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BOUNDS FOR INDICES OF COINCIDENCE AND ENTROPIES
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(Communicated by J. Jakšetić)

Abstract. In this paper we consider a parameterized family of discrete probability distributions
and investigate the Rényi,Tsallis, and Shannon entropies associated with them. Lower and upper
bounds for these entropies are obtained, improving some results from the literature. The proofs
are based on several methods from classical analysis, theory of dual cones, and the stochastic
majorization theory. The Rényi and Tsallis entropies are naturally expressed in terms of the
index of coincidence. Consequently we study in detail the index of coincidence associated to
the corresponding discrete probability distributions. The obtained results lead immediately to
properties of the entropies.

1. Introduction

Generalized entropies have been objects of study for many researchers. Rényi en-
tropies and Tsallis entropies are well known as one-parameter generalizations of Shan-
non entropy. Many applications of them can be found in information theory (secure
data transmission, speech coding, cryptography, algorithmic complexity theory) and in
physics. This paper is concerned with Rényi, Tsallis, and Shannon entropies associated
with a parameterized family of discrete probability distributions. We obtain lower and
upper bounds for these entropies, improving some results from the literature. These
bounds are obtained using several techniques from classical analysis, theory of dual
cones, and the stochastic majorization theory.

The Rényi and Tsallis entropies are naturally expressed in terms of the index of
coincidence. Therefore we study in detail the index of coincidence associated to the
corresponding discrete probability distributions. It is easy to translate the obtained
results in order to get properties of the entropies.

The discrete probability distributions involved in our studies are related to the
family of the positive linear operators (depending on a real parameter c) introduced by
Baskakov in 1957. Let us describe them explicitly.
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Let I be a real interval and pk,k = 0,1, . . . , non-negative continuous functions

defined on I , such that
∞

∑
k=0

pk(x) = 1, x ∈ I . Using the parameterized probability dis-

tribution p(x) = (pk(x))k�0 one constructs a positive linear operator as follows:

L f (x) =
∞

∑
k=0

f (xk)pk(x), x ∈ I, (1)

where xk ∈ I, k � 0, and f is a function defined on I . For example, Bernstein operators,
Szász-Mirakjan operators, Baskakov operators are associated with the binomial distri-
bution, the Poisson distribution and the negative binomial distribution, respectively.

The index of coincidence associated with the probability distribution p(x) is

S(x) =
∞

∑
k=0

p2
k(x), x ∈ I.

The Rényi entropy and the Tsallis entropy of order 2 corresponding to p(x) can
be expressed in terms of S(x) as follows:

R(x) = − logS(x); T (x) = 1−S(x), x ∈ I. (2)

Moreover, the classical Shannon entropy is

H(x) = −
∞

∑
k=0

pk(x) log pk(x), x ∈ I.

It is not difficult to prove that

T (x) � R(x) � H(x), x ∈ I. (3)

Let c,n∈ R , n > c for c � 0 and − n
c ∈ N for c < 0. Denote Ic = [0,∞) for c � 0

and Ic =
[
0,− 1

c

]
for c < 0. Consider the basis functions (see [2] and the references

therein):

p[c]
n,k(x) =

⎧⎪⎪⎨
⎪⎪⎩

nk

k!
xke−nx, c = 0,

nc,k

k!
xk(1+ cx)−( n

c +k), c �= 0,

where k ∈ N0 , x ∈ Ic and nc,k = Πk−1
l=0 (n+ cl) , nc,0 = 1.

In the following we shall be concerned especially with the distribution of probabil-

ity (p[c]
n,k(x))k=0,1,... . Remark that for c = −1,0,1 we obtain the binomial, Poisson, and

negative binomial distributions, respectively. The corresponding indices of coincidence
and entropies will be denoted by Sn,c(x) , Rn,c(x) , Tn,c(x) , Hn,c(x) .

In this paper we present several new lower and upper bounds for these functions.
Let us start by recalling some existing results in this direction. Some of them are im-
proved by our new results; see Remarks 1 and 5. Another possible improvement is the
object of a problem formulated in Remark 3.
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Obviously, each inequality for S(x) will produce inequalities for the entropies
R(x) , T (x) and H(x) . For the sake of brevity we omit the details.

