
Mathematical
Inequalities

& Applications

Volume 24, Number 2 (2021), 351–372 doi:10.7153/mia-2021-24-25

MEANS PRODUCED BY DISTANCES

VOLKER DIELS-GRABSCH ∗ , MOWAFFAQ HAJJA

AND PANAGIOTIS T. KRASOPOULOS

(Communicated by H. Martini)

Abstract. We describe a methodology that can be used to construct new distances which produce
many famous means. Its main application is to construct a distance for the logarithmic mean,
settling an old open problem. We also use it to construct alternative distances for already known
means, such as the arithmetic and all quasi-arithmetic means. Moreover, we show how to con-
struct distances for almost all means that can be obtained from Cauchy’s Mean Value Theorem,
and apply this to construct distances for all Stolarsky means. Finally, we show how to construct
a distance for a mean Mq(a,b) = q−1(M (q(a),q(b))) , where M is another mean for which a
distance is already known, and q is a monotone bijection to a subinterval.

1. Introduction

The Pythagoreans knew three means, namely, the arithmetic, geometric, and har-
monic mean. These are the means defined, respectively, by

A (a,b) =
a+b

2
, G (a,b) =

√
ab, H (a,b) =

2ab
a+b

.

Few centuries later, Nichomachus, in his book Introduction to Arithmetic [16], added
seven more means to the list; see [9, Chapter III, (g), pp. 110–125]. Nowadays, there
is a huge number of means, or rather families of means, and the literature on them
is voluminous. There are even complete books on them, such as the encyclopedic
book [3].

Let us denote by P = (0,∞) the set of positive real numbers, and by J ⊆ R a
general interval. The ten Greek means are means of two positive numbers. That is, they
are functions M : P×P→ P, where M has the internality property

M (a,b) ∈ [a,b] for all closed subintervals [a,b] ⊆ P .

In contrast, the means that are studied in the current literature can involve any number
of variables, not necessarily two. Moreover, they can have as their domain any interval
J , not necessarily P .
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It is observed in [7] that the arithmetic mean A is produced in a natural way by
the distance d on P defined by

d : P×P → R, d(a,b) = (a−b)2

in the sense that for every a,b∈ P , A (a,b) is the unique point x whose distances from
a and b have a minimal sum. In other words, A (a,b) is the unique point x at which
the function f : P → R defined by

f (x) = d(x,a)+d(x,b) = (x−a)2 +(x−b)2

attains its minimum. This follows immediately from

f ′(x) = 4

(
x− a+b

2

)
, f ′′(x) = 4 > 0.

One expresses this observation by saying that A is the distance mean produced by
d . Similarly, H and G are the distance means produced by the distances d1 and d2

defined by

d1(a,b) =
(

1
a
− 1

b

)2

, d2(a,b) = (lna− lnb)2 .

In fact, H is similar to A in the sense that

H = φ−1A φ ,

or more accurately
H (a,b) = φ−1 (A (φ(a),φ(b))) ,

where φ : P → P is the monotone bijection given by

φ(x) =
1
x
.

Similarly, if one thinks of A as defined on all of R (instead of P), then G is similar
to A in the sense that

G = ψ−1A ψ ,

where ψ : P → R is the monotone bijection given by

ψ(x) = lnx.

These observations are what led to the distances d1 and d2 .
The facts that H and G are similar to the arithmetic mean A are expressed in

the existing literature by saying that H and G are quasi-arithmetic means. Thus if
a mean M is quasi-arithmetic, then it is produced by a distance. However, if M is
not quasi-arithmetic, then it is not clear how to find a distance that produces it, nor it is
clear whether such a distance does indeed exist, i.e., whether M is a distance mean. In
particular, the question whether the logarithmic mean L defined by

L (a,b) =
a−b

lna− lnb
,
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is a distance mean remained open until the results of this paper were established. This
problem was raised by the second-named author, MH, in 1995, and resisted the attempts
of the very many people whom MH challenged the problem with. It was later included
as Open Problem 9 in [7]. Let us also stress that L (a,b) is not a quasi-arithmetic
mean. To see this, let us consider the following functional equation (see [7, Section 9,
p. 6]):

M (M (M (a,b),b),M (M (a,b),a)) = M (a,b), (1)

for a,b > 0. It is noted in [7] that any quasi-arithmetic mean of two variables M (a,b)
must satisfy (1). So, one can verify by experimenting with random numbers a,b > 0
that L (a,b) does not satisfy (1).

It seems that the only way to establish that a given mean is a distance mean is
to explicitly find a distance that produces it. This is what makes such a problem very
difficult, and what makes the problem of proving that a given mean is not a distance
mean intractable. One of the open, and probably most challenging, problems left by
this paper is to find a characterization of distance means via which one can prove that
a given mean is not a distance mean, or can prove that it is a distance mean without
having to find the producing distance.

In this paper we answer the aforementioned open problem pertaining to the mean
L . We give an explicit simple distance that produces L , and we describe a general
method by which we can handle the analogous problem for other means. We also
answer other questions that were raised in [7].

