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BEST CONSTANT OF THE CRITICAL HARDY–LERAY

INEQUALITY FOR CURL–FREE FIELDS IN TWO DIMENSIONS

NAOKI HAMAMOTO AND FUTOSHI TAKAHASHI ∗

(Communicated by I. Perić)

Abstract. In this note, we prove that the best-possible constant of the critical Hardy-Leray in-
equality for curl-free fields is 1/4 , just the same value as the one for all smooth fields. This fact
contrasts sharply with the recent result on the subcritical Hardy-Leray inequality for curl-free
fields by the authors [6], and shows the criticality of the inequality.

1. Introduction

Let [0,∞)× [0,2π)� (ρ ,ϕ) �→ x = t(x1,x2) = t(ρ cosϕ ,ρ sinϕ) ∈ R
2 denote the

polar coordinate system in R
2 composed of the radius ρ and the angle ϕ . Along these

coordinates, define the two vector fields

eρ = t(cosϕ ,sinϕ), eϕ = t(−sinϕ ,cosϕ)

which form an orthonormal basis on R
2\{0} with respect to the standard scalar product

x · y = ∑k=1,2 xkyk . In terms of such a basis, let us expand every smooth vector field

u = t(u1,u2) and the gradient operator ∇ = t( ∂
∂x1

, ∂
∂x2

) as

u = eρuρ + eϕuϕ , ∇ = eρ ∂ρ +
1
ρ

eϕ∂ϕ ,

where the scalar fields uρ = eρ ·u and uϕ = eϕ ·u are the radial-angular components of
u , and where ∂ρ = eρ ·∇ and ∂ϕ = eϕ ·∇ are the partial radial-angular derivatives. Now,
let B1(0) denote the unit ball in R

2 with center the origin, and let C∞
c (B1(0))2 denote

the set of smooth vector fields with compact support on B1(0) . Then the following
critical Hardy-Leray inequalities hold for any u = t(u1,u2) ∈C∞

c (B1(0))2 :

1
4

∫

B1(0)

|u(x)|2

|x|2
(
log 1

|x|
)2 dx �

∫

B1(0)

∣∣∣∣ x
|x| ·∇u(x)

∣∣∣∣
2

dx =
∫

B1(0)

|∂ρu(x)|2dx,

1
4

∫

B1(0)

|u(x)|2

|x|2
(
log 1

|x|
)2 dx �

∫

B1(0)

|∇u(x)|2dx =
∫

B1(0)

(
|∂ρu(x)|2 +

1
ρ2 |∂ϕu(x)|2

)
dx,
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where ∇u(x) =
(

∂ui(x)
∂x j

)
1�i, j�2

denotes the Jacobi matrix of u ; see [9], also [8], [11].

Both the values 1/4 on the left-hand sides are known to be the best, in the sense that

1
4

= inf
u∈C∞

c (B1(0))2

u�=0

∫
B1(0)

∣∣∣ x
|x| ·∇u(x)

∣∣∣2 dx
∫
B1(0)

|u(x)|2
|x|2

(
log 1

|x|
)2 dx

= inf
u∈C∞

c (B1(0))2

u�=0

∫
B1(0) |∇u(x)|2 dx

∫
B1(0)

|u(x)|2
|x|2

(
log 1

|x|
)2 dx

holds true.
In this note, we study whether the best constant 1/4 could change when we put

curl-free conditions on admissible vector fields. More precisely, we show the following:

THEOREM 1. Let us define two constant numbers C1 � C0(� 1/4) by the formu-
lae

C0 = inf
u∈A

∫
B1(0) |∂ρu|2dx

∫
B1(0)

|u|2
ρ2

(
log 1

ρ

)2 dx
, (1)

C1 = inf
u∈A

∫
B1(0)

(
|∂ρu|2 + 1

ρ2 |∂ϕu|2
)

dx
∫
B1(0)

|u|2
ρ2

(
log 1

ρ

)2 dx
, (2)

where

A =
{

u ∈C∞
c (B1(0))2 \ {0}

∣∣∣curlu =
∂u2

∂x1
− ∂u1

∂x2
= 0

}
.

