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Abstract. Let T = (T1, . . . ,Td) be a d -tuple of operators on a complex Hilbert space H . The
spherical Aluthge transform of T is the d -tuple given by T̂ := (

√
PV1

√
P, . . . ,

√
PVd

√
P) where

P :=
√

T ∗
1 T1 + . . .+T ∗

d Td and (V1, . . . ,Vd) is a joint partial isometry such that Tk = VkP for
all 1 � k � d . In this paper, we prove several inequalities involving the joint numerical radius
and the joint operator norm of T̂ . Moreover, a characterization of the joint spectral radius of an
operator tuple T via n -th iterated of spherical Aluthge transform is established.

1. Introduction and Preliminaries

Throughout this paper, H will be a complex Hilbert space, with the inner product
〈·, ·〉 and the norm ‖ · ‖ . B(H ) stands for the Banach algebra of all bounded linear
operators on H and I denotes the identity operator on H . In all that follows, by
an operator we mean a bounded linear operator. The range and the null space of an
operator T are denoted by R(T ) and N (T ) , respectively. Also, T ∗ will be denoted
to be the adjoint of T . An operator T is called positive if 〈Tx,x〉 � 0 for all x ∈ H ,
and we then write T � 0. Further, the square root of every positive operator T is
denoted by T

1
2 . If T ∈ B(H ) , then the absolute value of T is denoted by |T | and

given by |T | = (T ∗T )
1
2 .

For T ∈ B(H ) , the spectral radius of T is defined by

r(T ) = sup{|λ | ; λ ∈ σ(T )} ,

where σ(T ) denotes the spectrum of T . Moreover, the numerical radius and operator
norm of T are denoted by ω (T ) and ‖T‖ respectively and they are given by

ω (T ) = sup{|〈Tx,x〉| ; x ∈ H ,‖x‖ = 1}

and
‖T‖ = sup{‖Tx‖ ; x ∈ H ,‖x‖ = 1} .
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It is well-known that for T ∈ B(H ) we have

‖T‖
2

� max

{
r(T ),

‖T‖
2

}
� ω(T ) � ‖T‖. (1)

It has been shown in [36] that if T ∈ B(H ) , then

ω(T ) = sup
θ∈R

∥∥∥ℜ(eiθ T )
∥∥∥, (2)

where ℜ(X) := X+X∗
2 for a given operator X . For more results, we refer the reader to

the book by Gustafson and Rao [20].
An operator U ∈ B(H ) is said to be a partial isometry if ‖Ux‖ = ‖x‖ for every

x∈N (U)⊥ . Let T =U |T | be the polar decomposition of T ∈B(H ) with U is a par-

tial isometry. The Aluthge transform of T was first defined in [1] by T̃ := |T | 1
2U |T | 1

2 .
This transformation has attracted considerable attention over the last two decades (see,
for example, [2, 9, 16, 23, 24, 27, 37]). The following properties of T̃ are well-known
(see [23]):

(i) ‖T̃‖ � ‖T‖ ,

(ii) r(T̃ ) = r(T ) ,

(iii) ω(T̃ ) � ω(T ) .

Let T = (T1, . . . ,Td) ∈ B(H )d be a d -tuple of operators. The joint numerical
range of T is introduced by A.T. Dash [15] as:

JtW (T) = {(〈T1x,x〉, . . . ,〈Tdx,x〉) ; x ∈ H , ‖x‖ = 1} .

If d = 1, we get the definition of the classical numerical range of an operator T , denoted
by W (T ) , which is firstly introduced by Toeplitz in [33]. It is well-known that W (T )
is convex (see [28, 19]). Unlike the classical numerical range, JtW(T) may be non
convex for d � 2. For a survey of results concerning the convexity of JtW(T) , the
reader may see [15, 29] and their references. The joint numerical radius of an operator
tuple T = (T1, . . . ,Td) is defined in [12] as

ω(T) = sup{‖λ‖2 ;λ = (λ1, . . . ,λd) ∈ JtW (T)}

= sup

⎧⎨⎩
(

d

∑
k=1

|〈Tkx,x〉|2
) 1

2

; x ∈ H , ‖x‖ = 1

⎫⎬⎭ .

It was shown in [4] that for an operator tuple T = (T1, . . . ,Td) ∈ B(H )d , we have

ω(T) = sup
(λ1,...,λd)∈Bd

ω(λ1T1 + . . .+ λdTd), (3)
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where Bd denotes the open unit ball in Cd with respect to the euclidean norm, and Bd

is its closure i.e.

Bd :=

{
λ = (λ1, . . . ,λd) ∈ Cd ; ‖λ‖2

2 :=
d

∑
k=1

|λk|2 � 1

}
.

