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Abstract. In this paper, we study hyperovaloids from the perspective of the equiaffine differential
geometry. As the main result, we establish an optimal integral inequality of the hyperovaloids in
terms of the normalized affine scalar curvature and the squared norm of the equiaffine Weingarten
form. Since the integral inequality becomes an integral equality if and only if the hyperovaloids
are equiaffinely equivalent to the ellipsoids, our results give new equiaffine characterizations of
the ellipsoids.

1. Introduction

Let Rn+1 be the (n+1)-dimensional real unimodular-affine space equipped with
its canonical flat connection and a parallel volume form. A hyperovaloid as usual is a
locally strongly convex hypersurface immersion x : Mn → Rn+1 , where Mn is an n -
dimensional connected compact smooth manifold without boundary. As a special case
of the hyperovaloids, the ellipsoids possess remarkable properties. The study of the
hyperovaloids has always been one of the most interesting subjects in convex geome-
try and analysis, Euclidean differential geometry, and particularly in affine differential
geometry. Amongst which various characterizations of the ellipsoids have been estab-
lished, for some of them see e.g. [2, 16, 18, 22, 24, 25, 32, 31, 33, 36] and most recently
[9, 10, 17, 19].

In this paper, we shall study hyperovaloids from the perspective of the equiaffine
differential geometry. For a hyperovaloid x : Mn →Rn+1 , we denote by G the (Blaschke-
Berwald) affine metric and B the equiaffine Weingarten operator. Then the main result
of this paper, which is an optimal equiaffine integral inequality on the hyperovaloids,
can be stated as the following
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THEOREM 1.1. Let x : Mn → Rn+1 (n � 2) be a hyperovaloid with affine metric
G and affine Weingarten operator B. Then the normalized scalar curvature χ of the
metric G and the G-norm ‖B‖G of B satisfy the following integral inequality∫

Mn
χ2 dVG � 1

n

∫
Mn

‖B‖2
G dVG, (1.1)

where dVG denotes the volume element of the affine metric G of Mn .
Moreover, the equality in (1.1) holds if and only if x(Mn) is an ellipsoid.

As a direct consequence of Theorem 1.1, we have

COROLLARY 1.1. Let x : Mn →Rn+1 (n � 2) be a hyperovaloid with affine metric
G and affine Weingarten operator B. If χ and ‖B‖G satisfy the inequality

χ2 � 1
n‖B‖2

G (1.2)

identically on Mn , then x(Mn) is an ellipsoid.

REMARK 1.1.
(1) Theorem 1.1 and Corollary 1.1 are interesting in that they provide both global

and pointwise new characterizations of the ellipsoids, respectively, in terms of the
equiaffine invariants of the hyperovaloids in Rn+1 .

(2) In Section 5, we will prove a little stronger results, Theorem 5.1 and Corollary
5.1, by which Theorem 1.1 and Corollary 1.1 become direct consequences.

Towards the above results, for better understanding of the motivations we collect
some background materials below. Historically, since the beginning of equiaffine dif-
ferential geometry, characterizing ellipsoids from the hyperovaloids in Rn+1 has been
an interesting problem. For a hyperovaloid x : Mn → Rn+1 , let G be the (Blaschke-
Berwald) affine metric and B be the equiaffine Weingarten operator. By definition
L1 := 1

n trace(B) is called the affine mean curvature. Then the classical theorem of
Blaschke for n = 2 and Deicke for n � 3 implies that a hyperovaloid x : Mn → Rn+1

