 f )◦ϕ−1
2 )◦ϕ−1

1 .

The reminder of the proof is left to the reader. �

In [6], Douglas proved that when A,B ∈ B(H ) , then AA∗ � λBB∗ for some
λ � 0; if and only if A = BC for some C ∈ B(H ) .

PROPOSITION 2.5. Let for i = 1,2 , Wi = uiCϕi ∈B(L2(Σ)) . Then J3 � λ1J1 a.e.
[μ ] and J3 ◦ϕ3 � λ2(J2 ◦ϕ2) a.e. [μ |ϕ−1

3 (Σ)] on σ(u3) for some λi � 0 .

Proof. Since W3 = W2W1 , by Douglas’ theorem, there exists λi � 0 such that
W ∗

3 W3 � λ1W ∗
1 W1 and W3W ∗

3 � λ2W2W ∗
2 . Then for each f ,g∈L2(Σ) we have 〈J3 f , f 〉�

〈λ1J1 f , f 〉 and 〈u3(h3 ◦ϕ3)E3(u3g),g〉 � 〈λ2u2(h2 ◦ϕ2)E2(u2g),g〉 . For A ∈ Σ with
μ(A) < ∞ , take f = χA and g = χϕ−1

3 (A)u3 . Since E3(u3g) = χϕ−1
3 (A)E3(|u3|2) and

E2(u2g) = χϕ−1
3 (A)(u1 ◦ϕ2)E2(|u2|2) , we obtain

∫
ϕ−1

3 (A)
|u3|2(J3 ◦ϕ3)dμ �

∫
ϕ−1

3 (A)
λ2|u3|2(J2 ◦ϕ2)dμ .

This completes the proof. �

Let [T,S] = TS−ST for T and S in B(H ) . An operator T ∈ B(H ) is said to
be normal if [T,T ∗] = 0, quasinormal if [T,T ∗T ] = 0 and hyponormal if [T,T ∗] � 0.
Normal, quasinormal and hyponormal bounded weighted composition operators have
been characterized in [2, 14] as follows:

LEMMA 2.6. Let W = uCϕ ∈ B(L2(Σ)) . Then the following assertions hold.
(a) W is normal if and only if

(
ϕ−1(Σ)

)
σ(u) = Σσ(u) and J = χσ(u)J ◦ϕ .

(b) W is quasinormal if and only if J = J ◦ϕ on σ(u) .

(c) W is hyponormal if and only if σ(u) = σ(J) and (h ◦ϕ)E( |u|
2

J ) � 1 .
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PROPOSITION 2.7. Let Wi = uiCϕi ∈ B(L2(Σ)) with J1 ◦ϕ2 = J1 and J2 ◦ϕ1 =
J2 .

(a) If W1 and W2 are normal (quasinormal), then W3 is a normal (quasinormal)
operator.

(b) If W1 and W2 are hyponormal and h2E2(
|u2|2
J2

)◦ϕ−1
2 is a ϕ−1

1 (Σ)-measurable
function, then W3 is a hyponormal operator.

Proof. (a) Let Wi be normal operator. Then by Lemma 2.6(a), (ϕ−1
i (Σ))σ(ui) =

Σσ(ui) and Ji = χσ(ui)Ji ◦ϕi . Also, by hypotheses we get that(
ϕ−1

3 (Σ)
)

σ(u3)
= ϕ−1

2

(
ϕ−1

1 (Σ)
)∩σ(u3) = ϕ−1

2

(
ϕ−1

1 (Σ)
)∩σ(u2)∩ϕ−1

2 (σ(u1))

= ϕ−1
2

(
ϕ−1

1 (Σ)∩σ(u1)
)∩σ(u2) = ϕ−1

2

(
Σ∩σ(u1)

)∩σ(u2)

=
(
ϕ−1

2 (Σ)∩σ(u2)
)∩σ(u1 ◦ϕ2) = Σ∩σ(u2)∩σ(u1 ◦ϕ2)

= Σ∩σ
(
u2(u1 ◦ϕ2)

)
= Σ∩σ(u3) = Σσ(u3),

and J3 = h1E1(|u1|2J2)◦ϕ−1
1 = h1E1(|u1|2J2 ◦ϕ1)◦ϕ−1

1 = J2J1. Since W1 and W2 are
normal, we have

χσ(u3)J3 ◦ϕ3 = χσ(u2)∩σ(u1◦ϕ2)J3 ◦ϕ3

= {χσ(u2)J2 ◦ϕ1 ◦ϕ2}{χσ(u1◦ϕ2)J1 ◦ϕ1 ◦ϕ2}
= {χσ(u2)J2 ◦ϕ2}{χσ(u1)J1 ◦ϕ1} ◦ϕ2

= J2J1 ◦ϕ2 = J2J1 = J3.

