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(Communicated by J. Jakšetić)

Abstract. In Musilak-Orlicz type spaces SM , direct and inverse approximation theorems are
obtained in terms of the best approximations of functions and generalized moduli of smoothness.
The question of the exact constants in Jackson-type inequalities is studied.

1. Introduction

In Musilak-Orlicz type spaces SM , we prove direct and inverse approximation
theorems in terms of the best approximations of functions and generalized moduli of
smoothness. Such theorems establish a connection between the smoothness proper-
ties of functions and the behavior of the error of their approximation by various meth-
ods. In particular, direct theorems show that good smoothness properties of a function
(the existence of derivatives of a given order, the specific behavior of the modulus of
smoothness, etc.) imply a good estimate of the error of its approximation. In the case
of best approximation by polynomials, these results are also known as Jackson-type
theorems or Jackson-type inequalities [18]. Inverse theorems characterize smoothness
properties of functions depending on the rapidity with which the errors of best, or any
other, approximations tend to zero. The problem of obtaining inverse theorems in the
approximation of functions was first stated, and in some cases solved, by Bernstein [7].
In ideal cases, the direct and inverse theorems complement each other, and this allows
us to fully characterize a functional class having certain smoothness properties, using,
for example, sequences of best approximations. The results concerning direct and in-
verse connection between the smoothness properties of functions and the errors of their
approximations in classical functional spaces (such as Lebesgue and Hilbert spaces, the
spaces of continues functions, etc) are described quite fully in the monographs [31],
[10], [14], [15], [32] and others.
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In 2001, Stepanets [27] considered the spaces S p = S p(T) , 1 � p < ∞ , of 2π -
periodic Lebesgue summable functions f ( f ∈ L ) with the finite norm

‖ f‖p := ‖ f‖
S p = ‖{ f̂ (k)}k∈Z‖lp(Z) =

(
∑
k∈Z

| f̂ (k)|p
)1/p

, (1)

where f̂ (k) := [ f ]̂(k) = (2π)−1 ∫ 2π
0 f (x)e−ikxdx , k ∈ Z , are the Fourier coefficients

of the function f , and investigated some approximation characteristics of these spaces.
Stepanets and Serdyuk [29] introduced the notion of k th modulus of smoothness in S p

and proved direct and inverse theorems on approximation in terms of these moduli of
smoothness and the best approximations of functions. Also this topic was investigated
actively in [30], [33], [34], [28, Ch. 11], [32, Ch. 3], etc.

In [11] and [1], some results for the spaces S p were extended to the Orlicz type
spaces SM and Sp,μ . In particular, in [11] and [1], direct and inverse approxima-
tion theorems were proved in terms of best approximations of functions and moduli of
smoothness of fractional order and a connection was established between K -functional
and such moduli of smoothness. In other Banach spaces, in particular, in Banach spaces
of Orlicz type, topics related to direct and inverse approximation theorems, were inves-
tigated in , [16], [4], [19], [20], [26], [3] and others.

Here we continue such studies and consider the Musilak-Orlicz type spaces SM ,
which are natural generalizations of the spaces SM and Sp,μ . In these spaces, we give
direct and inverse approximation theorems in terms of best approximations of functions
and generalized moduli of smoothness. Particular attention is paid to the study of the
accuracy of constants in Jackson-type inequalities.

2. Preliminaries

Let M = {Mk(u)}k∈Z , u � 0, be a sequence of Orlicz functions. In other words,
for every k ∈ Z , the function Mk(u) is a nondecreasing convex function for which
Mk(0) = 0 and Mk(u) → ∞ as u → ∞ . The modular space (or Musilak-Orlicz space)
SM is the space of all functions f ∈ L such that the following quantity (which is also
called the Luxemburg norm of f ) is finite:

‖ f‖M := ‖{ f̂ (k)}k∈Z‖lM(Z) = inf

{
a > 0 : ∑

k∈Z

Mk(| f̂ (k)|/a) � 1

}
. (2)

By definition, we say that the functions f ∈ L and g ∈ L are assumed to be equivalent
in the space SM , when ‖ f −g‖M =0.