2. Preliminaries

An n -dimensional (or n -variable) mean on an interval J ⊆ R is a function M :
Jn → J that has the so-called internality or intermediacy property

min(a1, . . . ,an) � M (a1, . . . ,an) � max(a1, . . . ,an). (2)

Internality is a very natural property and indicates the requirement that a mean is a
real number somewhere between the minimum and the maximum value of the original
tuple. Internality is the absolute property that a function must satisfy in order to be a
mean, and many authors define a proper mean by using only (2) (see [7], [18]).

Another natural property of a mean function M is symmetry. So, if M is sym-
metric in the sense that

M (a1, . . . ,an) = M (â1, . . . , ân)

for all permutations (â1, . . . , ân) , then we may think of M as defined not only on
ordered tuples, but also on data sets. These are sets in which repetition is allowed and
of course like all sets the order is not important.

Besides symmetry, another property of a mean function M that is also considered
in the literature is 1-homogeneity:

M (ta1, · · · ,tan) = tM (a1, · · · ,an),
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for any real t . It is interesting to note that for a mean function M , homogeneity
is always equivalent to 1-homogeneity. To see this, observe that from (2) and for
a1 = . . . = an = a we get M (a, . . . ,a) = a and likewise M (ta, . . . ,ta) = ta . Thus M
cannot be p -homogeneous for p �= 1 and at the same time have the internality property.

Let us also note that all famous means that are considered in the literature satisfy
these three basic properties, but it must be also stressed that there is no general accepted
definition of a “proper” mean among the authors (see [5]).

For a two-variable mean M : J×J→ J , the three properties specialize to:

M (a,b) ∈ [a,b] ∀[a,b] ⊆ J internality,

M (a,b) = M (b,a) ∀a,b ∈ J symmetry,

M (ta, tb) = tM (a,b) ∀[a,b] ⊆ J,t ∈ R with [ta,tb]⊆ J homogeneity.

Two-variable means have been also considered and discussed by many authors,
see e.g. [6], [12], [13], [14], [17], [18]. In [7] a natural way of producing means by
using distances is described. A distance d on a set J is defined to be a function d :
J×J→ [0,∞) such that

d(a,b) = d(b,a) ∀a,b ∈ J,

d(a,b) = 0 ⇐⇒ a = b ∀a,b ∈ J.

Now, according to [7], a natural way to produce a two-variable mean M on J is
to find an appropriate distance d on J such that for every closed subinterval [a,b]⊆ J ,
the function

f (x) = d(a,x)+d(x,b)

attains its minimum at a unique point x∗ in the interval [a,b] . A distance having this
property is called a mean-producing distance. If the point x∗ at which f attains its
minimum is denoted by

x∗ = M (a,b),

then M is a mean on J that will be referred to as the distance mean produced by d .
To put it differently, the mean M on J is defined by the requirement that

d(a,x)+d(x,b) > d(a,M (a,b))+d(M (a,b),b) (3)

for all x ∈ [a,b] with x �= M (a,b) , for all closed subintervals [a,b] ⊆ J .
Let us note that in [7] the same idea of producing means is also described more

generally for means of several variables. As an example let us consider the interesting
case of quasi-arithmetic means of several variables. A quasi-arithmetic mean M of a
data set of n real numbers (a1, . . . ,an) is defined as

M (a1, . . . ,an) = φ−1
(

φ(a1)+ . . .+ φ(an)
n

)
, (4)

where φ is a monotone bijection and φ−1 is its inverse function. We may assume that φ
is defined on an appropriate set J ⊆ R in which any data set of interest is also defined.
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Quasi-arithmetic means generalize naturally the concept of the arithmetic mean and
many famous means belong to this category (e.g. geometric mean, harmonic mean, see
also Section 1).

It is interesting to note that A. Kolmogorov ([11]), by assuming four regularity
properties that a mean function M should have, showed that M is necessarily a quasi-
arithmetic mean. Note that among the regularity properties there are internality and
symmetry, but not 1-homogeneity.

Moreover, G. H. Hardy, J. E. Littlewood and G. Pólya showed in [8, p. 68] that if a
quasi-arithmetic mean does have 1-homogeneity, it must be the geometric mean or one
of the power means. Note that the geometric mean can be considered as a power mean
for the limit case p → 0.

Our interest on quasi-arithmetic means stems from the fact that all quasi-arithmetic
means are also distance means. The usual distance that produces (4) is given by

d(x,y) = (φ(x)−φ(y))2, (5)

and the function f we want to minimize is

f (x) =
n

∑
i=1

d(ai,x) =
n

∑
i=1

(φ(ai)−φ(x))2. (6)

It can be easily seen that (4) is the unique minimum of (6).
Now, returning to two-variable means, it is easy to see that the function d : R×

R → R defined by d(x,y) = (x− y)2 is a mean producing distance and that it produces
the arithmetic mean on R (see also Section 1). In other words, the arithmetic mean is
the distance mean produced by d . Similar statements can be made about geometric,
harmonic, and actually about all power means on P . This follows immediately from
the considerations on quasi-arithmetic means that we saw.