is an ellipsoid if and only if B = L1 · Id (cf. [5] and Theorem 3.35 in [20]). In terms
of the affine intrinsic invariants, Schneider [30] solved a conjecture made by Blaschke
[5], which states that an ovaloid in R3 with constant (affine) scalar curvature is an el-
lipsoid. Schneider’s result was further generalized by Kozlowski and Simon [18] to be
that a hyperovaloid in Rn+1 with Einstein affine metric must be an ellipsoid. On the
other hand, in terms of the extrinsic affine invariants, by using the affine Minkowski-
type integral formulas (cf. [33]), it is proved that a hyperovaloid with constant affine
mean curvature L1 is an ellipsoid (cf. Theorem 4.2 in [20]). This was further gener-
alized, after several partial results of Süss [36], Simon [33] and Hsiung-Shahin [16],
finally by A.-M. Li [22] showing that a hyperovaloid with constant higher affine r -th
mean curvature Lr (r � 2) must be an ellipsoid (cf. Theorem 4.5 in [20]). Moreover,
it was also shown that a hyperovaloid in Rn+1 satisfying Lr = ∑r−1

i=1 aiLi with constant
ai � 0 and 2 � i � n must be an ellipsoid (cf. Theorem 4.6 in [20] and the final version
by Alias and Colares [2]).
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Different from the preceding results under pointwise conditions, in following we
shall further review some equiaffine integral (global) inequalities on hyperovaloids in
Rn+1 that having the ellipsoids as the extremum case.

First, for a hyperovaloid x : Mn → Rn+1 , let S(M) and Vol(M) denote the total
affine area of Mn with respect to the affine metric and the (n+1)-dimensional volume
of the convex body in En+1 bounded by x(Mn) with respect to the Euclidean induced
metric, respectively. Then, according to Blaschke [4, 5], Santaló [29] and Deicke [12],
we have the classical affine isoperimetric inequality (cf. also Chapter 7 of [20] or [28])
which shows that

(S(M))n+2 � (n+1)n+2(ωn+1)2(Vol(M))n, (1.3)

where ωn+1 = π (n+1)/2/Γ((n+ 3)/2) denotes the (n+ 1)-dimensional volume of the
unit ball in Euclidean space En+1 and Γ is the Gamma function. Moreover, the equality
in (1.3) holds if and only if x(Mn) is an ellipsoid.

It is worthwhile to mention that several different affine-geometric isoperimetric
inequalities were also proved by B. Andrews (cf. [1]).

Second, for a hyperovaloid x : Mn → Rn+1 another equiaffine global inequality is
the so-called affine Aleksandrov-Fenchel inequality (cf. [1]), which says that

Vol(M)
∫

Mn
L1 dVG � 1

n+1 (S(M))2. (1.4)

Moreover, the equality in (1.4) holds if and only if x(Mn) is an ellipsoid. See also
Lutwak [23] for more optimal equiaffine global inequalities on the hyperovaloids in
Rn+1 .

This paper is organized in six sections. In Section 2, we review some basic notions
and the structural equations about equiaffine hypersurfaces. In Section 3, we calculate
the Laplacian of the Pick invariant for locally strongly convex affine hypersurfaces. In
Section 4, we show two special inequalities in equiaffine geometry. In Section 5, we
prove the little stronger Theorem 5.1 so that we complete the proof of Theorem 1.1.
Finally, in Section 6, we study locally strongly convex affine hypersurfaces with semi-
parallel cubic form, where Theorems 6.1 and 6.2 should be of independent meaning.

2. Preliminaries

In this section, we briefly review some basic notions about the theory of equiaffine
hypersurfaces. For more details, we would refer the readers to the monographs [20, 27,
37].

Let Rn+1 be the (n+1)-dimensional equiaffine space equipped with its canonical
flat connection D and a parallel volume element given by the determinant Det. For
a connected oriented and smooth n -dimensional manifold Mn , let x : Mn → Rn+1 be
a locally strongly convex hypersurface immersion such that the (Blaschke-Berwald)
affine metric G is positive definite. Associated to x : Mn → Rn+1 , we also have the
equiaffine normal vector field ξ , the (self-adjoint) equiaffine Weingarten operator B
and the totally symmetric cubic (Fubini-Pick) form A . The eigenvalues λ1,λ2, . . . ,λn
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of B are called the affine principal curvatures, and the equiaffine mean curvature L1 =
1
n trace(B) = 1

n ∑n
i=1 λi .