Given a d -tuple T = (T1, . . . ,Td) of operators on H , the joint norm of T is
defined as

‖T‖ := sup

⎧⎨⎩
(

d

∑
k=1

‖Tkx‖2

) 1
2

; x ∈ H , ‖x‖ = 1

⎫⎬⎭ .

Notice that ‖ ·‖ and ω(·) are equivalent norms on B(H )d . More precisely, for every
T = (T1, . . . ,Td) ∈ B(H )d we have

1

2
√

d
‖T‖ � ω(T) � ‖T‖. (4)

Moreover, the inequalities in (4) are sharp (see [5, 31]).

Let T = (T1, . . . ,Td)∈B(H )d be a d -tuple of operators, and consider S =

⎛⎜⎝T1
...

Td

⎞⎟⎠
as an operator from H into H := ⊕d

i=1H , that is,

S =

⎛⎜⎝T1
...

Td

⎞⎟⎠ : H → H, x �→ t(T1x, . . . ,Tdx). (5)

Then, we have S∗S = (T ∗
1 , . . . ,T ∗

d )

⎛⎜⎝T1
...

Td

⎞⎟⎠=
d

∑
k=1

T ∗
k Tk . Since S is an operator from H

into H , then S has a classical polar decomposition S = VP , that is,⎛⎜⎝T1
...

Td

⎞⎟⎠=

⎛⎜⎝V1
...

Vd

⎞⎟⎠P =

⎛⎜⎝V1P
...

VdP

⎞⎟⎠ ,

where V =

⎛⎜⎝V1
...

Vd

⎞⎟⎠ is a partial isometry from H to H and P is the positive operator

on H given by

P = (S∗S)
1
2 =

√
T ∗
1 T1 + . . .+T∗

d Td .
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So R := V ∗V = (V ∗
1 , . . . ,V ∗

d )

⎛⎜⎝V1
...

Vd

⎞⎟⎠ =
d

∑
k=1

V ∗
k Vk is the orthogonal projection onto the

initial space of V which is(
d⋂

i=1

N (Ti)

)⊥
= N (S)⊥ = N (P)⊥ =

(
d⋂

i=1

N (Vi)

)⊥
. (6)

For T = (T1, . . . ,Td) ∈ B(H )d , the spherical Aluthge transform of T is defined
as

T̂ = (T̂1, . . . , T̂d) :=
(√

PV1

√
P, . . . ,

√
PVd

√
P
)

(cf. [10], [11], [25]).

This transformation has been recently investigated by C. Benhida et al. in [6]. It
should be mention here that T̂i =

√
PVi

√
P is not the Aluthge transform of Ti (for

i ∈ {1, . . . ,d} ). Further, the spherical Duggal transform of T is defined, as in [26], by

TD = (TD
1 , . . . ,TD

d ) := (PV1, . . . ,PVd) .

Notice that for i ∈ {1, . . . ,d} , the operator TD
i = PVi is not the Duggal transform of Ti

which is first referred to in [17]. When the operators Tk are pairwise commuting, we
say that T is a commuting d -tuple.

Let T = (T1, . . . ,Td) ∈ B(H )d be a commuting d -tuple of operators.There are
several different notions of a spectrum. For a good description, the reader is referred to
[14] and the references therein. There is a well-known notion of a joint spectrum of a
commuting d -tuple T called the Taylor joint spectrum denoted by σT (T) (see [34]).
It is shown in [6] that σT (T̂) = σT (T) for commuting T ∈ B(H )d . The joint spectral
radius of T is defined to be the number

r(T) = sup{‖λ‖2 ;λ = (λ1, . . . ,λd) ∈ σT (T)}.
It should be mention here that Chō and Z̀elazko proved in [13] that this definition of
r(T) is independent of the choice of the joint spectrum of T . Furthermore, an analogue
of the Gelfand-Beurling spectral radius formula for single operators has been estab-
lished by Müller and Soltysiak in [30] for commuting tuples. Let T = (T1, . . . ,Tm) ∈
B(H )m and S = (S1, . . . ,Sn) ∈ B(H )n . Then the product TS is defined by

TS = (T1S1, . . . ,T1Sn,T2S1, . . . ,T2Sn, . . . ,TmS1, . . . ,TmSn) ∈ B(H )mn.

Especially, T2 = TT and Tn+1 = TTn . It was shown in [30] (cf. [7]) that if T is
commuting, then the joint spectral radius of T is given by

r(T) = lim
n→∞

‖Tn‖ 1
n . (7)

In this paper, we shall show several inequalities for spherical Aluthge transform which
are known in the single operator case in Sections 2 and 3. Then, in Section 4 we shall
show a characterization of joint spectral radius via n -th iterated of spherical Aluthge
transform. It is an extension of the formula lim

n→∞
‖T̃n‖ = r(T ) , which is proved by the

second author in [37], where T̃n means the n -th iterated of Aluthge transform of a
single operator (see [37]).
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2. Basic inequalities

In this section, we present basic inequalities for spherical Aluthge transform.