However, these considerations do not settle the question whether the logarithmic
mean L defined on P is a distance mean or not. As mentioned in the Introduction,
this problem, which appears on page 6 of [7], as Open Problem No. 9, was to defy
a great many attempts, and settling it, together with answering or partially answering
some other questions in [7], is the main raison d’être of this paper.

3. Main result and the logarithmic mean

From now on we restrict our attention to two-variable means M (a,b) over any
interval J ⊆ R . We thoroughly present our method in three steps, applying it to the
logarithmic mean over J := P as an example.

The logarithmic mean appears in physics in several contexts, e.g. for calculating
the rate of heat flow along two coaxial cylinders (see [1]). There are many articles
which deal with inequalities involving the logarithmic mean and other famous means,
see e.g. [1], [2], [4], [10] and [15]. In [17], the logarithmic mean was generalized to
a whole family of means, which are now known as Stolarsky means. We will examine
those in the next section.
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For convenience, from now on we use the symbols ↑ and ↓ to denote “strictly
increasing” and “strictly decreasing”, respectively. For functions with multiple argu-
ments, the relevant argument is appended to the arrow. For example, “↑ y” means
“strictly increasing with respect to y”. Moreover, we always assume a �= b unless
otherwise stated.

Step 1. Firstly, we want to find a function e : J× J → R with the property that for
every closed subinterval [a,b] ⊆ J , the restriction of

h(x) = e(a,x)+ e(x,b)

to [a,b] attains its minimum at a unique

x∗ = M (a,b)

in [a,b] . We do not require that e(x,y) is a distance. It may attain negative values and
it may even be non-symmetric. Actually, it may be defined only for x � y .

For the logarithmic mean over P , it seems quite natural to introduce, as a possible
candidate for e : P×P → R , the function

e(x,y) = x lny− y lnx. (7)

To justify this, let us rewrite the definition

x∗ =
a−b

lna− lnb

of the logarithmic mean as

a
x∗

− lna− b
x∗

+ lnb = 0,

which is valid since x∗ > 0, because all x > 0. Now we are looking for a function f (x)
such that its derivative is given by

f ′(x) =
a
x
− lna− b

x
+ lnb.

By integrating with respect to x , and ignoring the possible constant, we get

f (x) = (a lnx− x lna)+ (x lnb−b lnx),

which is nothing but e(a,x)+e(x,b) , where e is as in (7). This should explain why we
chose e(x,y) as a good candidate. Now, working straightforward, we see that e(x,y)
does indeed work.

Thus let

h(x) = e(a,x)+ e(x,b) = a lnx− x lna+ x lnb−b lnx.
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The first derivative of h is given by

h′(x) =
a
x
− lna+ lnb− b

x
.

So the critical points of h are the solutions of h′(x) = 0, i.e., the single value

x∗ =
a−b

lna− lnb
.

This critical point of h is the logarithmic mean that we investigate. Furthermore, the
second derivative of h is

h′′ =
b−a
x2 > 0

in [a,b] , and the function h is strictly convex in [a,b] . Thus x∗ is the unique minimum
of h in [a,b] .

Step 2. Secondly, we want to write this function e(x,y) as a symmetric difference of
another function g(x,y) which is ↓ x or ↑ y . So we want

e(x,y) = g(x,y)−g(y,x).

Let us note here that, equivalently, we could have written

e(x,y) = g(y,x)−g(x,y),

with g being ↓ y or ↑ x . To see the equivalence note that

e(x,y) = g(x,y)−g(y,x) = [−g(y,x)]− [−g(x,y)].

In our example we have g(x,y) = x lny, which is ↑ y and so we are fine.

Step 3. Thirdly, suppose that the assumptions in steps 1 and 2 hold. Then there is
a way to construct a distance d on J that produces the mean M , and thus M is a
distance mean produced by d . In this final step, we will prove this fact. So let

e(x,y) = g(x,y)−g(y,x),

and we have the next two cases:

(A) If g is ↑ y , we use as a distance

d(x,y) = |g(x,y)−g(x,x)|+ |g(y,x)−g(y,y)|.
Let us first see that d is indeed a distance. Obviously, d(x,y) � 0 and the strict
monotonicity of g in its second argument guarantees that

d(x,y) = 0 ⇐⇒
(
g(x,y) = g(x,x) and g(y,x) = g(y,y)

)
⇐⇒ x = y.
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Next, for each x ∈ [a,b] we have

d(a,x)+d(x,b)
= g(a,x)−g(a,a)+g(x,x)−g(x,a)+g(x,b)−g(x,x)+g(b,b)−g(b,x)
= g(a,x)−g(x,a)+g(x,b)−g(b,x)+ [g(b,b)−g(a,a)]
= e(a,x)+ e(x,b)+ [g(b,b)−g(a,a)]
= h(x)+ [g(b,b)−g(a,a)],

and it is clear that d(a,x)+ d(b,x) has the same unique minimum as h(x) , at
x∗ = M (a,b) in [a,b] , because the last term g(b,b)− g(a,a) is just a constant
that is independent of x . The proof for this case is complete.

(B) If g is ↓ x , we use as a distance

d(x,y) = |g(x,y)−g(y,y)|+ |g(y,x)−g(x,x)|,

and the proof is analogous to case (A).