We choose a local equiaffine frame field {x;e1, . . . ,en,en+1} on Mn such that
e1,e2, . . . ,en ∈ TxMn , en+1 = ξ and

Det [e1,e2, . . . ,en,en+1] = 1, Gi j := G(ei,e j) = δi j. (2.1)

Let ∇ be the Levi-Civita connection of the affine metric G ; Ri jkl and Ri j be the compo-
nents, with respect to {ei}n

i=1 , of the Riemannian curvature tensor and the Ricci tensor
of the affine metric G , respectively, and let κ = n(n−1)χ := ∑i Rii be the affine scalar
curvature. Denote Ai jk = A(ei,e j,ek) , Bi j = G(Bei,e j) and the components of their
first and second covariant derivatives by Ai jk,l , Ai jk,lm , Bi j,k and Bi j,kl , respectively.
Then we have the following local integrability conditions (cf. Section 2.5 of [20]):

Bi j,k −Bik, j = ∑(Ai jlBkl −AiklB jl), (2.2)

Ai jk,l −Ai jl,k = 1
2 (δikB jl + δ jkBil − δilB jk − δ jlBik), (2.3)

Ri jkl =∑(AimlA jmk −AimkA jml)

+ 1
2(δikB jl + δ jlBik − δilB jk − δ jkBil),

(2.4)

Ri j := ∑Rik jk = ∑AiklA jkl + n−2
2 Bi j + n

2L1δi j, (2.5)

∑Aii j = 0, 1 � j � n, (2.6)

here, (2.6) is called the apolarity condition. Let J be the Pick invariant that is defined
by n(n−1)J := ∑(Ai jk)2 . Then, from the affine Gauss equation (2.4), we have

χ = J +L1. (2.7)

Finally, we need the following Ricci identities for the second covariant derivatives
of the Fubini-Pick form A :

Ai jk,lm −Ai jk,ml = ∑
r

Ar jkRrilm +∑
r

AirkRr jlm +∑
r

Ai jrRrklm. (2.8)

3. The Laplacian of the Pick invariant

In this section, we shall calculate the Laplacian ΔJ of the Pick invariant J as-
sociated to the affine metric G of a locally strongly convex affine hypersurface x :
Mn → Rn+1 (n � 2) . One can see that such calculations have been carried out in many
situations for various purposes, either by assuming that x : Mn → Rn+1 is an affine
hypersphere with B = L1 · Id (cf. [5, 6, 7, 8, 21, 30]), or just for the general case in
[11, 34, 35].

First of all, we prove the following result which is similar to that of Li [21] (see
also Simon [35] and Cheng-Yau [11]) where it is given for affine hyperspheres. For
readers’ convenience, here we will give the proof in detail.
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LEMMA 3.1. Let x : Mn → Rn+1 (n � 2) be a locally strongly convex affine hy-
persurface. Then, in terms of the local equiaffine frame field {x;e1,e2, . . . ,en,en+1}
satisfying (2.1), we have

n(n−1)
2 ΔJ = ∑(Ai jk,l)2 +∑(Ri jkl)2 +∑(Ri j)2− n

2 κL1

− n+2
2

(
∑Bi jRi j +∑Ai jkBi j,k

)
.

(3.1)

Proof. By definition, we have

n(n−1)ΔJ = Δ
(
∑(Ai jk)2) = 2∑(Ai jk,l)2 +2∑Ai jkAi jk,ll . (3.2)

By using (2.3), (2.6) and the totally symmetricity of Ai jk , we can get

∑Ai jkAi jk,ll =∑Ai jkAi jl,kl

+ 1
2 ∑Ai jk

(
δikB jl,l + δ jkBil,l − δilB jk,l − δ jlBik,l

)
=∑Ai jkAi jl,kl −∑Ai jkBi j,k.