The spaces SM defined in this way are Banach spaces. Sequence spaces of this
type have been studied by mathematicians since the 1940s (see, for example, the mono-
graphs [23], [24]). If all functions Mk are identical (namely, Mk(u)≡M(u) , k∈Z), the
spaces SM coincide with the ordinary Orlicz type spaces SM [11]. If Mk(u) = μkupk ,
pk � 1, μk � 0, then SM coincide with the weighted spaces Sp,μ with variable expo-
nents [1]. If all Mk(u) = up , p � 1, then the spaces SM are the above-defined spaces
S p .

In addition to the Luxembourg norm (2), in the space SM , consider the Orlicz
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norm that is defined as follows. Let M̃ = {M̃k(v)}k∈Z be the sequence of functions
defined by the relations

M̃k(v) := sup{uv−Mk(u) : u � 0}, k ∈ Z.

Consider the set Λ=Λ(M̃) of sequences of positive numbers λ = {λk}k∈Z such that
∑k∈Z M̃k(λk)�1. For any function f ∈ SM , define its Orlicz norm by the equality

‖ f‖∗
M

:= sup
{

∑
k∈Z

λk| f̂ (k)| : λ ∈ Λ
}
. (3)

The following auxiliary Lemma 1 establishes the equivalence of the Luxembourg
norm (2) and the Orlicz norm (3).

LEMMA 1. For any function f ∈ SM , the following relation holds:

‖ f‖M � ‖ f‖∗
M

� 2‖ f‖M . (4)

Relation (4) follows from the similarly relation for corresponding norms in the
modular Orlicz sequence spaces (see, for example [23, Ch. 4]).

Further, denote by ‖ · ‖ one of the norms ‖ · ‖M or ‖ · ‖∗
M

.

Let Tn , n = 0,1, . . . , be the set of trigonometric polynomials tn(x) = ∑|k|�n ckeikx

of the order n , where ck are arbitrary complex numbers. For any f ∈ SM , denote
by En( f )M and En( f )∗

M
the best approximations of f by trigonometric polynomials

tn−1 ∈ Tn−1 in the space SM with respect to the norms ‖ ·‖M and ‖ ·‖∗
M

respectively,
i.e.,

En( f )M := inf
tn−1∈Tn−1

‖ f − tn−1‖M and En( f )∗
M

:= inf
tn−1∈Tn−1

‖ f − tn−1‖∗M . (5)

The following auxiliary Lemma 2 characterizes the polynomial of the best approx-
imation in SM .

LEMMA 2. Assume that f ∈ SM . Then

En( f ) := inf
tn−1∈Tn−1

‖ f − tn−1‖ = ‖ f −Sn−1( f )‖, (6)

where Sn−1( f ) = Sn−1( f , ·) = ∑|k|�n−1 f̂ (k)eik· is the Fourier sum of the function f .

Proof. Indeed, for any polynomial tn−1 = ∑|k|�n−1 ckeik· ∈ Tn−1 , the quantities

|( f − tn−1)̂(k)| = | f̂ (k)− ck| when |k| � n− 1 and |( f − tn−1)̂(k)| = | f̂ (k)| when
|k| � n . Therefore, in view of (2) and (3), the infimum in (6) is reached in the case
when all ck = f̂ (k) , i.e., when tn−1 = Sn−1( f ) . �

Consider the set Φ of all continuous bounded nonnegative pair functions ϕ such
that ϕ(0) = 0 and ϕ(·) �≡ 0. For a fixed function ϕ ∈ Φ , h ∈ R and for any f ∈ SM ,
we denote by {[Δϕ

h f ]̂(k)}k∈Z the sequence of numbers such that for any k ∈ Z ,

[Δϕ
h f ]̂(k) = ϕ(kh) f̂ (k). (7)
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If there exists a function Δϕ
h f ∈ L whose Fourier coefficients coincide with the numbers

[Δϕ
h f ]̂(k) , k ∈ Z , then, as above, the expressions ‖Δϕ

h f‖M and ‖Δϕ
h f‖∗

M
denote Lux-

emburg and Orlicz norms of the function Δϕ
h f . If such a function does not exist, then we

also keep the notation ‖Δϕ
h f‖M and ‖Δϕ

h f‖∗
M

. But in this case, by these notations we

mean the corresponding norm ‖ · ‖
lM(Z)

or ‖ · ‖
l∗M(Z)

of the sequence {[Δϕ
h f ]̂(k)}k∈Z .