THEOREM 1. Let T = (T1, . . . ,Td) ∈ B(H )d . Then,

‖T̂‖ � ‖T‖.

In order to prove our first result, we need the following lemmas.

LEMMA 1. Let T = (T1, . . . ,Td) ∈ B(H )d . Then

‖T‖ =

∥∥∥∥∥ d

∑
k=1

T ∗
k Tk

∥∥∥∥∥
1
2

.

Proof. Since ∑d
k=1 T ∗

k Tk � 0, then it follows that

‖T‖2 = sup
‖x‖=1

d

∑
k=1

‖Tkx‖2 = sup
‖x‖=1

〈
d

∑
k=1

T ∗
k Tkx,x〉 =

∥∥∥∥∥ d

∑
k=1

T ∗
k Tk

∥∥∥∥∥ . �

LEMMA 2. Let A,Xk ∈ B(H ) for k = 1,2, . . . ,d . Then∥∥∥∥∥ d

∑
k=1

X∗
k AXk

∥∥∥∥∥�
∥∥∥∥∥ d

∑
k=1

X∗
k Xk

∥∥∥∥∥‖A‖.
Proof. It can be seen that

∥∥∥∥∥ d

∑
k=1

X∗
k AXk

∥∥∥∥∥=

∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎝
X∗

1 · · · X∗
d

0 · · · 0
...

...
0 · · · 0

⎞⎟⎟⎟⎠
⎛⎜⎝A

. . .
A

⎞⎟⎠
⎛⎜⎝X1 0 · · · 0

...
...

...
Xd 0 · · · 0

⎞⎟⎠
∥∥∥∥∥∥∥∥∥

�

∥∥∥∥∥∥∥
⎛⎜⎝A

. . .
A

⎞⎟⎠
∥∥∥∥∥∥∥
∥∥∥∥∥∥∥
⎛⎜⎝X1 0 · · · 0

...
...

...
Xd 0 · · · 0

⎞⎟⎠
∥∥∥∥∥∥∥

2

= ‖A‖

∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎝
X∗

1 · · · X∗
d

0 · · · 0
...

...
0 · · · 0

⎞⎟⎟⎟⎠
⎛⎜⎝X1 0 · · · 0

...
...

...
Xd 0 · · · 0

⎞⎟⎠
∥∥∥∥∥∥∥∥∥

= ‖A‖
∥∥∥∥∥ d

∑
k=1

X∗
k Xk

∥∥∥∥∥ .
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This proves the desired inequality. �
Proof of Theorem 1. First of all, we notice that, in view of Lemma 1, we have

‖T‖2 =

∥∥∥∥∥ d

∑
k=1

T ∗
k Tk

∥∥∥∥∥= ‖P‖2.

Further, by using Lemma 2, we see that

‖T̂‖2 =

∥∥∥∥∥ d

∑
k=1

T̂k
∗
T̂k

∥∥∥∥∥
=

∥∥∥∥∥ d

∑
k=1

P
1
2V ∗

k PVkP
1
2

∥∥∥∥∥
� ‖P‖

∥∥∥∥∥ d

∑
k=1

P
1
2V ∗

k VkP
1
2

∥∥∥∥∥= ‖P‖ · ‖P‖= ‖T‖2,

where the third equation follows from the fact that ∑d
k=1V ∗

k Vk is a projection onto
R(P) .

Next, we shall show inequalities of joint numerical radius for spherical Aluthge
transform. This discussion will be divided into two parts. We treat non-commuting
tuples of operators in the first part.

THEOREM 2. Let T = (T1, . . . ,Td) ∈ B(H )d . Then,

ω(T̂) � 1
2

ω(T)+
1
2

ω
(
TD). (8)

To prove the result, we will use the following theorems.

THEOREM A. ([21, 32]) Let T ∈ B(H ) . Then

W (T ) =
⋂

μ∈C

{λ ∈ C ; |λ − μ | � ‖T − μI‖}.

THEOREM B. ([8], [18, Theorem 3.12.1]) Let A be a self-adjoint invertible oper-
ator and X ∈ B(H ) . Then

2‖X‖ � ‖AXA−1 +A−1XA‖.
Proof of Theorem 2. In view of (3), we have

ω(T) = sup
(λ1,...,λd)∈Bd

ω(λ1T1 + . . .+ λdTd) = sup
(λ1,...,λd)∈Bd

ω(Uλ P), (9)

ω(T̂) = sup
(λ1,...,λd)∈Bd

ω(P
1
2Uλ P

1
2 ) and ω

(
TD)= sup

(λ1,...,λd)∈Bd

ω(PUλ ), (10)
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where Uλ = λ1V1 + . . .+ λdVd . We shall prove

W (P
1
2Uλ P

1
2 ) ⊆W

(
Uλ P+PUλ

2

)
,

where W (X) means the closure of numerical range of X ∈ B(H ) . By taking into
consideration Theorem A, it suffices to prove the following norm inequality.