Thus, W3 is normal.

(b) By hypotheses, σ(ui) = σ(Ji) and (hi ◦ϕi)Ei(
|ui|2
Ji

) � 1 for i = 1,2. Hence
we obtain

σ(J3) = σ(J2J1) = ϕ−1
2 (σ(J1))∩σ(J2) = σ(u3);

E2(J1) = J1 = E2(J1)◦ϕ−1
2 , E1(J2) = J2 = E1(J2)◦ϕ−1

1 ,

and

E2

( 1
J1

)
◦ϕ−1

2 =
1
J1

∈ L0(ϕ−1
2 (Σ)).

Since h3 ◦ϕ3 = (h1 ◦ϕ3)E1(h2)◦ϕ2 and σ(Ei(hi)◦ϕi) = X (see [11]), we have

(h3 ◦ϕ3)E3

( |u3|2
J3

)
= (h1 ◦ϕ3)E1

(
h2E2

( |u2|2|u1|2 ◦ϕ2

J2J1

)
◦ϕ−1

2

)
◦ϕ2

= (h1 ◦ϕ3)E1

(
|u1|2h2E2

( |u2|2
J2J1

)
◦ϕ−1

2

)
◦ϕ2

= {(h1 ◦ϕ3)E1

( |u1|2
J1

)
◦ϕ2}{h2E2

( |u2|2
J2

)
◦ϕ−1

2 } ◦ϕ2

=
{
(h1 ◦ϕ1)E1

( |u1|2
J1

)}
◦ϕ2

{
(h2 ◦ϕ2)E2

( |u2|2
J2

)}
� 1.

This completes the proof. �
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An atom of the measure μ is an element B ∈ Σ with μ(B) > 0 such that for
each F ∈ Σ , if F ⊂ B then either μ(F) = 0 or μ(F) = μ(B) . A measure with no
atoms is called non-atomic. Write X = (∪n∈NAn)∪B , where {An}n∈N is a countable
collection of pairwise disjoint atoms and B , being disjoint from each An , is non-atomic
(see [25]). In [4] Chan proved that Mu is compact on L2(Σ) if and only if for any
ε > 0, the set {x ∈ X : |u(x)| � ε} consists of finitely many atoms. In the following,
we give a sufficient condition for the product of a weighted composition operator W1

with the adjoint of a weighted composition operator W ∗
2 on L2(Σ) to be compact. The

order of the product gives rise to two different cases (see [5, 24]).

PROPOSITION 2.8. For i = 1,2 , let Wi = uiCϕi ∈ B(L2(Σ)) . Then the following
assertions hold.

(a) If for each ε > 0 , the set A = {x∈ X : (|u2|2(J1◦ϕ2)(h1◦ϕ2))(x) � ε} consists
of finitely many atoms, then W1W ∗

2 is compact.
(b) If for each ε > 0 , the set B = {x∈ X : h1(x)

(
E1(|u1|2(h2 ◦ϕ2)

)◦ϕ−1
1 )(x) � ε}

consists of finitely many atoms and u2 ∈ L0(Σ2) , then W ∗
2 W1 is compact.

Proof. Let f ∈ L2(Σ) . Then

W1W
∗
2 ( f ) = u1(h2 ◦ϕ1)(E2(u2 f )◦ϕ−1

2 )◦ϕ1;

W ∗
2 W1( f ) = h2E2

(
u2u1( f ◦ϕ1)

)◦ϕ−1
2 .