By applying the above result to the logarithmic mean function we easily get

d(x,y) = |x lny− x lnx|+ |y lny− y lnx|
= x| lny− lnx|+ y| lny− lnx|
= (x+ y)| lny− lnx|,

and we have constructed a distance for the logarithmic mean. Hence, we have shown
that the logarithmic mean is a distance mean. This answers affirmatively the open
question posed in [7].

The next theorem, which is the main result of the article, summarizes our investi-
gation:

THEOREM 1. Let J⊆R be an interval and M : J×J→ J be a mean over J . Let
e : J×J → R be a function such that for any closed subinterval [a,b] ⊆ J with a < b
the function h : [a,b] → R defined by h(x) = e(a,x)+ e(x,b) attains its minimum at a
unique x∗ ∈ [a,b] with x∗ = M (a,b). Let e(x,y) be expressible as

e(x,y) = g(x,y)−g(y,x),

where g : J×J→R is a function for which g(x,y) is ↓ x or ↑ y. (Equivalently, we may
assume that e(x,y) = g(y,x)−g(x,y) and g(x,y) is ↑ x or ↓ y.)

Then M is produced by the distance d : J×J → [0,∞) defined by

1. d(x,y) = |g(x,y)−g(x,x)|+ |g(y,x)−g(y,y)| , if g(x,y) is ↑ y, or

2. d(x,y) = |g(x,y)−g(y,y)|+ |g(y,x)−g(x,x)| , if g(x,y) is ↓ x .
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One might claim that the above assumptions are quite strict, but as we will see
in the next sections they are not. Theorem 1 will help us to find appropriate new dis-
tances for famous means, where among them are the Stolarsky means which appeared
in [17]. This Section ends up by applying Theorem 1 to find a distance that produces
the geometric mean.

Let
g(x,y) =

y
x

for x,y > 0. Then g is ↑ y and we have that

e(x,y) = g(x,y)−g(y,x) =
y
x
− x

y
,

and for 0 < a < b ,

h(x) = e(a,x)+ e(x,b) =
x
a
− a

x
+

b
x
− x

b
.

Thus,

h′(x) =
1
a

+
a
x2 − b

x2 −
1
b
,

and for h′(x∗) = 0 we get x∗ =
√

ab , i.e. the geometric mean. The second derivative is

h′′(x) =
2(b−a)

x2 > 0.

So, the geometric mean
√

ab is the unique minimum of h in [a,b] . From Theorem 1
we get that the distance defined by

d(x,y) = |g(x,y)−g(x,x)|+ |g(y,y)−g(y,x)|=
∣∣∣∣xy − y

x

∣∣∣∣=
(

1
x

+
1
y

)
|y− x|

produces the geometric mean.
Since

√
ab is a quasi-arithmetic mean, it is also a distance mean. The known

distance that produces it is given by equation (5), namely, d(x,y) = (lnx− lny)2. Note
how our distance is very different from the known distance. We will further investigate
this phenomenon in Section 5.

4. Distances of MVT-constructed means

In this section we will investigate the family of means which can be constructed
using Cauchy’s Mean Value Theorem (MVT). We will provide a partial answer to the
Open Problem 12 in [7]. Under certain conditions, Theorem 1 can be applied to gener-
ate distances which produce those means. Our approach here is to repeat the construc-
tion of those means, and then to reuse parts of their construction to generate respective
distance functions.
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We start with two functions s,u : J → R which are continuously differentiable.
We further assume that for all x ∈ J we have u′(x) �= 0. Finally, we assume that the
continuous function r defined by

r(x) =
s′(x)
u′(x)

is a bijection r : J → B to some arbitrary subset B ⊆ R . For such functions s,u let
us apply Cauchy’s MVT to a closed subinterval [a,b] ⊆ J with a < b . Since u′ is
continuous and nonzero over the whole interval J , it follows that u′ is either positive
everywhere, or negative everywhere. Hence, u is either ↑ or ↓ , thus u(a) �= u(b). We
then get that there is a c ∈ (a,b) such that

r(c) =
s′(c)
u′(c)

=
s(a)− s(b)
u(a)−u(b)

. (8)

Note that in particular, Cauchy’s MVT guarantees that the right-hand side is always in
the image of r , that is,

s(a)− s(b)
u(a)−u(b)

∈ B.

This is why we don’t need to make any assumptions on B , apart from being a subset
of R .

Applying the inverse of r , which is r−1 : B → J , it follows that

c = r−1
(

s(a)− s(b)
u(a)−u(b)

)
.

So c is unique and we even have a closed form for it. Finally, we want to define our
mean function M : J×J→ J to be exactly that c . However, so far we defined M (a,b)
only for a < b and ensured the internality property for that case. For b < a we observe
that the above form is symmetric in a and b , so we just use it also for b < a and notice
that M (a,b) = M (b,a) . For a = b we define M (a,a) = a , as this is the only possible
choice that preserves the internality property.