‖P 1
2Uλ P

1
2 − μI‖ �

∥∥∥∥Uλ P+PUλ
2

− μI

∥∥∥∥ (11)

for all μ ∈ C .
For ε > 0, let Pε := P+ εI > 0. Then Pε is positive invertible. Then by Theorem

B, we have

2‖P
1
2

ε Uλ P
1
2

ε − μI‖ � ‖P
1
2

ε (P
1
2

ε Uλ P
1
2

ε − μI)P− 1
2

ε +P
− 1

2
ε (P

1
2

ε Uλ P
1
2

ε − μI)P
1
2

ε ‖
= ‖PεUλ +Uλ Pε −2μI‖.

By letting ε ↘ 0, we get (11), and hence

W (P
1
2Uλ P

1
2 ) ⊆W

(
Uλ P+PUλ

2

)
⊆ 1

2

{
W (PUλ )+W (Uλ P)

}
.

Therefore, we get

ω(P
1
2Uλ P

1
2 ) � 1

2

(
ω(PUλ )+ ω(UλP)

)
,

which in turn implies, by taking the supremum over all (λ1, . . . ,λd) ∈ Bd , that

ω(T̂) � 1
2

ω(T)+
1
2

ω
(
TD).

Hence, the proof is complete.
In the second part of this discussion, we shall treat commuting tuples of operators.

THEOREM 3. Let T = (T1, . . . ,Td) ∈B(H )d be a commuting tuple of operators.
Then

ω(T̂) � ω(T).

To prove this, we will introduce the following lemma.

LEMMA 3. Let T= (T1, . . . ,Td)∈B(H )d , and let Tj =VjP with P = (∑d
j=1 T ∗

j Tj)
1
2 .

Then T is commuting if and only if

VjPVk = VkPVj

holds for j,k = 1, . . . ,d .
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Proof. Since TjTk = TkTj , we have VjPVkP = VkPVjP , that is, VjPVk = VkPVj

holds on R(P) . By (6), R(P)
⊥

= N (P) =
d⋂

k=1

N (Vk) ⊆ N (Vk) for k = 1, . . . ,d .

Hence we have VjPVk = VkPVj = 0 on N (P) . Therefore VjPVk = VkPVj holds on
H = R(P)⊕N (P) . The converse implication is obvious. Thus the proof is com-
pleted. �

Proof of Theorem 3. Since (8), we have only to prove the following inequality:

ω
(
TD)� ω(T),

that is, we will prove that for every (λ1, . . . ,λd) ∈ Bd , we have

ω(PUλ ) � ω(Uλ P), (12)

where Uλ = ∑d
j=1 λ jVj . Let x ∈ H with ‖x‖ = 1 and (λ1, . . . ,λd) ∈ Bd . Since

∑d
k=1V ∗

k Vk is a projection onto R(P) , we have

〈PUλ x,x〉 = 〈
(

d

∑
k=1

V ∗
k Vk

)
PUλ x,x〉 =

d

∑
k=1

〈VkPUλ x,Vkx〉.

Moreover, by Lemma 3, we see that

VkPUλ = VkP

(
d

∑
j=1

λ jVj

)
=

(
d

∑
j=1

λ jVj

)
PVk = Uλ PVk.

Then, we obtain

〈PUλ x,x〉 =
d

∑
k=1

〈VkPUλ x,Vkx〉 =
d

∑
k=1

〈Uλ PVkx,Vkx〉.

Put yk = Vkx
‖Vkx‖ . Since ∑d

k=1V ∗
k Vk is a projection onto R(P) , we have

|〈PUλ x,x〉| =
∣∣∣∣∣ d

∑
k=1

‖Vkx‖2〈Uλ Pyk,yk〉
∣∣∣∣∣

�
d

∑
k=1

‖Vkx‖2 |〈Uλ Pyk,yk〉|

�
d

∑
k=1

‖Vkx‖2ω(Uλ P)

= 〈
d

∑
k=1

V ∗
k Vkx,x〉ω(Uλ P) � ω(Uλ P).

So, we get (12) as required. Thus, the proof is finished by taking the supremum over
all (λ1, . . . ,λd) ∈ Bd in (12) and then using (9) together with (10).