The inequality

Sn,c(x) � (4(n+ c)x(1+ cx)+1)−
n

2(n+c) (4)

was obtained in [3]. Combined with (2) and (3), it yields

n
2(n+ c)

log(4(n+ c)x(1+ cx)+1)� Rn,c(x) � Hn,c(x). (5)

Using (5) with c = 0, and the upper bound for Hn,0(x) (see [1, (1)] ) we have

1
2

log(4nx+1) � Hn,0(x) � 1
2

log
(
2πenx+

πe
6

)
,x � 0. (6)

From [3, (3.12)] we derive

logSn,0(x) � 1
2

log
2

1+
√

1+16n2x2
+

√
1+16n2x2−1−4nx

2
. (7)

Using (2), (3) and (6) it follows that

1
2

log(4nx+1) � 1
2

log
1+

√
1+16n2x2

2
+

1+4nx−√
1+16n2x2

2

� Hn,0(x) � 1
2

log
(
2πenx+

πe
6

)
. (8)

It is easy to see that Sn,−1

(
1
2

)
=

1
4n

(
2n
n

)
. From this, (2) and (3), we get

Hn,−1

(
1
2

)
� Rn,−1

(
1
2

)
= − logSn,−1

(
1
2

)
= − log

1
4n

(
2n
n

)
.

Since (see [7, p. 519])

1√
π(n+3)

<
1
4n

(
2n
n

)
<

1√
π(n−1)

, (9)

we get

Hn,−1

(
1
2

)
>

1
2

logπ(n−1). (10)

REMARK 1. (10) improves an existing lower bound for Hn,−1

(
1
2

)
. Indeed, from

[11, p. 69] (see also [6, Lemma 2.2, p. 686]) it is known that

1
2

logπ
n
2

� Hn,−1

(
1
2

)
� 1

2
logπe

n
2
. (11)

Since π
n
2

< π(n−1), ∀n > 2, it follows that the lower bound of Hn,−1

(
1
2

)
from (10)

is better than the lower bound from (11).
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REMARK 2. From (6) it follows

1
2 log(4nx+1)

logn
� Hn,0(x)

logn
�

1
2 log

(
2πenx+ πe

6

)
logn

.

Therefore, lim
n→∞

Hn,0(x)
logn

=
1
2

and Hn,0(x) ∼ 1
2

logn (see also [11, p. 69]).

2. Bounds for entropies using Cauchy-Schwarz inequality

Consider the positive linear operator L from (1) and let f be positive. Using
Cauchy-Schwarz inequality we get

(L f (x))2 �
∞

∑
k=0

f 2(xk)
∞

∑
k=0

p2
k(x),

and consequently
∞

∑
k=0

p2
k(x) � (L f (x))2

∞

∑
k=0

f 2(xk)
. (12)

We shall be concerned with the Baskakov operator

B[c]
n f (x) =

∞

∑
k=0

p[c]
n,k(x) f

(
k
n

)
.

Case 1. c = 0.
Let f (x) = eλ x, x � 0, for a given λ < 0. Then

B[c]
n f (x) = e

nx

(
e

λ
n −1

)
and

∞

∑
k=0

f 2(xk) =
1

1− e
2λ
n

.

From (12) it follows that

Sn,0(x) � e
2nx

(
e

λ
n −1

)(
1− e

2λ
n

)
.

Since max
λ<0

e
2nx

(
e

λ
n −1

)(
1− e

2λ
n

)
=

2e
√

1+4n2x2−2nx−1
√

1+4n2x2 +1
, we get

2e
√

1+4n2x2−2nx−1
√

1+4n2x2 +1
� Sn,0(x).

Taking into account [3, (3.12)] and [3, (1.3)], we arrive at
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THEOREM 1. For n � 1 and x � 0 , the following inequalities are satisfied:

2e
√

1+4n2x2−2nx−1
√

1+4n2x2 +1
� Sn,0(x) �

(
2e
√

1+16n2x2−4nx−1
√

1+16n2x2 +1

) 1
2

� (4nx+1)−
1
2 .

Case 2. c > 0.
With the same function and the same method as in the case c = 0, we obtain for c = 1

Sn,1(x) � 2
r+ x+1

(
(2n−1)(x+1)+ r

2n(1+2x)

)2n−1

,

where r =
√

(x+1)2 +4n(n−1)x2 .
The inequality is sharp for x = 0 and for x → ∞ .
A similar lower bound for Sn,c(x) can be obtained for arbitrary c > 0.

Case 3. c < 0.
We treat only the case c =−1, when B[c]

n becomes the classical Bernstein operator Bn ;
the general case can be treated similarly.