Also we denote by ‖Δϕ
h f‖ any of the expressions ‖Δϕ

h f‖M and ‖Δϕ
h f‖∗

M
Similarly to [25], [8], [9], [22], define the generalized modulus of smoothness ωϕ

of a function f ∈ SM by the equality:

ωϕ( f ,δ ) = sup
|h|�δ

‖Δϕ
h f‖. (8)

In particular, we set

ωϕ( f ,δ )M := sup
|h|�δ

‖Δϕ
h f‖M and ωϕ ( f ,δ )∗

M
:= sup

|h|�δ
‖Δϕ

h f‖∗
M

.

Let also ωα( f ,δ ) be the modulus of smoothness of a function f ∈SM of order α > 0,
i.e.,

ωα( f ,δ ) := sup
|h|�δ

‖Δα
h f‖ = sup

|h|�δ

∥∥∥ ∞

∑
j=0

(−1) j
(

α
j

)
f (·− jh)

∥∥∥, (9)

where
(α

j

)
= α(α−1)·...·(α− j+1)

j! for j ∈ N and
(α

j

)
= 1 for j = 0. Since for any k ∈ Z ,

we have

|[Δα
h f ]̂(k)| = |1− e−ikh|α | f̂ (k)| = 2α

∣∣∣sin kh
2

∣∣∣α | f̂ (k)|, (10)

then ωα( f ,δ ) = ωϕ( f ,δ ) when ϕ(t) = 2α |sin(t/2)|α .

3. Direct approximation theorems

In this section, we prove direct approximation theorems in the space SM in terms
of the best approximations and generalized moduli of smoothness, and also establish
Jackson type inequalities with the constants that are the best possible in some important
cases.

Let V (τ) , τ > 0, be a set of bounded nondecreasing functions v that differ from
a constant on [0,τ] .

THEOREM 1. Assume that f ∈ SM . Then for any τ > 0 , n ∈ N and ϕ ∈ Φ the
following inequality holds:

En( f )∗
M

� Cn,ϕ(τ)ωϕ

(
f ,

τ
n

)∗

M
, (11)

where

Cn,ϕ(τ) := inf
v∈V (τ)

v(τ)− v(0)
In,ϕ(τ,v)

, (12)
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and

In,ϕ(τ,v) := inf
k∈N:k�n

τ∫
0

ϕ
(ku

n

)
dv(u). (13)

In this case, there exists a function v∗ ∈V (τ) that realizes the greatest lower bound in
(13).

Proof. Let f ∈ SM , n ∈ N and h ∈ R . According to (6) and (3), we have

En( f )∗
M

= ‖ f −Sn−1( f )‖∗
M

= sup
{

∑
|k|�n

λk| f̂ (k)| : λ ∈ Λ
}
, (14)

and by the definition of supremum, for arbitrary ε > 0 there exists a sequence λ̃ ∈ Λ ,
λ̃ = λ̃ (ε) , such that the following relations holds:

∑
|k|�n

λ̃k| f̂ (k)|+ ε � sup
{

∑
|k|�n

λk| f̂ (k)| : λ ∈ Λ
}
.

In view of (3) and (7), we have

‖Δϕ
h f‖∗

M
� sup

{
∑
|k|�n

λkϕ(kh)| f̂ (k)| : λ ∈ Λ
}

� ∑
|k|�n

λ̃kϕ(kh)| f̂ (k)|

=
In,ϕ(τ,v)

v(τ)− v(0) ∑
|k|�n

λ̃k| f̂ (k)|+ ∑
|k|�n

λ̃k| f̂ (k)|
(

ϕ(kh)− In,ϕ(τ,v)
v(τ)− v(0)

)
.