Using change of variable formula and inequality |E2( f )|2 � E2(| f |2) , we obtain

‖W1W
∗
2 ( f )‖2 =

∫
X
|u1|2h2

2 ◦ϕ1|E2(u2 f )◦ϕ−1
2 |2 ◦ϕ1dμ

=
∫

X
(h1E1(|u1|2)◦ϕ−1

1 )h2
2|E2(u2 f )◦ϕ−1

2 |2dμ

=
∫

X
J1h

2
2|E2(u2 f )|2 ◦ϕ−1

2 dμ

=
∫

X
(J1 ◦ϕ2)(h2 ◦ϕ2)|E2(u2 f )|2dμ

�
∫

X
(J1 ◦ϕ2)(h2 ◦ϕ2)E2(|u2|2| f |2)dμ

= ‖M√
|u2|2(J1◦ϕ2)(h2◦ϕ2)

f‖2 = ‖M√
U1
‖2,

where U1 :=
√|u2|2(J1 ◦ϕ2)(h2 ◦ϕ2). Similarly,

‖W ∗
2 W1( f )‖2 =

∫
X

h2
2|E2(u2u1( f ◦ϕ1))◦ϕ−1

2 |2dμ

=
∫

X
(h2 ◦ϕ2)|E2(u2u1( f ◦ϕ1))|2dμ

�
∫

X
(h2 ◦ϕ2)E2(|u2|2|u1|2| f |2 ◦ϕ1)dμ

�
∫

X
h2

2E2(|u2|2)◦ϕ−1
2 E2(|u1|2| f |2 ◦ϕ1)◦ϕ−1

2 dμ
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=
∫

X
h1E1(|u1|2J2 ◦ϕ2)◦ϕ−1

1 | f |2dμ

= ‖M√
h1E1(|u1|2J2◦ϕ2)◦ϕ−1

1

f‖2 = ‖M√
U2
‖2,

where U2 :=
√

h1E1(|u1|2J2 ◦ϕ2)◦ϕ−1
1 . Since sets A and B consist of finitely many

atoms, hence the corresponding multiplication operators are compact. It follows that
W1W ∗

2 and W ∗
2 W1 are compact operators on L2(Σ) . �

PROPOSITION 2.9. Let Wi ∈ B(L2(Σ)) for i = 1,2 . Then the following asser-
tions hold.

(a) If J3 is bounded away from zero on σ(J3) , σ(E1(|u1|2J2) ◦ϕ−1
1 ) = X and

σ(E1(|u1|2)◦ϕ−1
1 ) = X , then R(W1) is closed.

(b) Let W1 and W2 have closed range. If σ(J2) = X or σ(J2)c is contained in
union of a finite number of atoms, then W3 has closed range.

Proof. (a) Let f ∈ L2(Σ) . Then

‖M√
J3 f‖2

2 =
∫

X
h1E1(|u1|2J2)◦ϕ−1

1 | f |2dμ

=
∫

X
|u1|2J2| f |2 ◦ϕ1dμ

� ‖J2‖∞

∫
X
|u1|2| f |2 ◦ϕ1dμ

= ‖W2‖2 ‖M√
J1 f‖2

2.

Recall that for u ∈ L∞(Σ) , R(Mu) is closed in L2(Σ) if and only if u is bounded away
from zero on σ(u) (see [21]). Thus there exists λ � 0 such that λ‖ f‖ � ‖M√

J1 f‖ for
each f ∈ L2(σ(J3)) . By hypotheses, we have σ(J3) = σ(h1) , σ(J1) = σ(h1) and so
σ(J1) = σ(J3) . It follows that R(W1) is closed.

(b) It is a classical fact that W3 has closed range if and only if N (W2)+R(W1)
is closed (see [18, Corollary 1]). Now, by assumptions, N (W2) = {0} or N (W2) is a
finite dimensional subspace of L2(Σ) and hence W3 has closed range. �

3. Semi-Kato type weighted composition operators

DEFINITION 3.1. We say that T ∈ B(H ) is an operator of semi-Kato type, if

the null space of T is contained in
∞∩

n=1
R(Tn) . T ∈ B(H ) is called Kato if R(T ) is

closed and N (T ) ⊆ ∞∩
n=1

R(Tn) .