(3.3)

Moreover, by using (2.3), (2.6) and the Ricci identity (2.8), we can drive that

∑Ai jkAi jl,kl

= ∑Ai jk
(
∑Ail j,lk +∑Arl jRrikl +∑Air jRrlkl +∑AilrRr jkl

)
= − n

2 ∑Ai jkBi j,k +∑Ai jkArl jRrikl +∑Ai jkAir jRrlkl

+∑Ai jkAilrRr jkl ,

(3.4)

where we have used, due to (2.3) and (2.6), the equation

∑Ail j,l = n
2(L1δi j −Bi j). (3.5)

To go on from (3.4), we use the fact ∑Ai jkArl jRrikl = −∑AjilArkiRr jkl and (2.4)
to derive that

∑Ai jkAilrRr jkl +∑Ai jkArl jRrikl

= ∑(ArilA jik −ArikA jil)Rr jkl

= ∑
[
Rr jkl − 1

2 (δrkB jl + δ jlBrk − δrlB jk − δ jkBrl)
]
Rr jkl

= ∑(Rr jkl)2−2∑Bi jRi j.

(3.6)

Next, from (2.5) we can derive that

∑Ai jkAir jRrlkl = ∑Ai jkAir jRrk

= ∑
(
Rrk − n

2L1δrk − n−2
2 Brk

)
Rrk

= ∑(Rrk)2− n
2 κL1− n−2

2 ∑BrkRrk.

(3.7)

The combination of (3.2), (3.3), (3.4), (3.6) and (3.7) immediately gives the asser-
tion. �
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In particular, if n = 2, we have

Ri jkl = χ(δikδ jl − δilδ jk), Ri j = χδi j. (3.8)

Then, combining with Lemma 3.1, we have the following

COROLLARY 3.1. (cf. [34], or (4.12) in [20]) Let x : M2 →R3 be a locally strongly
convex affine surface, then we have

ΔJ = ∑(Ai jk,l)2 +6χJ−2∑Ai jkBi j,k. (3.9)

4. Auxiliary estimation

The following Lemma, which is partially due to U. Simon [35], is crucial for our
proof of Theorem 1.1. We include the proof here for readers’ convenience.

LEMMA 4.1. Let x : Mn →Rn+1 be a locally strongly convex affine hypersurface.
Then the following inequality holds

∑(Ai jk,l)2 � 3n(n+2)
4(n+4) ∑(B̃i j)2, (4.1)

where B̃i j = Bi j −L1δi j denotes the trace-free part of the affine Weingarten form.
Moreover, the equality in (4.1) holds if and only if the covariant derivatives of the

cubic form A have the expression below:

Ai jk,l = 1
n+4(δikB̃ jl + δi jB̃kl + δ jkB̃il)

− n+2
2(n+4) (δ jl B̃ik + δklB̃i j + δilB̃ jk), ∀ i, j,k, l.

(4.2)

Proof. We define a type (0,4)-tensor P by

Pi jkl :=Ai jk,l +Ajkl,i +Akli, j +Ali j,k

+ n
n+4(B̃ jkδil + B̃ilδ jk + B̃ikδl j + B̃l jδki + B̃i jδlk + B̃klδi j).

(4.3)

By using (2.3), it is easy to check that P is a totally symmetric traceless tensor,
i.e.,

Pi jkl = Pjikl = Pik jl = Pi jlk, ∑δi jPi jkl = 0. (4.4)

Straightforward computations with the use of (2.3) show that

∑(Pi jkl)2 =4∑(Ai jk,l)2 +12∑Ai jk,lAi jl,k − 6n2

n+4 ∑(B̃i j)2

=16∑(Ai jk,l)2 − 12n(n+2)
n+4 ∑(B̃i j)2.