For any u ∈ [0,τ] , we get

‖Δϕ
u
n
f‖∗

M
� In,ϕ(τ,v)

v(τ)− v(0) ∑
|k|�n

λ̃k| f̂ (k)|+ ∑
|k|�n

λ̃k| f̂ (k)|
(

ϕ
(ku

n

)
− In,ϕ(τ,v)

v(τ)− v(0)

)
. (15)

The both sides of inequality (15) are nonnegative and, in view of the boundedness of the
function ϕ , the series on its right-hand side is majorized on the entire real axis by the
absolutely convergent series C(ϕ)∑|k|�n λ̃k| f̂ (k)| , where C(ϕ) := maxu∈R ϕ(u) . Then
integrating this inequality with respect to dv(u) from 0 to τ, we get

τ∫
0

‖Δϕ
u
n
f‖∗

M
dv � In,ϕ(τ,v) ∑

|k|�n

λ̃k| f̂ (k)|+ ∑
|k|�n

λ̃k| f̂ (k)|
( τ∫

0

ϕ
(ku

n

)
dv− In,ϕ(τ,v)

)
.

By virtue of the definition of In,ϕ(τ,v) , we see that the second term on the right-hand
side of the last relation is nonnegative. Therefore, for any function v ∈V (τ) , we have

τ∫
0

‖Δϕ
u
n
f‖∗

M
dv � In,ϕ(τ,v) ∑

|k|�n

λ̃k| f̂ (k)|� In,ϕ(τ,v)
(

sup
{

∑
|k|�n

λk| f̂ (k)| : λ ∈Λ
}
−ε

)
,

wherefrom due to an arbitrariness of choice of the number ε , we conclude that the
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inequality
τ∫

0

‖Δϕ
u
n
f‖∗

M
dv � In,ϕ(τ,v)En( f )∗

M

is true. Hence,

En( f )∗
M

� 1
In,ϕ(τ,v)

τ∫
0

‖Δϕ
u
n
f‖∗

M
dv � 1

In,ϕ(τ,v)

τ∫
0

ωϕ

(
f ,

u
n

)∗

M
dv,

whence taking into account nondecreasing of the function ωϕ , we immediately obtain
relation (11). The existence of the function v∗ ∈ V (τ) realizing the greatest lower
bound in (13) will be given below in the proof of Theorem 2. �

COROLLARY 1. Assume that f ∈ SM . Then for any τ > 0 , n ∈ N and ϕ ∈ Φ
the following inequality holds:

En( f )M � 2Cn,ϕ(τ)ωϕ

(
f ,

τ
n

)
M

, (16)

where the quantity Cn,ϕ(τ) is defined by (12).

COROLLARY 2. Assume that f ∈SM . Then for any τ > 0 , n∈ N and α > 0 the
following inequality holds:

En( f ) � 2Cn,α(τ)ωα

(
f ,

τ
n

)
,

where the quantity Cn,α(τ) is defined by (12) with ϕ(t) = 2α |sin(t/2)|α .

For moduli of smoothness ωα( f ,δ )M , in the mentioned above spaces SM and
Sp,μ , the inequalities of the type (16) were proved in [11] and [1] correspondingly.
Unlike to [11] and [1], here we find the constant Cn,ϕ(τ) in Jackson-type inequality
(11). Let us see how accurate this constant is. For this, consider the case where all

functions Mk(u) = up
(

p−1/pq−1/q
)p

, p > 1, 1/p+1/q= 1. In this case, all functions

M̃k(v) = vq , the set Λ is a set of all sequences of positive numbers λ = {λk}k∈Z such
that ‖λ‖lq(Z) � 1. Then the spaces SM coincide with the spaces S p , p > 1, and by
Hölder inequality for any f ∈ S p , the following relation holds:

‖ f‖∗
M

= sup
λ∈Λ

∑
k∈Z

λk| f̂ (k)| � sup
λ∈Λ

‖λ‖lp(Z) · ‖{ f̂ (k)}k∈Z‖lp(Z) � ‖ f‖p .

Furthermore, if f �≡ 0, then for the sequence λ ∗
k = | f̂ (k)|p/q

(
∑ j∈Z | f̂ ( j)|p

)−1/q
, k∈Z ,

we have ∑k∈Z λ ∗
k | f̂ (k)| = ‖ f‖p and ‖λ ∗‖lq(Z) = 1. Therefore, in this case ‖ f‖∗

M
=

‖ f‖p , p > 1.
In the case p = 1, the similar equality for norms

‖ f‖∗
M

= ‖ f‖1 (17)
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obviously can be obtained if we consider all Mk(u) = u , k ∈ Z , and the set Λ is a set
of all sequences of positive numbers λ = {λk}k∈Z such that ‖λ‖l∞(Z) = supk∈Z λk � 1.