In summary, for each pair of functions (s,u) we obtain a function M : J×J → J

with

M (a,b) =

{
r−1
(

s(a)−s(b)
u(a)−u(b)

)
a �= b

a a = b
(9)

that satisfies both the internality and the symmetry property and so is indeed a mean
function.

The idea of using a MVT to describe a family of means is not new. In [7], Cauchy’s
MVT was also used as a method of generating new means. In [17] the MVT was used
to create new means and specifically a class that generalizes the logarithmic mean, and
in [6] and [14] the MVT for integrals was used to generate another family of means.

Let us next try to apply Theorem 1 to this family of means. We want to apply it to

g(x,y) = s(x)u(y),
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because as we will see its corresponding h function has its critical point exactly at
M (a,b) . But before we can do that, we need to ensure that g(x,y) is either ↓ x or ↑ y
in J . This requires some preparation.

First, note that if we add a constant value to s(x) , equation (8) still holds, for the
same value of c . The constant vanishes in the difference s(a)− s(b) as well as in the
derivative s′(c) . Moreover, reversing the sign of s(x) won’t change the resulting mean,
since this also reverses the sign of s(a)− s(b) and at the same time reverses the sign
of s′(c) , so (8) still holds for the same c . Those changes can also be applied to u(x)
without changing the resulting mean function M (a,b) in any way.

Second, let us remember that u is either ↑ or ↓ . Without loss of generality we
may assume that u is ↑ . Otherwise, we just reverse the sign of u and arrive at the same
mean function M (a,b) .

Reconsidering g(x,y) = s(x)u(y) , we are pleasantly surprised that the property of
g being ↑ y is almost given. We just need to ensure that s(x) > 0 for all x ∈ J . Note
that it is sufficient for s to have any upper or lower bound. If s has a lower bound,
i.e. if we know that s(x) > sB for some perhaps negative sB ∈ R , we just use instead
s(x)− sB , moving s to the positive range. If s has an upper bound, we first reverse its
sign and then move it up as needed. Either way, we arrive at a new s(x) > 0 without
altering the mean function M (a,b) .

Let us now analyze the h function, where

h(x) = e(a,x)+ e(x,b)
= g(a,x)−g(x,a)+g(x,b)−g(b,x)
= s(a)u(x)− s(x)u(a)+ s(x)u(b)− s(b)u(x)

= s(x)
(
u(b)−u(a)

)
−u(x)

(
s(b)− s(a)

)
.

The first derivative of h is

h′(x) = s′(x)
(
u(b)−u(a)

)
−u′(x)

(
s(b)− s(a)

)
.

The critical points are given by h′(x∗) = 0, which is equivalent to (8), which has the
unique solution x∗ = M (a,b) . So h : [a,b] → R is continuously differentiable and
has exactly one critical point. If we demand that M (a,b) is a local minimum we can
finally apply Theorem 1 and arrive at the distance function

d(x,y) = |g(x,y)−g(x,x)|+ |g(y,x)−g(y,y)|
= |s(x)u(y)− s(x)u(x)|+ |s(y)u(x)− s(y)u(y)|.

Using s(x) > 0, we simplify this to

d(x,y) = s(x)|u(y)−u(x)|+ s(y)|u(x)−u(y)|
=
(
s(x)+ s(y)

)
|u(x)−u(y)|.

There’s one final trick to mention here. Sometimes we find s and u for which all
assumptions hold, but finally notice that h has a local maximum rather than minimum
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at M (a,b) . In this case we can try again with s and u switched. Now we need to
re-check that s satisfies all requirements we had formerly on u and vice versa. If they
do, we will arrive at the same mean function M (a,b) but the sign of h(x) is reversed,
converting the maximum to a minimum. This trick will be used when we analyze
Stolarsky means. However, before we get to that, let us summarize everything in a
theorem:

THEOREM 2. Let J⊆ R be an interval and s,u : J → R be continuously differen-
tiable. Let sB ∈ R be such that

either s(x) > sB for all x ∈ J, or s(x) < sB for all x ∈ J.

For all x ∈ J , let u′(x) �= 0 . Let the function r , defined by

r(x) =
s′(x)
u′(x)

,

be a bijection r : J → B to a subset B ⊆ R . Let s2,u2 : J → R be given by

s2(x) =

{
s(x)− sB if s(z) > sB for all z ∈ J

−s(x)+ sB if s(z) < sB for all z ∈ J
and

u2(x) =

{
u(x) if u is ↑
−u(x) if u is ↓ .

For every [a,b] ⊆ J with a < b, let the function h : [a,b] → R , defined by

h(x) = s2(x)
(
u2(b)−u2(a)

)
−u2(x)

(
s2(b)− s2(a)

)
,

have a local minimum at its one critical point.
Then the function M : J×J→ J with

M (a,b) =

{
r−1
(

s(a)−s(b)
u(a)−u(b)

)
a �= b

a a = b

is a mean that is produced by the distance d : J×J→ [0,∞) defined by

d(x,y) =
(
s2(x)+ s2(y)

)
|u2(x)−u2(y)|,

which can be obtained from Theorem 1 by

g(x,y) = s2(x)u2(y).