QUESTION 1. It would be interesting to know whether or not the inequalities
ω(TD) � ω(T) and ω(T̂) � ω(T) hold for non-commuting d -tuples of operators?
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3. Precise estimation of joint numerical radius

In this section, we shall give a precise estimation of joint numerical radius.

THEOREM 4. Let T = (T1, . . . ,Td) ∈ B(H )d be a d -tuple of operators. Then,

ω(T) � 1
2
‖T‖+

1
2

ω(T̂).

REMARK 1. By letting d = 1 in Theorem 4, we get the well-known result proved
by the second author in [36] asserting that

ω(T ) � 1
2
‖T‖+

1
2

ω(T̃ ),

for every T ∈ B(H ) .

Proof. By (9), we see that

ω(T) = sup
(λ1,...,λd)∈Bd

ω(Uλ P),

where Uλ = λ1V1 + . . .+ λdVd . Now, let x ∈ H be such that ‖x‖ = 1. By the gener-
alized polarization identity (see [36]), we see that

〈eiθUλ Px,x〉 = 〈eiθ Px,U∗
λ x〉

=
1
4

(〈P(eiθ +U∗
λ )x,(eiθ +U∗

λ )x〉− 〈P(eiθ −U∗
λ )x,(eiθ −U∗

λ )x〉)
+

i
4

(〈P(eiθ + iU∗
λ )x,(eiθ + iU∗

λ )x〉− 〈P(eiθ − iU∗
λ )x,(eiθ − iU∗

λ )x〉).
Noting that all inner products of the terminal side are all positive since P � 0. Hence,
one observes that

〈ℜ(eiθUλ P)x,x〉 = ℜ(〈eiθUλ Px,x〉)
=

1
4

(〈(eiθ +U∗
λ )∗P(eiθ +U∗

λ )x,x〉− 〈(eiθ −U∗
λ )∗P(eiθ −U∗

λ )x,x〉)
� 1

4
〈(eiθ +U∗

λ )∗P(eiθ +U∗
λ )x,x〉

� 1
4

∥∥∥(eiθ +U∗
λ )∗P(eiθ +U∗

λ )
∥∥∥

=
1
4

∥∥∥P 1
2 (eiθ +U∗

λ )(e−iθ +Uλ )P
1
2

∥∥∥ (by ‖X∗X‖ = ‖XX∗‖)

=
1
4

∥∥∥P+P
1
2U∗

λUλ P
1
2 +2ℜ(eiθP

1
2Uλ P

1
2 )
∥∥∥

� 1
4
‖P‖+

1
4
‖P‖∥∥U∗

λUλ
∥∥+

1
2

∥∥∥ℜ(eiθ P
1
2Uλ P

1
2 )
∥∥∥

� 1
4
‖P‖+

1
4
‖P‖∥∥U∗

λUλ
∥∥+

1
2

ω
(
P

1
2Uλ P

1
2

)
(by (2)).
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So, by taking the supremum over all x ∈ H with ‖x‖ = 1 in the above inequality and
then using (2) we get

ω (Uλ P) � 1
4
‖P‖+

1
4
‖P‖∥∥U∗

λUλ
∥∥+

1
2

ω
(
P

1
2Uλ P

1
2

)
� 1

4
‖P‖+

1
4
‖P‖∥∥U∗

λUλ
∥∥+

1
2

ω(T̂) (by (3)). (13)

On the other hand, let x ∈ H with ‖x‖ = 1 and (λ1, . . . ,λd) ∈ Bd . By applying the
Cauchy-Schwarz inequality and making elementary calculations we see that

〈U∗
λUλ x,x〉 =

d

∑
j=1

d

∑
k=1

λ jλk〈Vkx,Vjx〉 �
d

∑
j=1

d

∑
k=1

|λ j| · |λk| · ‖Vkx‖ · ‖Vjx‖

=

(
d

∑
k=1

|λk| · ‖Vkx‖
)2

�
(

d

∑
j=1

|λ j|2
)(

d

∑
j=1

‖Vjx‖2

)

=

(
d

∑
j=1

|λ j|2
)(

d

∑
j=1

〈V ∗
j Vjx,x〉

)
�
(

d

∑
j=1

|λ j|2
)∥∥∥∥∥ d

∑
i=1

V ∗
i Vi

∥∥∥∥∥� 1.

So, by taking the supremum over all x ∈ H with ‖x‖ = 1, we obtain
∥∥U∗

λUλ
∥∥ � 1.

This yields, by using (13), that

ω (Uλ P) � 1
2
‖P‖+

1
2

ω(T̂).

Thus, by taking the supremum over all (λ1, . . . ,λd) ∈ Bd in the above inequality and
then using (9), we obtain

ω(T) � 1
2
‖P‖+

1
2

ω(T̂).