For fixed n ∈ N , τ > 0 and for a given ϕ ∈ Φ , consider the quantity

Kn,ϕ (τ)p := sup
f∈S p

f �≡const

En( f )p

ωϕ ( f ,τ/n)p
= sup

f∈S p

f �≡const

inf
tn−1∈Tn−1

‖ f − tn−1‖p

sup
|h|�δ

‖Δϕ
h f‖p

.

THEOREM 2. Assume that f ∈ S p , 1 � p < ∞ . Then for any τ > 0 , n ∈ N and
ϕ ∈ Φ the following inequality holds:

En( f )p � Cn,ϕ,p(τ)ωϕ

(
f ,

τ
n

)
p
, (18)

where

Cn,ϕ,p(τ) :=
(

inf
v∈V (τ)

v(τ)− v(0)
In,ϕ,p(τ,v)

)1/p

, (19)

and

In,ϕ,p(τ,v) := inf
k∈N:k�n

τ∫
0

ϕ p
(ku

n

)
dv(u). (20)

In this case, there exists a function v∗ ∈V (τ) that realizes the greatest lower bound in
(20). Inequality (18) is unimprovable on the set of all functions f ∈ S p , f �≡ const , in
the sense that for any ϕ ∈ Φ and n ∈ N the following equality is true:

Kn,ϕ(τ)p = Cn,ϕ,p(τ). (21)

Proof. Here, we basically use the arguments given in [5], [12], [13] and [29]. Let
f ∈ S p , n ∈ N and h ∈ R . By virtue of (7) and (1), we have

‖Δϕ
h f‖p

p � ∑
|k|�n

ϕ p(kh)| f̂ (k)|p

=
In,ϕ,p(τ,v)
v(τ)− v(0) ∑

|k|�n

| f̂ (k)|p + ∑
|k|�n

| f̂ (k)|p
(

ϕ p(kh)− In,ϕ,p(τ,v)
v(τ)− v(0)

)
.

For any u ∈ [0,τ] , we get

‖Δϕ
u
n
f‖p

p � In,ϕ,p(τ,v)
v(τ)− v(0) ∑

|k|�n

| f̂ (k)|p + ∑
|k|�n

| f̂ (k)|p
(

ϕ p
(ku

n

)
− In,ϕ,p(τ,v)

v(τ)− v(0)

)
. (22)

The both sides of inequality (22) are nonnegative and, in view of the boundedness of the
function ϕ , the series on its right-hand side is majorized on the entire real axis by the
absolutely convergent series Cp(ϕ)∑|k|�n | f̂ (k)|p , where C(ϕ) := maxu∈R ϕ(u) . Then
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integrating this inequality with respect to dv(u) from 0 to τ, we get

τ∫
0

‖Δϕ
u
n
f‖p

pdv � In,ϕ,p(τ,v) ∑
|k|�n

| f̂ (k)|p

+ ∑
|k|�n

| f̂ (k)|p
( τ∫

0

ϕ p
(ku

n

)
dv− In,ϕ,p(τ,v)

)
. (23)

By virtue of the definition of In,ϕ,p(τ,v) , we see that the second term on the right-hand
side of (23) is nonnegative. Therefore, for any function v ∈V (τ) , we have

τ∫
0

‖Δϕ
u
n
f‖p

pdv � In,ϕ,p(τ,v) ∑
|k|�n

| f̂ (k)|p � In,ϕ,p(τ,v)Ep
n ( f )p .

Hence,

Ep
n ( f )p � 1

In,ϕ,p(τ,v)

τ∫
0

‖Δϕ
u
n
f‖p

pdv � 1
In,ϕ,p(τ,v)

τ∫
0

ω p
ϕ

(
f ,

u
n

)
p
dv.

whence taking into account nondecreasing of the function ωϕ , we immediately obtain
relation (18) and the estimate

Kn,ϕ(τ)p � Cn,ϕ,p(τ). (24)

Let us show that relation (24) is the equality. By virtue of Lemma 2, we have

Kp
n,ϕ(τ)p = sup

f∈S p

f �≡const

∑|k|�n | f̂ (k)|p
sup|h|�τ ∑|k|�n ϕ p(kh/n)| f̂ (k)|p (25)

and in (25), it is sufficient to consider supremum over all functions f ∈ S p such that
∑|k|�n | f̂ (k)|p � 1. Therefore, taking into account the parity of the function ϕ , we get