In [17] the following family of means, which generalize the logarithmic mean, was
presented (called Stolarsky means):

Sp : P×P → R

Sp(a,b) =

⎧⎨
⎩
(

ap−bp

p(a−b)

) 1
p−1

if a �= b

a if a = b
,
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where the parameter p is a real number distinct from 0 and 1. We stress that Stolarsky
means are not generally quasi-arithmetic means. This can be seen by numerical ex-
perimentation using the functional equation (1). However, for specific values of p we
get some already known quasi-arithmetic means, e.g. for p = 2 we get the arithmetic
mean, for p =−1 we get the geometric mean and for p = 1/2 we get the corresponding
power mean.

Let us now use Theorem 2 to prove that all Stolarsky means are distance means,
where we must remember that we now work in J = P :

Case 1. For p > 1 or p < 0 we choose

s(x) = xp and u(x) = x.

Both are continuously differentiable and

u′(x) = 1 �= 0.

Since s(x) > 0 and u is ↑ , we have

s2 = s and u2 = u.

Also,

r(x) =
s′(x)
u′(x)

= pxp−1

and is thus a bijection with

r−1(x) =
(

x
p

) 1
p−1

.

Expanding

M (a,b) = r−1
(

s(a)− s(b)
u(a)−u(b)

)
=
(

ap−bp

p(a−b)

) 1
p−1

= Sp(a,b),

we verify to have arrived indeed at the intended mean. Moreover,

h(x) = xp(b−a)− x(bp−ap) and

h′′(x) = p(p−1)xp−2(b−a) > 0,

so h is convex and its critical point is a minimum. The application of Theorem 2 gives
the distance

d(x,y) = (xp + yp)|x− y|
that produces Sp(a,b) .
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Case 2. For 0 < p < 1, the previous approach would lead to h′′(x) < 0, so we use
the aforementioned trick and choose instead

s(x) = x and u(x) = xp.

We verify that

u′(x) = pxp−1 �= 0, s(x) > 0, and u is ↑,
so again we have

s2 = s and u2 = u.

Note that

r(x) =
s′(x)
u′(x)

=
1

pxp−1

changed to its reciprocal, but is still a bijection with

r−1(x) =
(

1
px

) 1
p−1

.

Expanding

M (a,b) = r−1
(

s(a)− s(b)
u(a)−u(b)

)
=
(

ap−bp

p(a−b)

) 1
p−1

= Sp(a,b),

we see that we again arrived at the intended mean. Moreover,

h(x) = x(bp−ap)− xp(b−a),

so we indeed managed to reverse its sign. Now

h′′(x) = −p(p−1)xp−2(b−a) > 0,

so h is convex and its critical point is a minimum. The application of Theorem 2 gives
the distance

d(x,y) = (x+ y)|xp− yp|
that produces Sp(a,b) .

Case 3. For p → 0 Stolarsky noted that its mean approaches the logarithmic mean,
which we have already proved to be a distance mean with

d(x,y) = (x+ y)| lny− lnx|.
Alternatively, we could have constructed the same distance by applying Theorem 2 to

s(x) = x and u(x) = ln(x).
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Case 4. For p → 1 the Stolarsky mean becomes the identric mean:

S1(a,b) =

⎧⎨
⎩

1
e

(
aa

bb

)1/a−b
if a �= b

a if a = b
.

Observe that the identric mean is not a quasi-arithmetic mean (we can see this by ex-
perimenting again with the functional equation (1)). We can rewrite S1 as

S1(a,b) =

{
exp
(

a(lna−1)−b(lnb−1)
a−b

)
if a �= b

a if a = b

and this form of S1 resembles (9). So we choose

s(x) = x(lnx−1) and u(x) = x.

Both are continuously differentiable and

u′(x) = 1 �= 0.

Since u is ↑ , we have
u2 = u.

But s(x) can attain negative values, so we need to shift it. This requires some analysis
on s . Since

s′(x) = lnx,

it has exactly one critical point at x∗ = 1. Moreover,

s′′(x) =
1
x

> 0,

so s is convex and attains its minimum at x∗ , where s(x∗) = s(1) = −1. However, we
need our lower bound sB to be strictly less than s(x) , so we choose sB = −2. Hence

s2(x) = s(x)− sB = x(lnx−1)+2 > 0.

Now we continue with

r(x) =
s′(x)
u′(x)

= lnx,

which is a bijection with r−1(x) = ex. Expanding

M (a,b) = r−1
(

s(a)− s(b)
u(a)−u(b)

)
= exp

(
a(lna−1)−b(lnb−1)

a−b

)
= S1(a,b),

we verify that we arrived indeed at the identric mean. Moreover,

h(x) =
(
x(lnx−1)+2

)
(b−a)− x

(
b(lnb−1)−a(lna−1)

)
,

h′(x) = (lnx)(b−a)−
(
b(lnb−1)−a(lna−1)

)
,

h′′(x) =
b−a

x
> 0,



366 V. DIELS-GRABSCH, M. HAJJA AND P. T. KRASOPOULOS

so h is convex and its critical point is a minimum. Theorem 2 now provides the distance

d(x,y) =
(
x(lnx−1)+ y(lny−1)+4

)
|x− y|

that produces S1(a,b) .
In all cases we have found a family of distances that produce the Stolarsky means.