Using (12) with f (x) = eλ x , x ∈ [0,1] , λ ∈ R , we get

Bn f (x) =
(
1− x+ xe

λ
n

)n
,

n

∑
k=0

f 2
(

k
n

)
=

1− e
2λ
n (n+1)

1− e
2λ
n

.

Therefore,

Sn,−1(x) �
(
1− x+ xe

λ
n

)2n 1− e
2λ
n

1− e
2λ
n (n+1)

.

Denote t := e
λ
n ∈ (0,∞) . Then

Sn,−1(x) � sup
t>0

(1− x+ xt)2n 1− t2

1− t2(n+1)

�
(
1− x+ xe

λ
n

)2n 1− e
2λ
n

1− e
2λ
n (n+1)

∣∣∣∣∣
t= x

1−x

.

Finally,

Sn,−1 � (1−2x)
(1−2x(1− x))2n

(1− x)2n+2− x2n+2 . (13)

REMARK 3. Another lower bound for Sn,−1(x) will be provided in Theorem 2.
Graphical experiments seem to indicate that the lower bound in Theorem 2 is better
than that given in (13). It would be useful to have a formal proof of this fact.
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3. Bounds for entropies using integral representation

Using the integral representation of Sn,c (see [5, Theorem 1], [16, Theorem 3]) we
get

Sn,c(x) =
1
π

∫ 1

0

[
t +(1− t)(1+2cx)2]− n

c dt√
t(1− t)

� 2
π

∫ 1

0

[
t +(1− t)(1+2cx)2]− n

c dt

=
1
2π

1− [(1+2cx)2
]1− n

c

x(cx+1)(n− c)
, for c �= 0,

Sn,0(x) =
1
π

∫ 1

−1
e−2nx(1+t) dt√

1− t2
� 1− e−4xn

2πxn
.

For c = −1 it follows

Sn,−1(x) � 1− (1−2x)2n+2

2π(n+1)x(1− x)
. (14)

In the next sections the lower bound of Sn,−1 given in (14) will be improved as follows:

Sn,−1(x) � 1− (1−2x)2n+2

4(n+1)x(1− x)
:= A(x;n). (15)

REMARK 4. In [3] the following lower and upper bounds for Sn,−1(x) were ob-
tained:

B(x;n) := [1+(n−3)x(1− x)]−
2n

n−3 � Sn,−1(x) � 1√
1+4(n−1)x(1− x)

. (16)

Figure 1: Lower bound for Sn,−1 ; n = 20 Figure 2: Lower bound for Sn,−1 ; n = 200

The lower bound B(x;n) is improved for certain intervals by (15). In Figures 1-
2 we illustrated the graphs of the lower bounds A(x;n) and B(x;n) for n = 20 and
n = 200, respectively.
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In the next two sections we present two proofs of (15) using theory of dual cones
and the stochastic majorization technique, respectively.

4. Bounds for entropies using theory of dual cones

The purpose of this section is to prove the inequality (15). In order to present this
result we recall the following lemma (see [10, Lemma 7.2, Chapter XI]):

LEMMA 1. [10] Let {a0,a1, . . . ,an} be a finite sequence. If

n

∑
k=0

ak = 0 and
n

∑
k=0

kak = 0

hold, and the signatures of a0, . . . ,an are +,−,+ in the sense that

ak � 0 for 0 � k � k1,

ak � 0 for k1 +1 � k � k2,

ak � 0 for k2 +1 � k � n,

for some k1 , k2 , with strict inequality holding at least once in each of the three indi-

cated regions, then
n

∑
k=0

akϕ(k) � 0 for all convex sequences ϕ(k) , k = 0,1, . . . ,n.

Let an, j := 4−n
(2 j

j

)(2n−2 j
n− j

)
, j = 0,1, . . . ,n . Remark that

an,n− j = an, j, j = 0,1, . . . ,n. (17)

Then (see [9, (3.90)],

n

∑
j=0

an, j = 1,
n

∑
j=0

(
an, j − 1

n+1

)
= 0, (18)

n

∑
j=0

jan, j = 4−n
n

∑
j=0

j

(
2 j
j

)(
2n−2 j
n− j

)
(19)

= 4−n
n

∑
j=0

(n− j)
(

2n−2 j
n− j

)(
2 j
j

)
= n−

n

∑
j=0

jan, j.