Therefore, we get the desired result since ‖P‖ = ‖T‖ . �

4. Joint spectral radius

In this section, we shall characterize the joint spectral radius via spherical Aluthge
transform.

THEOREM 5. Let T = (T1, . . . ,Td) ∈ B(H )d be a commuting d -tuple of opera-
tors. Then

lim
n→∞

‖T̂n‖ = r(T),

where T̂n means the n-th iteration of spherical Aluthge transform, i.e., T̂n := ̂̂Tn−1 ,
and T̂0 := T for a non-negative integer n.

We will prove this by similar arguments as in [35]. In order to achieve the goals of
the present section, we need the following results.
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THEOREM C. ([3]) Let A,B,X ∈ B(H ) . Then

‖A∗XB‖2 � ‖A∗AX‖‖XBB∗‖.

THEOREM D. ([22]) Let A,B ∈ B(H ) be positive, and X ∈ B(H ) . Then

‖AαXBα‖ � ‖AXB‖α‖X‖1−α

for all 0 � α � 1.

LEMMA 4. Let T = (T1, . . . ,Td)∈B(H )d be a commuting d -tuple of operators.
Then the spherical Aluthge transform T̂ is also a commuting d -tuple of operators.

Proof. Let Tk =VkP . Then T̂= (T̂1, . . . , T̂d)= (P
1
2V1P

1
2 , . . . ,P

1
2VdP

1
2 ) . By Lemma

3, we have VjPVk = VkPVj for all j,k = 1, . . . ,d . Hence we have

T̂jT̂k = P
1
2VjPVkP

1
2 = P

1
2VkPVjP

1
2 = T̂kT̂j. �

LEMMA 5. There is an s � r(T) for which lim
n→∞

‖T̂n‖ = s.

Proof. By Theorem 1, a sequence {‖T̂n‖}∞
n=0 is decreasing, and

‖T̂n‖ � r(T̂n) = r(T)

for all non-negative integer n , where the last equation is shown in [6]. Hence there
exists a limit point s of {‖T̂n‖}∞

n=0 such that s � r(T) . �

LEMMA 6. For any positive integer k and non-negative integer n,∥∥∥T̂k
n+1

∥∥∥�
∥∥∥T̂k

n

∥∥∥ .

Proof. Since T̂n+1 = ̂̂Tn , we only prove
∥∥∥T̂k

∥∥∥�
∥∥Tk

∥∥ . We notice that by Lemma

1, ‖Tk‖ is given as follows:

∥∥∥Tk
∥∥∥2

=

∥∥∥∥∥ d

∑
i1,...,ik=1

T ∗
i1 · · ·T ∗

ik Tik · · ·Ti1

∥∥∥∥∥ .

Let Ak := diag(P, . . . ,P) be a dk –by–dk operator matrix, and let

Xk =

⎛⎜⎝V1P · · ·PV1 0 · · · 0
...

...
...

VdP · · ·PVd 0 · · · 0

⎞⎟⎠



416 K. FEKI AND T. YAMAZAKI

be a dk –by–dk operator matrix, where the 1st column contains Vi1PVi2P · · ·PVik for all
i1, . . . , ik = 1,2, . . . ,d . Then by Theorem C,∥∥∥T̂k

∥∥∥2
=

∥∥∥∥∥ d

∑
i1,...,ik=1

T̂i1
∗ · · · T̂ik

∗
T̂ik · · · T̂i1

∥∥∥∥∥
=

∥∥∥∥∥ d

∑
i1,...,ik=1

P
1
2V ∗

i1P · · ·PV ∗
ik
PVikP · · ·PVi1P

1
2

∥∥∥∥∥
=
∥∥∥∥A 1

2
k X∗

k AkXkA
1
2
k

∥∥∥∥=
∥∥∥∥A 1

2
k XkA

1
2
k

∥∥∥∥2

� ‖AkXk‖‖XkAk‖. (14)