5. Alternative distances and quasi-M means

In this section we will use Theorem 1 to find distances for the arithmetic mean and
many other quasi-arithmetic means. While we have seen that those are distance means
(see Sections 1 and 2), we stress that our method does not just reproduce those results,
but generates different means from those already known. Moreover, we will introduce
quasi-arithmetic means through the more general concept of quasi-M means, whose
utility we will demonstrate by quickly generalizing our distance for the logarithmic
mean to a whole class of quasi-logarithmic means.

First, let us use Theorem 1 to create a distance for the arithmetic mean. We start
with J = R and

g(x,y) = x2y,

so g is ↑ y . Then
e(x,y) = g(x,y)−g(y,x) = x2y− y2x,

and in [a,b] we want to minimize the function

h(x) = e(a,x)+ e(x,b) = (b−a)

((
x− a+b

2

)2

−
(

a+b
2

)2
)

.

This convex parabola attains its minimum at the unique

x∗ =
a+b

2
= M (a,b),

which is the arithmetic mean. From Theorem 1 we can construct the distance through

d(x,y) = |g(x,y)−g(x,x)|+ |g(y,x)−g(y,y)|,

which yields
d(x,y) = (x2 + y2)|y− x|.

Note that this new distance is quite different from the usual distance for the arithmetic
mean, i.e. d(x,y) = (x− y)2, see also equation (1).

However, this new distance does equal the distance that we constructed in Sec-
tion 4 for Stolarsky mean Sp with p = 2. This was to be expected, since S2 is indeed
the arithmetic mean, and moreover we constructed the distance from the same function
g . However, we considered Stolarsky means only over J = P , while we now know that
in the case of the arithmetic mean this distance works for all of R .
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We have seen that a quasi-arithmetic mean M in two variables can be expressed
as

M (a,b) = q−1
(

q(a)+q(b)
2

)
,

where q is a monotone bijection and q−1 is its inverse function. Quasi-arithmetic
means were discussed in Sections 1 and 2, where it was stressed that they are distance
means. The definition of quasi-arithmetic means as well as their distances generalize to
any number of variables in the natural way (see equations (4), (5) and (6)), but here we
are interested in a different direction of generalization.

Let J ⊆ R be an interval,
M : J×J→ J

be an arbitrary mean function over J and

q : Jq → Ĵ

be a monotone bijection from a possibly different interval Jq to a subinterval Ĵ ⊆ J . In
analogy to quasi-arithmetic means, we want to define the quasi-M mean of M with
respect to q to be the function Mq : Jq×Jq → Jq with

Mq(a,b) = q−1
(
M (q(a),q(b))

)
.

To justify this definition, we will prove that Mq is well-defined, symmetric and has the
internality property. Note that Ĵ⊆ J being a subinterval, rather than an arbitrary subset,
plays a vital role here. Since q is a monotone bijection between intervals, both q and
q−1 are strictly monotone functions. Let

a,b ∈ Jq,

so
q(a),q(b) ∈ Ĵ.

Let (a, b) and (q(â),q(b̂)) be the increasingly ordered versions of those pairs, that is,

a = min(a,b), b = max(a,b) and

(â, b̂) =

{
(a, b) if q is ↑
(b, a) if q is ↓ .

Since Ĵ is an interval and M has the internality property, it follows that

M (q(a),q(b)) ∈ [q(â),q(b̂)] ⊆ Ĵ.

Thus we can apply q−1 to that term, showing that Mq(a,b) is well-defined. Since q−1

is strictly monotone, it follows that

Mq(a,b) ∈ q−1([q(â),q(b̂)]) = [a, b],
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so Mq has the internality property. Finally, the symmetry of Mq follows directly from
the symmetry of M .

Note that if Ĵ = J , the relation between M and Mq is interchangeable. For
example, the geometric mean is a quasi-arithmetic mean with q(x) = lnx , where Jq = P

and Ĵ = J = R , and conversely the arithmetic mean is a quasi-geometric mean with
q(x) = ex , where Jq = R and Ĵ = J = P .

Let d : J×J→ [0,∞) be a distance that produces M . Using (3), this implies

d(a′,x′)+d(x′,b′) > d(a′,M (a′,b′))+d(M (a′,b′),b′) (10)

for every closed subinterval [a′,b′] ⊆ J and x′ ∈ [a′,b′] with x′ �= M (a′,b′) .
We now want to use d to create a distance dq for Mq . So let

x ∈ [a,b]⊆ Jq, with x �= Mq(a,b).

If q is ↑ , then
q(a) � q(x) � q(b), and q(x) �= q(Mq(a,b)).

Using the definition of Mq , the latter is equivalent to

q(x) �= M (q(a),q(b)).

This means that we are allowed to apply (10) to

a′ = q(a), x′ = q(x), b′ = q(b),

which leads to

d(q(a),q(x))+d(q(x),q(b)) > d(q(a),M (q(a),q(b)))+d(M (q(a),q(b)),q(b)).