Any bounded operator that is either onto or bounded below is Kato (see [17]). The
set of all semi-Kato and Kato type operators will be denoted by S K (H ) and K (H )
respectively. Obviously, K (H ) ⊆ S K (H ) . Also, if T ∈ S K (H ) and for each
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n ∈ N , Tn has closed range, then T ∈ K (H ) . Now, for W = uCϕ ∈ B(L2(Σ)) ,
Campbell and Hornor in [2] proved that

R(Wn) = c.l.s{cnχA : A ∈ (ϕ−n(Σ))σ(cn)}, (3.1)

where cn = u(n) =
n−1
Π
i=1

u◦ϕ i . This holds even in case W is a densely defined unbounded

operator [2, Lemma 6.2]. It is easy to check that ‖Wn f‖ = ‖M√
(J)n

f‖ , for all f ∈
L2(Σ) . This implies that

N (Wn) = c.l.s{χX\σ((J)n)L
2(Σ)} (3.2)

= c.l.s{ f ∈ L2(Σ) : f = 0 on σ((J)n)}
:= L2(Σ∩σ((J)n)c).

Also, we deduce that Wn has closed range if and only if (J)n is bounded away
from zero on σ((J)n) (e.g., see [10]).

THEOREM 3.2. Let W = uCϕ ∈B(L2(Σ)) , Σ∞ :=
∞∩

n=1

(
ϕ−n(Σ)

)
σ(cn)

and let ‖cn−
1‖2 → 0 as n → ∞ . Then the following assertions hold.

(a) W ∈ S K (L2(Σ)) if and only if Σ∩ (σ(J))c ⊆ Σ∞ .
(b) W ∈K (L2(Σ)) if and only if, for each n∈N , (J)n is bounded away from zero

on σ((J)n) and Σ∩ (σ(J))c ⊆ Σ∞ .

Proof. (a) Using (3.1) and (3.2) we have

R(Wn) = c.l.s{cnL
2((ϕ−n(Σ)

)
σ(cn)

)}
and N (W ) = L2

(
Σ∩ (σ(J))c

)
. It follows that W ∈ S K (L2(Σ)) whenever L2(Σ∩

(σ(J))c)⊆ ∞∩
n=1

R(Wn) = c.l.s{c∞L2
( ∞∩

n=1

(
ϕ−n(Σ)

)
σ(cn)

)
, where c∞ =

∞
Π
i=1

u◦ϕ i . But by

hypothesis c∞ = 1 (a.e.). Hence L2
(
Σ∩(σ(J))c

) ⊆ L2(Σ∞) , and so Σ∩(σ(J))c ⊆ Σ∞ .
Conversely, if Σ∩ (σ(J))c ⊆ Σ∞ then we obtain

L2(Σ∩ (σ(J))c) ⊆ L2(Σ∞) = c∞L2( ∞∩
n=1

(ϕ−n(Σ))σ(cn)
)

=
∞∩

n=1
{c.l.s{cnL

2((ϕ−n(Σ)
)

σ(cn)

)}} =
∞∩

n=1
R(Wn

)
.

(b) Let W ∈ K (L2(Σ)) . Then for each n ∈ N , R(Wn) is closed. So (J)n is bounded

away from zero on σ((J)n) . Moreover, L2(Σ∩ (σ(J))c) = N (W ) ⊆ ∞∩
n=1

R(Wn) =

L2(Σ∞) . Conversely, if for each n ∈ N , (J)n is bounded away from zero on σ((J)n)
and Σ∩ (σ(J))c ⊆ Σ∞ . Then R(Wn) = R(Wn) and N (W ) ⊆ ∞∩

n=1
R(Wn) . �

Recall that ϕ3 = ϕ1 ◦ϕ2 , u3 = u2.(u1 ◦ϕ2) and u j(n) =
n−1
Π
i=1

(u j ◦ϕ i
j) . Hence

u3(n) =
n−1
Π
i=1

(u2 ◦ϕ i
3)(u1 ◦ϕ2 ◦ϕ i

3).
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Let ϕ1 ◦ϕ2 = ϕ2 ◦ϕ1 . Then u3(n) = (
n−1
Π
i=1

u2 ◦ϕ i
1 ◦ϕ i

2)(
n−1
Π
i=1

u1 ◦ϕ i+1
2 ◦ϕ i

1) . In this case

if u2 ◦ϕ1 = u2 , then σ(u3(n)) ⊆ σ(
n−1
Π
i=1

u2 ◦ϕ i
2) = σ(u2(n)) . Moreover, if u1 ◦ϕ2 = u1 ,

then u3(n) = (u2(n)).(u1(n)) and hence σ(u3(n)) = σ(u2(n))∩σ(u1(n)) . For i ∈ {1,2,3} ,

define Σ i
∞ :=

∞∩
n=1

(ϕ−n
i (Σ))σ(ui(n)) . Then

Σ 3
∞ =

∞∩
n=1

(
ϕ−n

2 (ϕ−n
1 (Σ))