Therefore,
n

∑
j=0

jan, j =
n
2

, and now

n

∑
j=0

j

(
an, j − 1

n+1

)
= 0. (20)

But
an, j+1

an, j
=

2 j +1
j +1

· n− j
2n−2 j−1

, and consequently

an, j+1 � an, j iff 0 � j � n+1
2

. (21)
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So the sequence

(
an, j − 1

n+1

)
j=0,1,...,n

is decreasing for j ∈
{

0,1, . . . ,
n+1

2

}
and

increasing for j ∈
{

n+1
2

, . . . ,n

}
. Since

n

∑
j=0

(
an, j − 1

n+1

)
= 0, there exist k1,k2

such that

an,k − 1
n+1

� 0 for 0 � k � k1,

an,k − 1
n+1

� 0 for k1 +1 � k � k2,

an,k − 1
n+1

� 0 for k2 +1 � k � n,

with strict inequality holding at least once in each of the three indicated regions. To-
gether with (18) and (20), this shows that the assumptions of [10, Lemma 7.2, Chapter
XI] are satisfied. Consequently,

n

∑
j=0

(
an, j − 1

n+1

)
ϕ( j) � 0, (22)

for every convex sequence ϕ( j) , j = 0,1, . . . ,n .
Let x ∈ [0,1] be given. Then the sequence ϕ( j) = (1− 2x)2 j , j = 0,1, . . . ,n , is

convex, and so (22) shows that
n

∑
j=0

(
an, j − 1

n+1

)
(1−2x)2 j � 0.

According to [4, (25)], [8],
n

∑
j=0

an, j(1−2x)2 j = Sn,−1(x). (23)

So we have proved

THEOREM 2. For n � 1 and x ∈ [0,1] one has

Sn,−1(x) � 1
n+1

n

∑
j=0

(1−2x)2 j =
1

n+1
1− (1−2x)2n+2

4x(1− x)
.

5. Bounds for entropies using stochastic majorization technique

In this section we present the proof of the inequality (15) using the stochastic
majorization technique. To this aim we recall Ohlin’s lemma (see [12], [14], [15]):

LEMMA 2. [12] Let X , Y be two random variables such that EX = EY . If the
distribution functions FX , FY cross exactly one time, i.e., for some x0 holds

FX(x) � FY (x) if x < x0 and FX(x) � FY (x) if x > x0,

then E f (X) � E f (Y ) , for all convex functions f : R → R .
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For a given integer n � 1 let X and Y be random variables such that

P(X = j) =
1

n+1
, P(Y = j) = an, j, j = 0,1, . . . ,n.

Then, according to (20),
EX = EY. (24)

Moreover, (17) and (21) show that the decreasing rearrangement of (an,0,an,1, . . . ,an,n)
is

y := (an,0,an,0,an,1,an,1, . . .).

(For the terminology see [13]).

Let P be the bistochastic matrix P := (pi j)i, j=0,1,...,n , pi, j =
1

n+1
. According to

[13, Th. A.4, p. 31], yP ≺ y , where ≺ is the majorization ordering. Since

yP =
(

1
n+1

, . . . ,
1

n+1

)
∈ R

n+1,

we have (
1

n+1
,

1
n+1

, . . . ,
1

n+1

)
≺ (an,0,an,0,an,1,an,1, . . .). (25)

In the sequel we investigate the case n = 2m+1; the proofs are similar when n = 2m .
From (25) we deduce

1
2m+2

� a2m+1,0, (26)

2
2m+2

� a2m+1,0 +a2m+1,1, (27)

· · ·
m+1
2m+2

� a2m+1,0 + · · ·+a2m+1,m. (28)

In fact, the precise form of (28) is

m+1
2m+2

= a2m+1,0 +a2m+1,1 + . . .+a2m+1,m. (29)

Using increasing rearrangements we get similarly(
1

2m+2
, . . . ,

1
2m+2

)

 (a2m+1,m,a2m+1,m, . . . ,a2m+1,0,a2m+1,0) . (30)

The relation (30) yields successively

1
2m+2

� a2m+1,m;
2

2m+2
� a2m+1,m +a2m+1,m−1

m+1
2m+2

� a2m+1,m + . . .+a2m+1,0.
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Using (17) we get

1
2m+2

� a2m+1,m+1, (31)

2
2m+2

� a2m+1,m+1 +a2m+1,m+2, (32)