(4.5)

This proves the inequality (4.1). Moreover, the equality in (4.1) holds if and only if
P = 0. Finally, by using (2.3) again, we can easily show that P = 0 is equivalent to that
the covariant derivatives of the cubic form A have the expression as stated by (4.2). �
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In order to prove Theorem 1.1, a technical trick we making use is the following
estimate of the invariant ∑(Ri jkl)2 .

We begin with recalling the Weyl conformal curvature tensor for n � 3,

Wijkl := Ri jkl − 1
n−2(δikR jl + δ jlRik − δilR jk − δ jkRil)

+ κ
(n−1)(n−2)(δikδ jl − δilδ jk),

(4.6)

and the introduction of another (0,4)-tensor Q defined by

Qi jkl := ∑(Aim jAkml −AimlA jmk). (4.7)

LEMMA 4.2. Let x : Mn → Rn+1 (n � 3) be a locally strongly convex affine hy-
persurface. Then, for any real number a ∈ (0,1) , it holds that

∑(Ri jkl)2 �a
[
4∑Bi jRi j − (n−2)∑(Bi j)2 − (nL1)2]

+(1−a)
[
∑(Wijkl)2 + 4

n−2 ∑(Ri j)2 − 2κ2

(n−1)(n−2)

] (4.8)

and the equality holds if Q = 0 .

Proof. According to (2.4) and (4.7), a straightforward calculation shows that

∑(Ri jkl)2 = ∑(Qi jkl)2 +4∑Bi jRi j − (n−2)∑(Bi j)2 − (nL1)2

� 4∑Bi jRi j − (n−2)∑(Bi j)2 − (nL1)2,
(4.9)

and the equality holds if Q = 0.
On the other hand, the expression (4.6) implies that

∑(Ri jkl)2 = ∑(Wijkl)2 + 4
n−2 ∑(Ri j)2 − 2κ2

(n−1)(n−2) . (4.10)

Now, for any real number a ∈ (0,1) , we write

∑(Ri jkl)2 = a∑(Ri jkl)2 +(1−a)∑(Ri jkl)2. (4.11)

Then, the assertion of Lemma 4.2 immediately follows. �

5. Proofs of the main results

We first prove the following generalized theorem by which Theorem 1.1 is a direct
consequence.

THEOREM 5.1. Let x : Mn → Rn+1 be a hyperovaloid with affine metric G and
affine Weingarten operator B. Then the following integral inequality holds:∫

Mn
χ2 dVG + εn

∫
Mn

‖B̃‖2
GdVG � 1

n

∫
Mn

‖B‖2
GdVG, (5.1)
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where

εn =

{ 5n+8
4(n+4)(n2−1) , if n � 3,

1
6 , if n = 2.

(5.2)

Moreover, the equality in (5.1) holds if and only if x(Mn) is an ellipsoid.

Proof. From (3.5) we can derive that

∑Bi jAi jk,k = − n
2 ∑(B̃i j)2. (5.3)

This combining with (3.1) yields

1
2n(n−1)ΔJ =∑(Ai jk,l)2 +∑(Ri jkl)2 +∑(Ri j)2 − n(n+2)

4 ∑(B̃i j)2

− n
2 κL1− n+2

2 ∑Bi jRi j − n+2
2 ∑(Bi jAi jk),k ,

(5.4)

where ,k denotes the covariant derivative with respect to the affine metric G .
Now, we consider two cases depending on the dimension n .

Case (1) If n � 3, then from (5.4) and Lemma 4.2 we obtain

1
2n(n−1)ΔJ �∑(Ai jk,l)2− n+2−8a

2 ∑Bi jRi j + n+2−4a
n−2 ∑(Ri j)2

−a(n−2)∑(Bi j)2 − n(n+2)
4 ∑(B̃i j)2− n

2 κL1

−a(nL1)2− 2(1−a)
(n−1)(n−2)κ2− n+2

2 ∑(Bi jAi jk),k ,

(5.5)

where the equality holds if and only if W = 0.
We now fix a = 5

8 so that n+2−8a � 0 for n � 3.
By using the fact

∑(Bi j)2 = ∑(B̃i j)2 +n(L1)2, (5.6)

and the following two inequalities, i.e.,

∑Bi jRi j � 1
2(n−1) ∑(Ri j)2 + n−1

2 ∑(Bi j)2 (5.7)

with equality sign holding if and only if Ri j = (n−1)Bi j for 1 � i, j � n , and