)
σ(u3(n))

⊆ ∞∩
n=1

(
ϕ−n

2 (Σ)
)

σ(u2(n))
,

also, Σ 3
∞ ⊆ Σ 1

∞ . So, if ϕ1 ◦ϕ2 = ϕ2 ◦ϕ1 , u1 ◦ϕ2 = u1 and u2 ◦ϕ1 = u2 , then Σ 3
∞ ⊆

Σ 1
∞ ∩Σ 2

∞ .

THEOREM 3.3. For i∈ {1,2} , let Wi = uiCϕi ∈B(L2(Σ)) and let ‖ui(n)−1‖2 →
0 as n → ∞ . Then the following assertions hold.

(a) If Wi ∈ S K (L2(Σ)) , σ
(
E1(u2

1J2) ◦ϕ−1
1

)
= σ

(
E1(J2)

)
and Σ 1

∞ ∪Σ 2
∞ ⊆ Σ 3

∞ ,
then W3 ∈ S K (L2(Σ)) .

(b) If W3 ∈ S K (L2(Σ)) , ϕ1 ◦ϕ2 = ϕ2 ◦ϕ1 , u2 ◦ϕ1 = u2 and u1 ◦ϕ2 = u1 , then
W1 ∈ S K (L2(Σ)) .

Proof. (a) Recall that J3 = h1E1(u2
1J2) ◦ϕ−1

1 and σ(J1) ⊆ σ(h1) . Then by hy-
pothesis and Theorem 3.2(a), we have Σ ∩ (σ(J3))c = Σ ∩ {σ(h1)∩ σ(E1(J2))}c =
Σ∩{(σ(h1))c ∪ (σ(J2))c} ⊆ Σ 1

∞ ∪Σ 2
∞ ⊆ Σ 3

∞ , and so W3 ∈ S K (L2(Σ)) .
(b) By our assumptions Σ 3

∞ ⊆ Σ 1
∞ and u3(n) = (u2(n)).(u1(n)) for all n ∈ N . It

follows that u3(∞) = limn→∞ u3(n) = (u2(∞)).(u1(∞)) = 1, and so

N (W1) ⊆ N (W3) ⊆
∞∩

n=1
R(Wn

3 )

=
∞∩

n=1
c.l.s{u3(n)L

2((ϕ−n
3 (Σ))σ(u3(n))

)}
= L2( ∞∩

n=1
(ϕ−n

3 (Σ))σ(u3(n))
)

= L2(Σ 3
∞ ) ⊆ L2(Σ 1

∞ )

=
∞∩

n=1
c.l.s{u1(n)L

2((ϕ−n
1 (Σ))σ(u1(n))

)}
=

∞∩
n=1

R(Wn
1 ).

Thus, W1 ∈ S K (L2(Σ)) . �

4. Ascent and descent of weighted composition operators

Let T be a bounded linear operator on a Banach space B . Recall that for each
non-negative integer k , N (Tk) ⊆ N (Tk+1) and R(Tk+1) ⊆ R(Tk) . The ascent
α(T ) of T is the least non-negative integer such that N (Tk) = N (Tk+1) , for all k �
α(T ) and the descent d(T ) of T is the least non-negative integer such that R(Tk) =
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R(Tk+1) , for all k � d(T ) . It is a classical fact that if α(T ) < ∞ and d(T ) < ∞ then
α(T ) = d(T ) . For more comprehensive study, we reefer the reader to [23].

Let n ∈ N , ϕ be nonsingular and let W = uCϕ ∈ B(L2(Σ)) . For this u and ϕ ,
we define the measure μn

u,ϕ by

μn
u,ϕ(A) =

{∫
ϕ−1(A) |u|2dμ n = 1;∫
ϕ−1(A) |u|2dμn−1

u,ϕ n � 2.