Now, it can be seen that

‖AkXk‖ = ‖X∗
k A2

kXk‖
1
2

=

∥∥∥∥∥ d

∑
i1,...,ik=1

V ∗
i1P · · ·PV ∗

ikP
2VikP · · ·PVi1

∥∥∥∥∥
1
2

=

∥∥∥∥∥ d

∑
i1,...,ik=1

V ∗
i1P · · ·PV ∗

ikP

(
d

∑
ik+1=1

V ∗
ik+1

Vik+1

)
PVikP · · ·PVi1

∥∥∥∥∥
1
2

=

∥∥∥∥∥ d

∑
i1=1

V ∗
i1

(
d

∑
i2,...,ik+1=1

PV ∗
i2P · · ·PV ∗

ik
PV ∗

ik+1
Vik+1PVikP · · ·PVi2P

)
Vi1

∥∥∥∥∥
1
2

=

∥∥∥∥∥ d

∑
i1=1

V ∗
i1

(
d

∑
i2,...,ik+1=1

T ∗
i2 · · ·T ∗

ik T
∗
ik+1

Tik+1 · · ·Ti2

)
Vi1

∥∥∥∥∥
1
2

�
∥∥∥∥∥ d

∑
i1=1

V ∗
i1Vi1

∥∥∥∥∥
1
2
∥∥∥∥∥ d

∑
i2,...,ik+1=1

T ∗
i2 · · ·T ∗

ik+1
Tik+1 · · ·Ti2

∥∥∥∥∥
1
2

= ‖Tk‖, (15)

where the last inequality follows from Lemma 2 and the fact that ∑d
k=1V ∗

k Vk is a pro-
jection onto R(P) . Moreover

‖XkAk‖ = ‖AkX
∗
k XkAk‖

1
2

=

∥∥∥∥∥ d

∑
i1,...,ik=1

PV ∗
i1P · · ·PV ∗

ik
VikP · · ·PVi1P

∥∥∥∥∥
1
2

=

∥∥∥∥∥ d

∑
i1,...,ik=1

T ∗
i1 · · ·T ∗

ik Tik · · ·Ti1

∥∥∥∥∥
1
2

= ‖Tk‖.

Hence we have ∥∥∥T̂k
∥∥∥� ‖AkXk‖

1
2 ‖XkAk‖

1
2 �

∥∥∥Tk
∥∥∥ . �
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LEMMA 7. For any positive integer k ,∥∥∥T̂k
n+1

∥∥∥�
∥∥∥T̂k+1

n

∥∥∥ 1
2
∥∥∥T̂k−1

n

∥∥∥ 1
2

for all n � 0 .

Proof. We shall prove ‖T̂k‖ � ‖Tk+1‖ 1
2 ‖Tk−1‖ 1

2 . Let Ak and Xk be defined in
the proof of Lemma 6. Then, by (14) and Theorem D, we have∥∥∥T̂k

∥∥∥=
∥∥∥∥A 1

2
k XkA

1
2
k

∥∥∥∥� ‖AkXkAk‖
1
2 ‖Xk‖

1
2 .

By taking into consideration the fact that ∑d
k=1V ∗

k Vk is an orthogonal projection onto
R(P) , it can be observed that

‖AkXkAk‖ =

∥∥∥∥∥ d

∑
i1,...,ik=1

PV ∗
i1P · · ·PV ∗

ik
P2VikP · · ·PVi1P

∥∥∥∥∥
1
2

=

∥∥∥∥∥ d

∑
i1,...,ik=1

PV ∗
i1P · · ·PV ∗

ik
P

(
d

∑
ik+1=1

V ∗
ik+1

Vik+1

)
PVikP · · ·PVi1P

∥∥∥∥∥
1
2

=

∥∥∥∥∥ d

∑
i1,...,ik+1=1

PV ∗
i1P · · ·PV ∗

ikPV ∗
ik+1

Vik+1PVikP · · ·PVi1P

∥∥∥∥∥
1
2

=

∥∥∥∥∥ d

∑
i1,...,ik+1=1

T ∗
i1 · · ·T ∗

ik+1
Tik+1 · · ·Ti1

∥∥∥∥∥
1
2

=
∥∥∥Tk+1

∥∥∥ .

On the other hand, one has

‖Xk‖ =

∥∥∥∥∥ d

∑
i1,...,ik=1

V ∗
i1P · · ·PV ∗

ik
VikP · · ·PVi1

∥∥∥∥∥
1
2

=

∥∥∥∥∥ d

∑
i1,...,ik−1=1

V ∗
i1P · · ·P

(
d

∑
ik=1

V ∗
ikVik

)
P · · ·PVi1

∥∥∥∥∥
1
2

=

∥∥∥∥∥ d

∑
i1,...,ik−1=1

V ∗
i1P · · ·V ∗

ik−1
P2Vik−1 · · ·PVi1

∥∥∥∥∥
1
2

=
∥∥X∗

k−1A
2
k−1Xk−1

∥∥ 1
2 �

∥∥∥Tk−1
∥∥∥ ,

where the last inequality follows from (15). Therefore

‖T̂k‖ � ‖AkXkAk‖
1
2 ‖Xk‖

1
2 � ‖Tk+1‖ 1

2 ‖Tk−1‖ 1
2 . �
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LEMMA 8. For each positive integer k , ‖Tk+1‖ � ‖Tk‖‖T‖.

Proof.