Then we have C0 = C1 = 1/4 .

REMARK 1. We note that the vector field u⊥ = t(−u2,u1) is divergence-free
(solenoidal) if and only if u is curl-free, and that the identities

|u| = |u⊥|, |∂ρu| = |∂ρu⊥| and |∂ϕu| = |∂ϕu⊥|
always hold true. Thus the above theorem still holds even if we replace A by

B =
{
u ∈C∞

c (B1(0))2 \ {0}|divu = 0
}

.

In addition, noticing (from the Poincaré lemma) that every curl-free field u satis-
fies u = ∇φ for some φ ∈C∞

c (B1(0)) , we obtain the following corollary, which seems
interesting in itself:

COROLLARY 1. Define

C2 = inf
φ∈C∞

c (B1(0))
φ �=0

∫
B1(0) |Δφ |2dx

∫
B1(0)

|∇φ |2
|x|2

(
log 1

|x|
)2 dx

.

Then we have C2 = 1
4 .
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The result of Theorem 1 is a striking contrast to the recent work by the authors [6],
where we studied the (subcritical) Hardy-Leray inequality (with a radial power weight)
for curl-free vector fields; we proved that the best constant is strictly larger than that
of the same inequality for unconstrained vector fields, by explicitly computing it with
the aid of the spectral decomposition of the Laplace-Beltrami operator on the sphere. If
we put solenoidal (divergence-free) constraint on the admissible vector fields, similar
phenomena occur for subcritical Hardy-Leray inequalities [1], [3], [4]. See also [5],
[2], [7], [10] for related results.

2. Proofs

It suffices to check C1 = 1/4, since this equation together with C1 � C0 � 1/4
directly proves C0 = 1/4.

First of all, the curl of any vector field u = eρuρ + eϕuϕ can be expressed as

curlu = ∇×u = ∂ρuϕ +
1
ρ

uϕ − 1
ρ

∂ϕuρ

in terms of the polar coordinates, which one can directly verify by the elementary vector
calculus. Hence the condition that u is curl-free is equivalent to the equation

uϕ + ρ∂ρuϕ = ∂ϕuρ . (3)

In order to evaluate C1 in (2), let us start with the inequality

C1

∫
B1(0)

|u|2

ρ2
(
log 1

ρ

)2 dx �
∫

B1(0)

(
|∂ρu|2 +

1
ρ2 |∂ϕu|2

)
dx.

Change the radius ρ into a (alternative) radial coordinate t by the Emden transforma-
tion

t = log(1/ρ)

together with its differential rule and the measure transformation:

∂t = −ρ∂ρ , dx = ρdρdϕ = −ρ2dtdϕ .

Then the curl-free condition (3) and the above integral inequality are changed into

uϕ − ∂tuϕ = ∂ϕuρ ,

C1

∫ 2π

0

∫ ∞

0

|u|2
t2

dtdϕ �
∫ 2π

0

∫ ∞

0

(|∂tu|2 + |∂ϕu|2)dtdϕ .

Next, we introduce a new vector field v(= vρeρ + vϕeϕ) by the formula

u =
√

t v
(
or equivalently u(x) =

√
log(1/|x|)v(x)

)
.
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Then the curl-free equation and the integral inequality above can be re-written as(
1− 1

2t

)
vϕ − ∂tvϕ = ∂ϕvρ ,

(
C1 − 1

4

)∫ 2π

0

∫ ∞

0

|v|2
t

dtdϕ �
∫ 2π

0

∫ ∞

0

(|∂tv|2 + |∂ϕv|2) tdtdϕ .