It is easy to check that

μ2
u,ϕ 	 μu,ϕ ◦ϕ−1 	 μ ◦ϕ−2 	 μ ◦ϕ−1 	 μ ;

μn+1
u,ϕ 	 μn

u,ϕ ◦ϕ−1 	 μn−1
u,ϕ ◦ϕ−2 	 ··· 	 μ1

u,ϕ ◦ϕ−n

	 μ ◦ϕ−(n+1) 	 μ ◦ϕ−n 	 ··· 	 μ ◦ϕ−1 	 μ .

We prove by induction that

μn
u,ϕ(A) =

∫
A
(J)ndμ , n ∈ N, A ∈ Σ.

It is clear that dμu,ϕ = Jdμ . Suppose dμk
u,ϕ = (J)kdμ holds for k = 1,2, · · · ,n− 1.

Then we have

μn
u,ϕ(A) =

∫
ϕ−1(A)

|u|2dμn−1
u,ϕ

=
∫

ϕ−1(A)
|u|2(J)n−1dμ

=
∫

ϕ−1(A)
|u|2En−1(|u(n−1)|2)◦ϕ−(n−1)dμ ◦ϕ−(n−1)

=
∫

ϕ−n(A)
|u ◦ϕ(n−1)|2En−1(|u(n−1)|2)dμ

=
∫

ϕ−n(A)
|u(n)|2dμ

=
∫

A
(h)nE

n(|u(n)|2)◦ϕ−ndμ

=
∫

A
(J)ndμ .

Hence, dμn
u,ϕ/dμ = (J)n . Now, set Q0 = J0 = 1 and Qn = hE(Qn−1|u|2) ◦ ϕ−1 .

Then Q1 = J = (J)1 , and so dμu,ϕ = Q1dμ . Suppose dμk
u,ϕ = Qkdμ holds for k =

1,2, · · · ,n−1. Then for each A ∈ Σ we have

μn
u,ϕ(A) =

∫
ϕ−1(A)

|u|2dμn−1
u,ϕ =

∫
ϕ−1(A)

|u|2Qn−1dμ

=
∫

A
hE(Qn−1|u|2)◦ϕ−1dμ =

∫
A
Qndμ .
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So, dμn
u,ϕ/dμ = Qn . Thus, we conclude that

(J)n = (h)nE
n(|u(n)|2)◦ϕ−n = hE(Qn−1|u|2)◦ϕ−1 = Qn.

The measure ν and μ are called equivalent on Σ if μ 	 ν 	 μ and denoted by μ � ν .
In [13] Kumar has characterized the weighted composition operators on L2(Σ) whose
ascent and descent is 1 . The following theorem characterizes weighted composition
operators with finite ascent.

THEOREM 4.1. W ∈ B(L2(Σ)) . Then α(W ) = n0 if and only if μu,ϕn0+1 �
μu,ϕn0 .

Proof. Recall that N (Wn) = χXn
L2(Σ) = L2(Xn) , where Xn = {x ∈ X : (J)n(x) =

0} . Now, suppose α(W ) = n0 . Thus N (Wn0) = N (Wn0+1) , by definition. Then we
have

α(W ) = n0 ⇐⇒ N (Wn0) = N (Wn0+1)

⇐⇒ L2(Xn0) = L2(Xn0+1)
⇐⇒ Xn0 = Xn0+1

⇐⇒ ((J)n0 |A= 0 ⇔ (J)n0+1 |A= 0, ∀A ∈ Σ)

⇐⇒ (μn0
u,ϕ(A) =

∫
A
(J)n0dμ = 0 ⇔ μn0+1

u,ϕ (A) =
∫

A
(J)n0+1dμ = 0, ∀A ∈ Σ)

⇐⇒ μn0+1
u,ϕ � μn0

u,ϕ .

This completes the proof. �

THEOREM 4.2. Let W ∈ B(L2(Σ)) , An := σ(u(n)) and let, for all n ∈ N , Σn =
ϕ−n(Σ) be a sub-sigma finite algebra of Σ . Then d(W ) = n0 < ∞ if and only if the
following assertions hold.

(a) Σn0+1∩An0+1 = Σn0 ∩An0 , and
(b) L2(Σn0 ∩An0) is an invariant subspace for M χAn0

u◦ϕn0

.