K−p
n,ϕ(τ)p � Jn,ϕ,p(τ) := inf

w∈Wn,ϕ,p
‖w‖C[0,τ]

, (26)

where the set

Wn,ϕ,p :=
{

ω(u) =
∞

∑
j=n

ρ jϕ p( ju/n) : ρ j � 0,
∞

∑
j=n

ρ j = 1
}
. (27)

For what follows, we need a duality relation in the space C[a,b], (see, e.g., [21, Ch. 1.4]).

PROPOSITION A. [21, Ch. 1.4] If F is a convex set in the space C[a,b], then for
any function x ∈C[a,b] ,

inf
u∈F

‖x−u‖C[a,b]
= sup

b
V
a
(g)�1

( b∫
a

x(t)dg(t)− sup
u∈F

b∫
a

u(t)dg(t)
)
. (28)



DIRECT AND INVERSE APPROXIMATION THEOREMS 331

For x ∈ C[a,b] \F , where F is the closure of a set F , there exists a function g∗ with
variation equal to 1 on [a,b] that realizes the least upper bound in (28).

It is easy to show that the set Wn,ϕ,p is a convex subset of the space C[0,τ] . There-
fore, setting a = 0, b = τ, x(t) ≡ 0, u(t) = w(t) ∈Wn,ϕ,p, F = Wn,ϕ,p, from relation
(28) we get

Jn,ϕ,p(τ) = inf
w∈Wn,ϕ,p

‖0−w‖C[0,τ]

= sup
τ
V
0
(g)�1

(
0− sup

w∈Wn,ϕ,p

τ∫
0

w(t)dg(t)
)

= sup
τ
V
0
(g)�1

inf
w∈Wn,ϕ,p

τ∫
0

w(t)dg(t). (29)

Furthermore, according to the Proposition A, there exists a function g∗(t), that realizes

the least upper bound in (29) and such that
τ
V
0
(g∗) = 1. Since every function w ∈Wn,ϕ,p

is nonnegative, it suffices to take the supremum on the right-hand side of (29) over the
set of nondecreasing functions v(t) for which v(τ)− v(0) � 1. For such functions, by
virtue of (13) and (27), the following equality is true:

inf
w∈Wn,ϕ,p

τ∫
0

w(t)dv(t) = In,ϕ,p(τ,v). (30)

Hence, there exists a function v∗ ∈V (τ) such that v∗(τ)− v∗(0) = 1 and

In,ϕ,p(τ,v∗) = sup
v∈V (τ):

τ
V
0
(v)�1

In,ϕ,p(τ,v) = Jn,ϕ,p(τ). (31)

From relations (26) and (31), we get the necessary estimate:

Kp
n,ϕ(τ)p � 1

Jn,ϕ,p(τ)
=

1
In,ϕ,p(τ,v∗)

=
v∗(τ)− v∗(0)
In,ϕ,p(τ,v∗)

= Cp
n,ϕ,p(τ). �

From Theorem 2, in particular, follows that the constant Cn,ϕ(τ) = Cn,ϕ,1(τ) is
exact in the Jackson-type inequality (11) in the case when SM = S 1 . In this case,
estimate (24) in the proof obviously follows directly from estimate (11) and relation
(17). For p > 1, estimate (24) is more accurate than the estimate that can be obtained
using similar arguments from Theorem 1.

In the Lebesgue space L2(T) , such result was proved for ordinary moduli of
smoothness ωα( f ,δ )p with α = 1 by Babenko [5]. In the spaces S p , for moduli
ωα( f ,δ )p , this theorem was proved by Stepanets and Serdyuk [29]. In the spaces
S p(Td) of functions of several variables, for moduli ωα( f ,δ )p , such result was ob-
tained in [2]. For generalized moduli of smoothness, the similar result was proved by
Vasil’ev [36] in L2(T) . We also mention the paper of Vakarchuk [35] which, in particu-
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lar, contains a survey of the main results on Jackson-Type inequalities with generalized
moduli of smoothness in the spaces L2(T) .