Applying the definition of Mq , we get

d(q(a),q(x))+d(q(x),q(b)) > d(q(a),q(Mq(a,b)))+d(q(Mq(a,b)),q(b)).

So we define dq : Jq×Jq → [0,∞) to be

dq(x,y) = d(q(x),q(y))

and arrive at

dq(a,x)+dq(x,b) > dq(a,Mq(a,b))+dq(Mq(a,b),b).

Since d is a distance, it is clear that dq is symmetric and that

dq(x,y) = 0 ⇔ q(x) = q(y).

The latter is equivalent to x = y because q is ↑ . So dq is really a distance, and accord-
ing to (3), dq produces Mq .
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If q is ↓ , we use instead

a′ = q(b), x′ = q(x), b′ = q(a)

and arrive at the same conclusion thanks to the symmetry of d and M .
There is an interesting connection with Theorem 1 here: Assume that d was con-

structed from g via Theorem 1. There, d(x,y) was constructed purely in terms of
g(x,y) , without using x or y directly. So if we start instead with

gq(x,y) = g(q(x),q(y)),

we arrive at the distance function

dq(x,y) = d(q(x),q(y)).

The following theorem summarizes our results.

THEOREM 3. Let J ⊆ R be an interval. Let M : J× J → J be a mean that is
produced by the distance d : J× J → [0,∞). Let Jq ⊆ R be an interval, Ĵ ⊆ J be a
subinterval and q : Jq → Ĵ be a monotone bijection.

Then the function Mq : Jq×Jq → Jq given by

Mq(a,b) = q−1(M (q(a),q(b)))

is a mean that is produced by the distance dq : Jq×Jq → [0,∞) defined by

dq(x,y) = d(q(x),q(y)).

If d was constructed from g via Theorem 1, then dq can be constructed from

gq(x,y) = g(q(x),q(y)).

If we apply Theorem 3 to our alternative distance for the arithmetic mean, we get
the following new distances for all quasi-arithmetic means, which are different from
the usual distances that produce them (see Section 2, equation (5)):

Mq(a,b) = q−1
(

q(a)+q(b)
2

)
,

dq(x,y) =
(
q(x)2 +q(y)2) |q(y)−q(x)|.

For q(x) = lnx , we get the following distance for the geometric mean, which is also
different from the distance that was found at the end of Section 3:

M (a,b) =
√

ab,

d(x,y) =
(
(lnx)2 +(lny)2) | lny− lnx|.
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For q(x) = xp , we get the following alternative distances for the power means:

M (a,b) =
(

ap +bp

2

) 1
p

,

d(x,y) =
(
x2p + y2p) |yp− xp|.

Finally, let us apply Theorem 3 to the logarithmic mean. This leads to a new family of
distances for quasi-logarithmic means:

Mq(a,b) = q−1
(

q(a)−q(b)
lnq(a)− lnq(b)

)
,

dq(x,y) =
(
q(x)+q(y)

)
|lnq(y)− lnq(x)| .

For q(x) = ex we get the following interesting distance-produced mean that is defined
on whole R :

M (a,b) = ln(ea − eb)− ln(a−b),
d(x,y) = (ex + ey) |y− x|.

For q(x) = xp with p ∈ R and p �= 0 we get the following family of distance-produced
means that are defined on P :

M (a,b) =
(

ap−bp

p(lna− lnb)

) 1
p

,

d(x,y) = (xp + yp) |p(lny− lnx)| .

6. Conclusions

We described a methodology that can be used to construct new distances which
produce many famous means. Our method is summarized in Theorem 1 and it can
be specialized in different directions. We showed in Theorem 2 how to construct dis-
tances for almost all means that can be obtained from Cauchy’s Mean Value Theo-
rem. Furthermore, we proved in Theorem 3 how to construct a distance for a mean
Mq(a,b) = q−1(M (q(a),q(b))) , where M is another mean for which a distance is
already known, and q is a monotone bijection to a subinterval. Interested readers may
find other possible specializations and applications of our method, and may also try to
construct distances that produce other known or less known means.

We will close with a few open problems:

1. It may be worth investigating the following class of Cauchy’s means, which are
also introduced in [17] and examined further in [12]:

E(a,b; p,q) =
(

q(ap−bp)
p(aq −bq)

) 1
p−q

,
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for reals p , q where p,q �= 0 and p �= q , and for a,b > 0. Observe that for p = 1
or q = 1 these means give the family of Stolarsky means which we have already
analyzed in Section 4.

2. The contraharmonic mean M : P×P→ P , which is given by

M (a,b) =
a2 +b2

a+b
,

showed a surprising resistance against our method, despite being a very simple
mean function. We failed to construct a distance for this mean using any of our
theorems. It would be interesting to know if we missed an important special-
ization of Theorem 1, or if the contraharmonic mean is actually not a distance-
produced mean at all.

3. We demonstrated that the same mean can have very different distance functions.
For example, the arithmetic mean is produced by the distances

d(x,y) = (x2 + y2)|y− x| and d(x,y) = (x− y)2.

Do these new examples give rise to even more alternative distances? Does this
get us closer to a classification of the family of distances that produce the same
mean?
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