Proof. Let d(W ) = n0 . Since Σn0+1 ⊆ Σn0 and An0+1 ⊆ An0 , so Σn0+1∩An0+1 ⊆
Σn0 ∩An0 . Let A ∈ Σ and take u(n0) = u(u ◦ϕ)(u ◦ϕ2) · · · (u ◦ϕn0−1) . We shall show
that An0 ∩ϕ−n0(A) ∈ Σn0+1 ∩An0+1 . By hypothesis R(Wn0) = R(Wn0+1) and n0 is
finite. Hence W has closed range. Thus

R(Wn0) = {u(n0) f : f ∈ L2(Σn0 ∩An0)};
R(Wn0+1) = {u(n0+1)g : g ∈ L2(Σn0+1∩An0+1)}.

Take B = ϕ−n0(A)∩An0 and choose f = χB ∈ L2(Σn0 ∩An0) . Hence there exists g ∈
L2(Σn0+1∩An0+1) such that u(n0) f = u(n0+1)g . Since An0 = σ(u(n0)) , B = σ(u(n0)χB)=
σ(g)∩An0+1 . But σ(g)∩An0+1 ∈ (Σn0+1∩An0+1) . Consequently, Σn0 ∩An0 ⊆ Σn0+1∩
An0+1 . This proves (a).
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To prove (b), suppose f ∈ L2(Σn0 ∩An0) . Then, by hypothesis, u(n0) f = u(n0+1)g
for some g ∈ L2(Σn0+1∩An0+1) .

It follows that f χAn0
= (u ◦ϕn0)χAn0

g , and so

χAn0+1g =
f

u ◦ϕn0
χAn0+1 ∈ L2(Σn0+1∩An0+1).

This implies f
u◦ϕn0 χAn0+1 ∈ L2((Σn0 ∩An0) , by part (a).

Conversely, assume that (a) and (b) hold. From (a) we see that L2(Σn0 ∩An0) =
L2(Σn0+1 ∩An0+1) , and so An0 = An0+1 . Since R(Wn0+1) ⊆ R(Wn0) , it will thus be
sufficient to prove R(Wn0)⊆R(Wn0+1) . Let u(n0) f ∈R(Wn0) for some f ∈ L2(Σn0 ∩
An0) . Then g = ( f/(u ◦ϕn0))χAn0

∈ L2(Σn0 ∩An0) , by part (b). But, this implies that

u(n0+1)g = u(n0) f ∈ R(Wn0+1) . This the completes proof. �

Let W ∈ B(L2(Σ)) and α(W ) = d(W ) = n0 < ∞ . Then by [12, Theorem 1.12],
L2(Σ) = L2(Xn0)⊕R(Wn0) and the restriction of W to L2(Xn0) is nilpotent and W ,
when restricted to R(Wn0) , is bijection. Note that, in the proof of surjectivity of W on

R(Wn0) we need not to have α(W ) = n0 < ∞ . Moreover, since L2(Σ)
N (Wn0 ) algebraically

isomorphic with χσ((J)n0 )L
2(Σ) := L2(Xc

n0
) , so L2(Xc

n0
) isomorphic with R(Wn0) =

{u(n0).( f ◦ϕn0) : f ∈ L2((J)n0dμ)} .

PROPOSITION 4.3. Let W ∈ B(L2(Σ)) . Then d(W ) < ∞ if and only if W , when
restricted to R(Wn0) , is onto mapping of R(Wn0) to all of itself for some n0 ∈ N .

Proof. Let d(W )= n0 < ∞ and choose f ∈R(Wn0) . Since R(Wn0)= R(Wn0+1) ,
there exists g ∈ L2(Σ) such that W (Wn0(g)) = f and Wn0(g) ∈ R(Wn0) . This implies
that W : R(Wn0) → R(Wn0) is onto. Conversely, if for some non-negative integer n0 ,
W : R(Wn0) → R(Wn0) is onto, then R(Wn0+1) = W (R(Wn0)) = R(Wn0) , and thus
d(W ) � n0 < ∞ . �

In [16] Morrel and Muhly introduced the concept of a centered operator. Let H
be the infinite dimensional complex Hilbert space. An operator T on a Hilbert space
H is said to be centered if the doubly infinite sequence {TnT ∗n,T ∗mTm : n,m � 0}
consists of mutually commuting operators. Let Cϕ1 and Cϕ2 be normal operators and
let ϕ1 ◦ϕ2 = ϕ2 ◦ϕ1 . By Fuglede-Putnam theorem we have Cϕ jC

∗
ϕi

= C∗
ϕi

Cϕ j . Since
normal operators are centered, it follows that Cϕ3 =Cϕ2Cϕ1 is centered. In [7], Embry-
Wardrop and Lambert proved that the composition operator Cϕ ∈ B(L2(Σ)) is centered
if and only if h is Σ∞ -measurable, where Σ∞ = ∩∞

n=1Σn .