κL1 � n(n−1)
2 (L1)2 + 1

2n(n−1)κ2 (5.8)

with equality sign holding if and only if κ = n(n− 1)L1 or equivalently χ = L1 and
J = 0, we can derive from (5.5) that

1
2n(n−1)ΔJ �∑(Ai jk,l)2 − 4n2+n−4

8 ∑(B̃i j)2− n+2
2 ∑(Bi jAi jk),k

+ n+1
4(n−1)(n−2)

[
(3n−4)∑(Ri j)2−κ2]− n(n2−1)

2 (L1)2.
(5.9)

This, combining with (2.7), (4.1) and the inequality

∑(Ri j)2 � κ2

n , (5.10)
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gives
1
2n(n−1)ΔJ �

[ 3n(n+2)
4(n+4) − 4n2+n−4

8

]
∑(B̃i j)2

+ n(n2−1)
2

[
χ2− (L1)2]− n+2

2 ∑(Bi jAi jk),k .
(5.11)

Integrating (5.11) over Mn and applying for the divergence theorem, we obtain
that

0 � n(n2−1)
2

∫
Mn

[
χ2− (L1)2] dVG

−
[

4n2+n−4
8 − 3n(n+2)

4(n+4)

]∫
Mn

∑(B̃i j)2 dVG,
(5.12)

which is exactly equivalent to the inequality (5.1).
Finally, if the equality in (5.12) holds, then (5.10) becomes an equality identically

and (Mn,G) is an Einstein manifold. It follows from the theorem of Kozlowski-Simon
[18] (cf. Theorem 4.8 in [20]) that x(Mn) is an ellipsoid. Conversely, the ellipsoids
are affine hyperspheres with vanishing Pick invariant and having constant sectional
curvature. Therefore, it holds that ‖B̃‖G = 0 and χ = L1 and the equality in (5.12)
holds.

Case (2) If n = 2, then according to (3.8), together with the use of (2.3), (2.7),
(3.5) and (4.1), we can derive that

ΔJ = ∑(Ai jk,l)2 +6χJ−2∑Ai jkBi j,k

= ∑(Ai jk,l)2 +6χ2−6χL1−2∑(B̃i j)2 −2∑(Bi jAi jk),k
� 3χ2−3(L1)2 −∑(B̃i j)2−2∑(Bi jAi jk),k ,

(5.13)

here, in the last step, we make use the fact 2χL1 � χ2 +(L1)2 with equality holding if
and only if χ = L1 , or equivalently J = 0.

Then, integrating (5.13) over M2 , we get

0 �
∫

M2

[
3χ2−3(L1)2 −∑(B̃i j)2]dVG, (5.14)

which is again exactly equivalent to the inequality (5.1).
Moreover, if the equality in (5.14) holds, then we have J = 0 identically. This

implies by the classical theorem of Maschke-Pick (cf. Theorem 2.13 in [20]) that x(M2)
is an ellipsoid. Conversely, it is well known that the ellipsoids satisfy that ‖B̃‖G = 0
and χ = L1 , thus the equality in (5.14) holds.