· · ·
m+1
2m+2

� a2m+1,m+1 + · · ·+a2m+1,2m+1. (33)

Adding (29) to (31)–(33) one obtains

k
2m+2

�
k−1

∑
i=0

a2m+1,i, k = m+2, . . . ,2m+2. (34)

Let FX(x) be the distribution function of X . The relations (26)–(28) and (34) show that

FX(x) � FY (x), x � n
2
; FX(x) � FY (x), x >

n
2
. (35)

As mentioned above, the inequalities (35) can be proved similarly when n = 2m .
Now (24) and (35) show that Ohlin’s lemma can be applied, and we obtain

Eϕ(X) � Eϕ(Y ), ϕ : R → R convex.

Explicitly this means that

1
n+1

n

∑
j=0

ϕ( j) �
n

∑
j=0

an, jϕ( j), ϕ convex.

For a given x ∈ [0,1] , let ϕ(t) := (1−2x)2t . Then

1
n+1

n

∑
j=0

(1−2x)2 j �
n

∑
j=0

an, j(1−2x)2 j.

Now (23) shows that

1
n+1

n

∑
j=0

(1−2x)2 j � Sn,−1(x), x ∈ [0,1],

and the proof of (15) is finished.

6. The Shannon entropy

In this section we are concerned with the Shannon entropy corresponding to p[c]
n,k .

Case 1. For c � 0 the Shannon entropy can be expressed as follows:

Hn,c(x) := −
∞

∑
k=0

p[c]
n,k(x) log p[c]

n,k(x), x � 0, Hn,c(0) = 0.
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THEOREM 3. The following inequalities hold for all c � 0 , x � 0 :

n
2(n+ c)

log [4(n+ c)x(1+ cx)+1]� Hn,c(x) � (nx+1) log(nx+1)−nx log(nx).

Proof. Since
∞

∑
k=0

p[c]
n,k(x) = 1, we have

H ′
n,c(x) = −

∞

∑
k=0

(
p[c]

n,k

)′
(x) log p[c]

n,k(x).

On the other hand (see [2, (5)]),

(
p[c]

n,k

)′
(x) = n

(
p[c]

n+c,k−1(x)− p[c]
n+c,k(x)

)
, p[c]

n+c,k−1(x) ≡ 0 for k = 0,

and so

H ′
n,c(x) = n

[
∞

∑
k=0

p[c]
n+c,k(x) log p[c]

n,k(x)−
∞

∑
k=1

p[c]
n+c,k−1(x) log p[c]

n,k(x)

]
(36)

= n
∞

∑
k=0

p[c]
n+c,k(x) log

p[c]
n,k(x)

p[c]
n,k+1(x)

. (37)

Finally,

H ′
n,c(x) = n

(
log

1+ cx
x

+
∞

∑
k=0

p[c]
n+c,k(x) log

k+1
n+ ck

)
.

By Jensen’s inequality for the concave function log we have

∞

∑
k=0

p[c]
n+c,k(x) log

k+1
n+ ck

� log
∞

∑
k=0

p[c]
n+c,k(x)

k+1
n+ ck

= log
1+nx

n(1+ cx)
.

In [17] it was proved that H ′
n,c(x) � 0. Then

0 � H ′
n,c(x) � n log

x+ 1
n

1+ cx
−n log

x
1+ cx

,

and

0 �
∫ t

0
H ′

n,c(x)dx � (nt +1) log(nt +1)−nt log(nt).

Therefore,
0 � Hn,c(t) � (nt +1) log(nt +1)−nt log(nt). (38)

Now (5) and (38) complete the proof. �
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REMARK 5. According to [1, (1)], the best known upper bound on Hn,0 is perhaps
that one presented in (6). Theorem 3 gives a partial improvement of this bound. Indeed,

let K1(x;n) =
1
2

log
(
2πenx+

πe
6

)
and K2(x;n) = (nx + 1) log(nx + 1)− nx log(nx)

be the upper bounds of Shannon entropy Hn,0 given in (6) and (38). In Figure 3 we
compare these two upper bounds of Shannon entropy. Note that on the first interval the
upper bound of Hn,0 obtained in this section improves the result presented in [1, (1)].

Figure 3: Upper bound of entropies Hn,0

Case 2. For c = −1 the Shannon entropy can be expressed as follows:

Hn,−1(x) := −
n

∑
k=0

bn,k(x) logbn,k(x)

= −n(x logx+(1− x) log(1− x))−
n

∑
k=0

bn,k(x) log

(
n
k

)
.