To further proceed, let us rechange the radial coordinate by the transformation formula
s = log t (together with the differential rules ∂t = e−s∂s and ds = dt/t ). Then the above
equation and inequality are again re-written as(

es− 1
2

)
vϕ − ∂svϕ = es∂ϕvρ , (4)

(
C1− 1

4

)∫ 2π

0

∫ ∞

−∞
|v|2dsdϕ �

∫ 2π

0

∫ ∞

−∞

(|∂sv|2 + e2s|∂ϕv|2)dsdϕ . (5)

Now let us choose a test vector field of the form

v(s,ϕ) = eρ f (s) (6)

or equivalently vρ = f (s) and vϕ ≡ 0, where f ∈C∞
c (R)\{0} is a function depending

only on s . Then it is clear that the v in (6) satisfies the curl-free condition (4). By
testing (5) by v = v(s,ϕ) in (6), we have

0 �
(

C1− 1
4

)
= inf

v∈A

∫ 2π
0

∫ ∞
−∞

(|∂sv|2 + e2s|∂ϕv|2)dsdϕ∫ 2π
0

∫ ∞
−∞ |v|2dsdϕ

(7)

� inf
f∈C∞

c (R)\{0}

∫ ∞
−∞(( f ′(s))2 + e2s( f (s))2)ds∫ ∞

−∞( f (s))2ds
.

Subsequently, let us choose a sequence { fn}n∈N ⊂ C∞
c (R) \ {0} of functions by the

formula
fn(s) = f

( s
n

+n
)

∀n ∈ N,

and test by fn the last-hand side of (7). Then we confirm that∫ ∞
−∞

(
( f ′n(s))2 + e2s( fn(s))2

)
ds∫ ∞

−∞( fn(s))2ds

=

∫ ∞
−∞

(
n−2( f ′(s))2 + e2(ns−n2)( f (s))2

)
ds∫ ∞

−∞( f (s))2ds

� 1
n2

∫ ∞
−∞( f ′(s))2ds∫ ∞
−∞( f (s))2ds

+ e2(nR f−n2) ∀n ∈ N,

where Rf := sup
s∈R, f (s) �=0

|s| is a finite positive number independent of n . Passing to the

limit n → ∞ , we then see that∫ ∞
−∞

(
( f ′n(s))2 + e2s( fn(s))2

)
ds∫ ∞

−∞( fn(s))2ds
= O(n−2)+O

(
exp

(
2(nRf −n2)

)) → 0,
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and hence that

inf
f∈C∞

c (R)\{0}

∫ ∞
−∞

(
( f ′(s))2 + e2s( f (s))2

)
ds∫ ∞

−∞( f (s))2ds
= 0.

Therefore, we obtain C1 = 1/4 from (7). �

Proof of Corollary 1. Notice that B1(0) is simply connected, and we have the
equivalence relation

u ∈ A ⇐⇒ there exists φ ∈C∞
c (B1(0))\ {0} such that u = ∇φ

by the Poincaré lemma. Hence, applying this fact to Theorem 1, we have

1
4

= inf
u∈A

∫
B1(0) |∇u(x)|2 dx

∫
B1(0)

|u(x)|2
|x|2

(
log 1

|x|
)2 dx

= inf
φ∈C∞

c (B1(0))\{0}

∫
B1(0)

∣∣D2φ(x)
∣∣2 dx

∫
B1(0)

|∇φ(x)|2
|x|2

(
log 1

|x|
)2 dx

, (8)

where D2φ = ( ∂ 2φ
∂xix j

)1�i, j�2 is the Hessian matrix of φ . On the other hand, by using

the elementary identity

|D2φ |2 =
2

∑
i, j=1

(
∂ 2φ
∂xix j

)2

= div

(
1
2

∇|∇φ |2 − (Δφ)∇φ
)

+(Δφ)2,

an integration by parts yields that
∫
B1(0) |D2φ |2dx =

∫
B1(0) |Δφ |2dx . Combining this

result with the numerator on the last-hand side of (8), we get C2 = 1/4. �
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