In conclusion, we have completed the proof of Theorem 5.1. �
As a direct consequence of Theorem 5.1, we have the following pointwise rigidity

theorem:

COROLLARY 5.1. Let x : Mn →Rn+1 be a hyperovaloid with affine metric G and
affine Weingarten operator B. If, for εn defined by (5.2), the equiaffine invariants χ ,
‖B̃‖G and ‖B‖G satisfy the inequality

χ2 + εn‖B̃‖2
G � 1

n‖B‖2
G (5.15)

identically on Mn , then x(Mn) is an ellipsoid.
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6. Affine hypersurfaces with semi-parallel cubic form

According to [14, 15] and the references therein, we have a complete classification
of the locally strongly convex affine hypersurfaces with parallel cubic (Fubini-Pick)
form. It follows easily from the classification that a hyperovaloid in Rn+1 with parallel
cubic form is exactly an ellipsoid. To relax the condition of parallel cubic form, in this
section we will consider locally strongly convex affine hypersurfaceswith semi-parallel
cubic form. Here, the cubic form A is said to be semi-parallel if it satisfies R ·A = 0,
where R is the Riemannian curvature tensor corresponding to the affine metric G . Our
first result of this section is the following theorem.

THEOREM 6.1. Let x : Mn → Rn+1 (n � 3) be a locally strongly convex affine
hypersurface with semi-parallel cubic form. Then the equiaffine invariants χ , ‖B̃‖G

and ‖B‖G satisfy the inequality

χ2 + 1
2(n+1)‖B̃‖2

G � 1
n‖B‖2

G. (6.1)

Moreover, the equality in (6.1) holds identically on Mn if and only if x(Mn) is
locally a hyperquadric.

Proof. Following the proof of Lemma 3.1, we have

n(n−1)
2 ΔJ = ∑(Ai jk,l)2 +∑Ai jkAi jl,kl −∑Ai jkBi j,k. (6.2)

From the assumption R ·A = 0 and the fact

(R(el,em)A)(ei,e j,ek) = Ai jk,ml −Ai jk,lm

we have Ai jl,kl = Ai jl,lk . It follows from (6.2), (2.3) and (2.6) that

1
2n(n−1)ΔJ = ∑(Ai jk,l)2− n+2

2 ∑Ai jkBi j,k. (6.3)

Then, comparing (6.3) with (3.1), we obtain that

∑(Ri jkl)2 +∑(Ri j)2− n+2
2 ∑Bi jRi j = n

2 κL1. (6.4)

Next, on the one hand, we apply for (4.10), (5.7) and (5.10) to obtain that

∑(Ri jkl)2 +∑(Ri j)2− n+2
2 ∑Bi jRi j

= ∑(Wijkl)2 + n+2
n−2 ∑(Ri j)2 − 2κ2

(n−1)(n−2) − n+2
2 ∑Bi jRi j

� (3n−2)(n+2)
4(n−1)(n−2) ∑(Ri j)2 − 2κ2

(n−1)(n−2) − (n−1)(n+2)
4 ∑(Bi j)2

� n(3n+2)(n−1)
4 χ2− (n−1)(n+2)

4 ∑(Bi j)2,

(6.5)

and the last equality holds if and only if W = 0, Ri j = (n− 1)Bi j for all indices, and
that (Mn,G) is Einstein.
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On the other hand, by using (5.8), we obtain that

κL1 � 1
2n(n−1)

[
χ2 +(L1)2], (6.6)

and the equality holds if and only if χ = L1 and thus J = 0.
The combination of (6.4), (6.5) and (6.6) then gives

χ2 + 1
2(n+1) ∑(B̃i j)2 � 1

n ∑(Bi j)2. (6.7)

The obvious equivalence between (6.1) and (6.7) verifies the assertion (6.1).
Moreover, if the equality in (6.7) holds identically, then the inequalities (6.5) and

(6.6) all become equalities, so we have J = 0 on Mn and, by the well-known Maschke-
Pick-Berwald theorem (cf. Theorem 2.13 in [20]), x(Mn) is locally a hyperquadric.
Conversely, the hyperquadrics are affine hypersphereswith vanishing Pick invariant and
having constant sectional curvature. Therefore, it holds that ‖B̃‖G = 0, ‖B‖2

G = n(L1)2

and χ = L1 . Hence the equality in (6.7) holds.
This completes the proof of Theorem 6.1. �

In case n = 2, a result better than Theorem 6.1 can be proved.