‖Tk+1‖2 =

∥∥∥∥∥ d

∑
i1,...,ik+1=1

T ∗
i1 · · ·T ∗

ik+1
Tik+1 · · ·Ti1

∥∥∥∥∥
=

∥∥∥∥∥ d

∑
i1=1

T ∗
i1

(
d

∑
i2,...,ik+1=1

T ∗
i2 · · ·T ∗

ik+1
Tik+1 · · ·Ti2

)
Ti1

∥∥∥∥∥
�
∥∥∥∥∥ d

∑
i1=1

T ∗
i1Ti1

∥∥∥∥∥
∥∥∥∥∥ d

∑
i2,...,ik+1=1

T ∗
i2 · · ·T ∗

ik+1
Tik+1 · · ·Ti2

∥∥∥∥∥ (by Lemma 2)

= ‖T‖2‖Tk‖2. �

LEMMA 9. For any positive integer k , lim
n→∞

‖T̂k
n‖ = sk .

Proof. We will prove the lemma by induction. Since lim
n→∞

‖T̂n‖ = s by Lemma

5, the lemma is proven for k = 1. Assume the lemma is proven for 1 � k � m . By
Lemmas 7 and 8,

‖T̂k
n+1‖ � ‖T̂k+1

n ‖ 1
2 ‖T̂k−1

n ‖ 1
2

� ‖T̂k
n‖

1
2 ‖T̂n‖ 1

2 ‖T̂k−1
n ‖ 1

2 .
(16)

Let t := lim
n→∞

‖T̂m+1
n ‖ . The existence of limit follows from Lemma 6. Taking limits, the

induction hypothesis and (16) show that

sm � t
1
2 s

m−1
2 � s

m
2 s

1
2 s

m−1
2 = sm.

It follows that t = sm+1 , and the proof is completed. �
Proof of Theorem 5. It follows from Lemmas 6 and 9 that, for each positive integer

k , the decreasing sequence {‖T̂k
n‖

1
k }∞

n=0 converges to s . Therefore

s � ‖T̂k
n‖

1
k (17)

for all n and k . Now fix an n . If r(T) < s , then by Lemma 4 and (7),

lim
k→∞

‖Tk‖ 1
k = r(T̂n) = r(T)

would imply that ‖T̂k
n‖

1
k < s for sufficiently large k . Clearly this is a contradiction to

(17). Therefore, we must have s = r(T) , and the result follows from Lemma 5.

REMARK 2. For a d -tuple of operators T and a natural number n , Tn is a dn -
tuple of operators. Then we should consider dn -tuple of operators for n = 1,2, . . . to
use (7). However, since T̂n is also a d -tuple of operators, we only treat d -tuple of
operators to get r(T) by Theorem 5.



JOINT NUMERICAL RADIUS OF SPHERICAL ALUTHGE TRANSFORMS 419

RE F ER EN C ES

[1] A. ALUTHGE, On p-hyponormal Operators for 0 < p < 1 , Integral Equations Operator Theory, 13
(1990), 307–315.

[2] T. ANDO, Aluthge transforms and the convex hull of the spectrum of a Hilbert space operator, Recent
advances in operator theory and its applications, Oper. Theory Adv. Appl. 160 (2005), 21–39.

[3] R. BHATIA AND C. DAVIS, A Cauchy-Schearz inequality for operators with applications, Linear
Algebra Appl. 223/224 (1995), 119–129.

[4] H. BAKLOUTI AND K. FEKI, On joint spectral radius of commuting operators in Hilbert spaces,
Linear Algebra Appl. 557 (2018) 455–463.

[5] H. BAKLOUTI, K. FEKI AND O. A. M. SID AHMED, Joint numerical ranges of operators in semi-
Hilbertian spaces, Linear Algebra Appl. 555 (2018) 266–284.

[6] C. BENHIDA, R. E. CURTO, S. H. LEE AND J. YOON, Joint spectra of spherical Aluthge transforms
of commuting n-tuples of Hilbert space operators, C. R. Math. Acad. Sci. Paris 357 (2019), 799–802,
https://doi.org/10.1016/j.crma.2019.10.003.

[7] J. W. BUNCE, Models for n-tuples of noncommuting operators, J. Funct. Anal. 57 (1984), 21–30.
[8] G. CORACH, H. PORTA AND L. RECHT, An operator inequality, Linear Algebra Appl., 142 (1990),

153–158.
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[30] V. MÜLLER, AND A. SOLTYSIAK, Spectral radius formula for commuting Hilbert space operators,
Studia Math. 103 (1992), 329–333.

[31] G. POPESCU, Unitary invariants in multivariable operator theory, Memoirs of the American Mathe-
matical Society, 200 (941), vi+91 pp (2009).

[32] J. G. STAMPFLI AND J. P. WILLIAMS, Growth conditions and the numerical range in a Banach
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