THEOREM 4. The Shannon entropy Hn,−1(x) admits the following bounds

n
2(n−1)

log(4(n−1)x(1− x)+1)� Hn,−1(x)

�
{

(nt +1) log(nt +1)−nt log(nt), 0 < t � 1
2

(n(1− t)+1) log(n(1− t)+1)−n(1− t) logn(1− t), 1
2 � t < 1.

Proof. Since H ′
n,−1(x) = −n log

x
1− x

+n
n−1

∑
k=0

bn−1,k(x) log
k+1
n− k

and

n−1

∑
k=0

bn−1,k(x) log
k+1
n− k

< log

(
x

1− x
+

1− (n+1)xn

n(1− x)

)

< log

(
x

1− x
+

1
n(1− x)

)
= log

nx+1
n(1− x)
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we get

H ′
n,−1(x) < n

(
log

nx+1
n(1− x)

− log
x

1− x

)
= n(log(nx+1)− logn− logx) ,

and ∫ t

0
H ′

n,−1(x)dx � (nt +1) log(nt +1)−nt log(nt), 0 < t <
1
2
.

But Hn,−1(t) = Hn,−1(1− t) . Combined with (5), this concludes the proof. �

7. The integral of Sn,c

Case 1. For c = 0 we have the following representation of Sn,0 (see [16, Theorem 3]):

Sn,0(x) = e−2nx
∞

∑
k=0

(nx)2k

(k!)2 , x ∈ [0,∞).

Since
∫ ∞

0
e−2nxx2kdx =

(2k)!
(2n)2k+1 , we get

∫ ∞

0
Sn,0(x)dx =

∞

∑
k=0

n2k

(k!)2

(2k)!
22k+1n2k+1 =

1
2n

∞

∑
k=0

(
2k
k

)
1
4k .

Using (9) and the fact that
∞

∑
k=0

1√
π(k+3)

is divergent, it follows that
∫ ∞

0
Sn,0(x)dx is

divergent.
Case 2. For c > 0, Sn,c can be represented as (see [16, Theorem 3]):

Sn,c(x) = (1+ cx)−
2n
c

∞

∑
k=0

(
n(n+ c) · · ·(n+(k−1)c)

k!

)2( x
1+ cx

)2k

, x ∈ [0,∞).

Therefore,

∫ ∞

0
Sn,c(x)dx =

∞

∑
k=0

(
n(n+ c) · · ·(n+(k−1)c)

k!

)2 ∫ ∞

0
(1+ cx)−

2n
c −2kx2kdx

=
∞

∑
k=0

(
2k
k

)
1
4k En(k,c),

where

En(k,c) =
(2n)2c,k

(2n− c)2c,k+1

It is elementary to prove that

(En(k,c))2 >
1

2n− c
· 1
2n+(2k−1)c

.
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Consequently,

∫ ∞

0
Sn,c(x)dx >

∞

∑
k=0

1

2
√

k+1
· 1√

2n− c
· 1√

2n+(2k−1)c

and
∫ ∞

0
Sn,c(x)dx is a divergent integral.

Case 3. For c < 0 we have the following representation of Sn,c (see [16, Theorem 3]):

Sn,c(x) = (1+ cx)−
2n
c

− n
c

∑
k=0

(
n(n+ c) · · ·(n+(k−1)c)

k!

)2( x
1+ cx

)2k

, x ∈
[
0,−1

c

]
,

n = −cl, l ∈ N\ {0}.
It is not difficult to prove that

∫ − 1
c

0
Sn,c(x)dx =

l
n
· 1
2l +1

· 1(2l
l

) l

∑
k=0

(
2k
k

)(
2l−2k
l− k

)
.

From [9, (3.90)] (see also (18)) we have
l

∑
k=0

(
2k
k

)(
2l−2k
l− k

)
= 4l . Using relation (9)

we get

∫ − 1
c

0
Sn,c(x)dx >

l
n
· 1√

2l +1
.

Also, using relation (9) we get

∫ − 1
c

0
Sn,c(x)dx <

l
n
· 1
2l +1

·2
√

l.

Choosing l = −n
c

we get the following bounds for the integral of Sn,c :

1√
c2−2nc

<

∫ − 1
c

0
Sn,c(x)dx <

2
2n− c

√
−n

c
.
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