THEOREM 6.2. A locally strongly convex affine surface x : M2 → R3 is of semi-
parallel cubic form if and only if either x(M2) is locally a quadric or (M2,G) is flat.

Proof. First, we assume that x : M2 → R3 is a locally strongly convex affine sur-
face with semi-parallel cubic form. Then, following the proof of Theorem 6.1, we get

∑(Ri jkl)2 +∑(Ri j)2 −2∑Bi jRi j −κL1 = 0. (6.8)

On the other hand, using (3.8) we obtain

∑(Ri jkl)2 = 4χ2, ∑(Ri j)2 = 2χ2, ∑Bi jRi j = 2χL1. (6.9)

Hence, (6.8) becomes equivalently

χJ = 0. (6.10)

This implies that, due to that our concern is in local, we have either J = 0 on M2 and,
according to the classical theorem of Maschke-Pick (cf. Theorem 2.13 in [20]), x(M2)
is locally a quadric, or, J �= 0 and χ = 0 on M2 so that (M2,G) is flat.

Conversely, R ·A = 0 is trivially true if x(M2) is a quadric or (M2,G) is flat.
This completes the proof of Theorem 6.2. �

REMARK 6.1. The class of locally strongly convex affine surfaces in R3 with flat
affine metric should be complicated. Its classification is a very hard problem and far
from completed. For several of the related partial results, we refer to the earlier articles
of Magid-Ryan [26] and Vrancken [38], and recent interesting progress [3].
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Combining with the theorem of Schneider on the solution of Blaschke’s conjecture
(cf. Theorem 4.8 in [20]), Theorem 6.2 immediately implies the following

COROLLARY 6.1. An ovaloid x : M2 → R3 with semi-parallel cubic form must
be an ellipsoid.

Finally, noting that if the affine metric is flat, then the cubic form is trivially semi-
parallel. Now, besides the quadrics, we are going to state some explicit examples of
affine surfaces with flat affine metric, including the ones that are of either parallel, or
semi-parallel but not of parallel cubic form.

REMARK 6.2. We know that, besides the quadrics, there exists another class of
locally strongly convex affine surfaces which are flat and parallel, i.e., the surfaces with
equation xyz = c for constant c �= 0. Furthermore, there are also a lot of affine surfaces
with flat affine metric. As typical examples, we have the following four affine rotation
surfaces described in [13]:

x1(u,v) =
(
cos(3u)

1
3 cos(

√
3v),cos(3u)

1
3 sin(

√
3v),

∫ u

0
cos(3t)−

2
3 dt

)
,

x2(u,v) =
(
cosh(3u)

1
3 cos(

√
3v),cosh(3u)

1
3 sin(

√
3v),

∫ u

0
cosh(3t)−

2
3 dt

)
,

x3(u,v) =
(
cos(3u)

1
3 cosh(

√
3v),cos(3u)

1
3 sinh(

√
3v),

∫ u

0
cos(3t)−

2
3 dt

)
,

x4(u,v) =
(
cosh(3u)

1
3 cosh(

√
3v),cosh(3u)

1
3 sinh(

√
3v),

∫ u

0
cosh(3t)−

2
3 dt

)
.

Here, the last surface x4 is locally strongly convex with complete and flat affine metric,
which is semi-parallel but not parallel.

Similarly, for higher dimensional cases, we refer to [3], Vrancken-Li-Simon [40]
and Vrancken [39], where several typical examples of locally strongly convex affine
hypersurfaces in Rn+1 (n � 3) with flat affine metric but non-parallel cubic form are
presented.

Acknowledgements. The authors are much indebted to the referee for his/her valu-
able comments and suggestions. Following those helpful comments, we have illustrated
our results in the last section by adding Remark 6.2.
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