PROPOSITION 4.4. Let Cϕ ∈ B(L2(Σ)) and for all n ∈ N , Σn is a sub-sigma
finite algebra of Σ . If d(Cϕ) = k and h is Σk -measurable, then Cϕ is centered.

Proof. By hypothesis, L2(Σk) = L2(Σn) for all n � k . Thus Σ∞ = Σk . Now, the
desired conclusion follows from [7, Theorem 5]. �
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Let w = {mn}∞
n=1 be a sequence of positive real numbers such that for all n ∈ N ,

0 < α � mn � β . Set l2(w) = L2(N,2N,μ) , where 2N is the power set of natural
numbers and μ is a measure on 2N defined by μ({n}) = mn . For ϕ : N → N , suppose
Cϕ ∈ B(l2(w)) . In the following we give a characterization of Cϕ on l2(w) whose
ascent and descent are infinite.

PROPOSITION 4.5. Let Cϕ ∈ B(l2(w)) . Then the following assertions are hold.
(a) α(Cϕ ) = ∞ if and only if for all k ∈ N , there exists a sequence of distinct

integers {nk} such that nk ∈ R(ϕk) but nk /∈ R(ϕk+1) .
(b) d(Cϕ) = ∞ if and only if ϕ , when restricted to R(ϕk) , is not injective for all

k ∈ N .

Proof. (a) Set Xk = {n ∈ N : (h)k(n) = 0} . Because (h)k+1 = (h)k(Ek(h))◦ϕ−1 ,
Xk ⊆ Xk+1 for each k ∈ N . Since (h)k(n) = 1

mn
∑ j∈ϕ−k(n) mj , (h)k(n) = 0 if and only

if n /∈ R(ϕk) . Thus, Xk = {n ∈ N : n /∈ R(ϕk)} . Therefore,

α(Cϕ ) = ∞ ⇐⇒ L2(Xk) ⊂ L2(Xk+1), ∀k ∈ N

⇐⇒ Xk ⊂ Xk+1, ∀k ∈ N

⇐⇒∀k ∈ N ∃nk ∈ N : nk ∈ R(ϕk)\R(ϕk+1).

Note that (R(ϕk)\R(ϕk+1))∩ (R(ϕk−1)\R(ϕk)) = /0 , for all k ∈ N .
(b) Let n0 ∈ N and n ∈ R(ϕn0) . Then ϕn0(p) = n , for some p ∈ N . Then

(h)n0(n) =
1
mn

∑
j∈ϕ−n0 (n)

mj � mp

mn
.

Thus (h)n0 � α
β on σ((h)n0) = R(ϕn0) , and so Cϕn0 has closed range. First, we

show that R(Cϕn0 ) = L2(Xc
n0

) , where Xc
n0

= σ((h)n0) . For this, let f ∈ L2(Σ) . Then
‖Cϕn0 ( f )‖2 = ‖χXc

n0
f‖(h)n0dμ . This implies that the mapping Λ(χXc

n0
f ) = f ◦ϕn0 from

L2(Xc
n0

) onto R(Cϕn0 ) = { f ◦ ϕn0 : f ∈ L2((h)n0dμ)} is an isometry isomorphism.
Now, by Proposition 4.3, d(Cϕ) = n0 < ∞ if and only if Cϕ : L2(Xc

n0
)→ L2(Xc

n0
) is onto.

But, it is a classical fact that Cϕ ∈ B(L2(Xc
n0

)) is surjective if and only if ϕn0 : Xc
n0
→

Xc
n0

is injective (see [22]). But, Xc
n0

= {k ∈ N : (h)n0(k) > 0} = {k ∈ N : k ∈ R(ϕn0)} .
This completes the proof. �
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