4. Inverse approximation theorem.

THEOREM 3. Let f ∈ SM , the function ϕ ∈ Φ is nondecreasing on an interval
[0,τ] and ϕ(τ) = max{ϕ(t) : t ∈ R} . Then for any n ∈ N , the following inequality
holds:

ωϕ

(
f ,

τ
n

)
�

n

∑
ν=1

(
ϕ

(τν
n

)
−ϕ

(τ(ν −1)
n

))
Eν( f ). (32)

Proof. Let us use the proof scheme from [29], modifying it taking into account the
peculiarities of the spaces SM and the definition of the modulus of smoothness ωϕ .

Let f ∈ SM . For any ε > 0 there exist a number N0 = N0(ε) ∈ N , N0 > n , such
that for any N > N0 , we have

EN( f ) = ‖ f −SN−1( f )‖ < ε/ϕ(τ).

Let us set f0 := SN0( f ) . Then in view of (7), we see that

‖Δϕ
h f‖ � ‖Δϕ

h f0‖+‖Δϕ
h ( f − f0)‖ � ‖Δϕ

h f0‖+ ϕ(τ)EN0+1( f ) < ‖Δϕ
h f0‖+ ε. (33)

Further, let Sn−1 := Sn−1( f0) be the Fourier sum of f0 . Then by virtue of (10), for
|h| � τ/n , we have

‖Δϕ
h f0‖ = ‖Δϕ

h ( f0 −Sn−1)+ Δϕ
h Sn−1‖

�
∥∥∥ϕ(τ)( f0 −Sn−1)+ ∑

|k|�n−1

ϕ(kh)| f̂ (k)|eik·
∥∥∥

�
∥∥∥ϕ(τ)

N0

∑
ν=n

Hν +
n−1

∑
ν=1

ϕ
(τν

n

)
Hν

∥∥∥, (34)

where Hν(x) := Hν( f ,x) = | f̂ (ν)|eiνx + | f̂ (−ν)|e−iνx , ν = 1,2, . . .
Now we use the following assertion which is proved directly.

LEMMA 3. Let {cν}∞
ν=1 and {aν}∞

ν=1 be arbitrary numerical sequences. Then
the following equality holds for all natural m, M and N m � M < N :

M

∑
ν=m

aνcν = am

N

∑
ν=m

cν +
M

∑
ν=m+1

(aν −aν−1)
N

∑
i=ν

ci −aM

N

∑
ν=M+1

cν . (35)

Setting aν = ϕ( τν
n ), cν = Hν(x), m = 1, M = n−1 and N = N0 in (35), we get

n−1

∑
ν=1

ϕ
(τν

n

)
Hν(x) = ϕ

(τ
n

) N0

∑
ν=1

Hν(x)

+
n−1

∑
ν=2

(
ϕ

(τν
n

)
−ϕ

(τ(ν −1)
n

)) N0

∑
i=ν

Hi(x)−ϕ
(τ(n−1)

n

) N0

∑
ν=n

Hν(x).
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Therefore, ∥∥∥∥ϕ(τ)
N0

∑
ν=n

Hν +
n−1

∑
ν=1

ϕ
(τν

n

)
Hν

∥∥∥∥
�

∥∥∥∥ϕ(τ)
N0

∑
ν=n

Hν +
n−1

∑
ν=1

(
ϕ

(τν
n

)
−ϕ

(τ(ν −1)
n

)) N0

∑
i=ν

Hi −ϕ
(τ(n−1)

n

) N0

∑
ν=n

Hν

∥∥∥∥
�

∥∥∥∥ n

∑
ν=1

(
ϕ

(τν
n

)
−ϕ

(τ(ν −1)
n

)) N0

∑
i=ν

Hi

∥∥∥∥
�

n

∑
ν=1

(
ϕ

(τν
n

)
−ϕ

(τ(ν −1)
n

))
Eν( f0). (36)

Combining relations (33), (34) and (4) and taking into account the definition of the
function f0 , we see that for |h| � τ/n , the following inequality holds:

‖Δϕ
h f‖ �

n

∑
ν=1

(
ϕ

(τν
n

)
−ϕ

(τ(ν −1)
n

))
Eν( f )+ ε

which, in view of arbitrariness of ε , gives us (32). �

As noted above, for ϕ(t) = 2α |sin(t/2)|α , α > 0, we have ωϕ( f ,δ ) = ωα( f ,δ ) .
In this case, the number τ = π . If α � 1, then using the inequality xα − yα �
αxα−1(x− y), x > 0,y > 0 (see, for example, [17, Ch. 1]), and the usual trigonometric
formulas, for ν = 1,2, . . . ,n, we get

ϕ
(τν

n

)
−ϕ

(τ(ν −1)
n

)
= 2α

(∣∣∣sin(πν
n

)∣∣∣α −
∣∣∣sin(π(ν −1)

n

)∣∣∣α)
� 2α α|sin

(πν
n

)∣∣∣α−1∣∣∣sin(πν
n

)
− sin

(π(ν −1)
n

)∣∣∣
� α

(2π
n

)α
να−1.

If 0 < α < 1, then the similar estimate can be obtained using the inequality xα −
yα � αyα−1(x− y) , which holds for any x > 0,y > 0, [17, Ch. 1]. Hence, we get the
following statement:

COROLLARY 3. Let f ∈ SM and α > 0 . Then for any n ∈ N , the following
inequality holds:

ωα

(
f ,

π
n

)
� α

(2π
n

)α n

∑
ν=1

να−1Eν( f ). (37)

Note that in the above-mentioned spaces SM and Sp,μ , the similar estimates
were obtained for moduli of smoothness and best approximations determined with re-
spect to the corresponding Luxemburg norms in [1] and [11]. In S p , such estimates
were obtained in [30] and [29]. For the Lebesgue spaces Lp , inequalities of the type
(37) were proved by M. Timan (see, for example, [32, Ch. 2], [31, Ch. 6]).
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COROLLARY 4. Assume that the sequence of the best approximations En( f ) of a
function f ∈ SM satisfies the following relation for some β > 0 :

En( f ) = O(n−β ).

Then, for any α > 0 , one has

ωα( f ,t) =

⎧⎨
⎩

O(tβ ) for β < α,
O(tα | ln t|) for β = α,

O(tα) for β > α.

5. Constructive characteristics of the classes of functions defined
by the α th moduli of smoothness

In this section we give the constructive characteristics of the classes SMHω
α of

functions for which the α th moduli of smoothness ωα( f ,δ ) do not exceed some ma-
jorant.

Let ω be a function defined on interval [0,1] . For a fixed α > 0, we set

SMHω
α =

{
f ∈ SM : ωα( f ,δ ) = O(ω(δ )), δ → 0+

}
. (38)

Further, we consider the functions ω(δ ) , δ ∈ [0,1] , satisfying the following conditions
1)–4): 1) ω(δ ) is continuous on [0,1] ; 2) ω(δ ) ↑ ; 3) ω(δ ) �= 0 for any δ ∈ (0,1] ;
4) ω(δ ) → 0 as δ → 0+ ; and the well-known condition (Bα ) , α > 0 (see, e.g. [6]):

(Bα) :
n

∑
v=1

vα−1ω(v−1) = O(nα ω(n−1)), n → ∞.

THEOREM 4. Assume that α > 0 and the function ω satisfies conditions 1)– 4)
and (Bα ) . Then, in order a function f ∈ SM to belong to the class SMHω

α , it is
necessary and sufficient that

En( f ) = O(ω(n−1)). (39)

Proof. Let f ∈ SMHω
α , by virtue of Corollary 2, we have

En( f ) � 2Cn,α(1)ωα( f ;n−1), (40)

Therefore, relation (38) yields (39). On the other hand, if relation (39) holds, then by
virtue of (37), taking into account the condition (Bα ) , we obtain

ωα( f ,n−1) � α
(2π

n

)α n

∑
ν=1

να−1Eν( f ) � C
nα

n

∑
ν=1

να−1ω(v−1) = O(ω(n−1)). (41)

Thus, the function f belongs to the set SMHω
α . �

The function h(t) = tr , r � α , satisfies the condition (Bα ) . Hence, denoting
by SMHr

α the class SMHω
α for ω(t) = tr , 0 < r � α, we establish the following

statement:
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COROLLARY 5. Let α > 0 , 0 < r � α. In order a function f ∈ SM to belong to
SMHr

α , it is necessary and sufficient that

En( f ) = O(n−r).
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