JOINT NUMERICAL RADIUS OF SPHERICAL ALUTHGE TRANSFORMS OF TUPLES OF HILBERT SPACE OPERATORS

Kais Feki and Takeaki Yamazaki

(Communicated by S. Varošanec)

Abstract

Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ be a d-tuple of operators on a complex Hilbert space \mathscr{H}. The spherical Aluthge transform of \mathbf{T} is the d-tuple given by $\widehat{\mathbf{T}}:=\left(\sqrt{P} V_{1} \sqrt{P}, \ldots, \sqrt{P} V_{d} \sqrt{P}\right)$ where $P:=\sqrt{T_{1}^{*} T_{1}+\ldots+T_{d}^{*} T_{d}}$ and $\left(V_{1}, \ldots, V_{d}\right)$ is a joint partial isometry such that $T_{k}=V_{k} P$ for all $1 \leqslant k \leqslant d$. In this paper, we prove several inequalities involving the joint numerical radius and the joint operator norm of $\widehat{\mathbf{T}}$. Moreover, a characterization of the joint spectral radius of an operator tuple \mathbf{T} via n-th iterated of spherical Aluthge transform is established.

1. Introduction and Preliminaries

Throughout this paper, \mathscr{H} will be a complex Hilbert space, with the inner product $\langle\cdot, \cdot\rangle$ and the norm $\|\cdot\| . \mathscr{B}(\mathscr{H})$ stands for the Banach algebra of all bounded linear operators on \mathscr{H} and I denotes the identity operator on \mathscr{H}. In all that follows, by an operator we mean a bounded linear operator. The range and the null space of an operator T are denoted by $\mathscr{R}(T)$ and $\mathscr{N}(T)$, respectively. Also, T^{*} will be denoted to be the adjoint of T. An operator T is called positive if $\langle T x, x\rangle \geqslant 0$ for all $x \in \mathscr{H}$, and we then write $T \geqslant 0$. Further, the square root of every positive operator T is denoted by $T^{\frac{1}{2}}$. If $T \in \mathscr{B}(\mathscr{H})$, then the absolute value of T is denoted by $|T|$ and given by $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$.

For $T \in \mathscr{B}(\mathscr{H})$, the spectral radius of T is defined by

$$
r(T)=\sup \{|\lambda| ; \lambda \in \sigma(T)\}
$$

where $\sigma(T)$ denotes the spectrum of T. Moreover, the numerical radius and operator norm of T are denoted by $\omega(T)$ and $\|T\|$ respectively and they are given by

$$
\omega(T)=\sup \{|\langle T x, x\rangle| ; x \in \mathscr{H},\|x\|=1\}
$$

and

$$
\|T\|=\sup \{\|T x\| ; x \in \mathscr{H},\|x\|=1\} .
$$

[^0]It is well-known that for $T \in \mathscr{B}(\mathscr{H})$ we have

$$
\begin{equation*}
\frac{\|T\|}{2} \leqslant \max \left\{r(T), \frac{\|T\|}{2}\right\} \leqslant \omega(T) \leqslant\|T\| . \tag{1}
\end{equation*}
$$

It has been shown in [36] that if $T \in \mathscr{B}(\mathscr{H})$, then

$$
\begin{equation*}
\omega(T)=\sup _{\theta \in \mathbb{R}}\left\|\Re\left(e^{i \theta} T\right)\right\| \tag{2}
\end{equation*}
$$

where $\mathfrak{R}(X):=\frac{X+X^{*}}{2}$ for a given operator X. For more results, we refer the reader to the book by Gustafson and Rao [20].

An operator $U \in \mathscr{B}(\mathscr{H})$ is said to be a partial isometry if $\|U x\|=\|x\|$ for every $x \in \mathscr{N}(U)^{\perp}$. Let $T=U|T|$ be the polar decomposition of $T \in \mathscr{B}(\mathscr{H})$ with U is a partial isometry. The Aluthge transform of T was first defined in [1] by $\widetilde{T}:=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$. This transformation has attracted considerable attention over the last two decades (see, for example, $[2,9,16,23,24,27,37])$. The following properties of \widetilde{T} are well-known (see [23]):
(i) $\|\widetilde{T}\| \leqslant\|T\|$,
(ii) $r(\widetilde{T})=r(T)$,
(iii) $\omega(\widetilde{T}) \leqslant \omega(T)$.

Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$ be a d-tuple of operators. The joint numerical range of \mathbf{T} is introduced by A.T. Dash [15] as:

$$
J t W(\mathbf{T})=\left\{\left(\left\langle T_{1} x, x\right\rangle, \ldots,\left\langle T_{d} x, x\right\rangle\right) ; x \in \mathscr{H},\|x\|=1\right\}
$$

If $d=1$, we get the definition of the classical numerical range of an operator T, denoted by $W(T)$, which is firstly introduced by Toeplitz in [33]. It is well-known that $W(T)$ is convex (see $[28,19]$). Unlike the classical numerical range, $\operatorname{JtW}(\mathbf{T})$ may be non convex for $d \geqslant 2$. For a survey of results concerning the convexity of $\operatorname{JtW}(\mathbf{T})$, the reader may see $[15,29]$ and their references. The joint numerical radius of an operator tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ is defined in [12] as

$$
\begin{aligned}
\omega(\mathbf{T}) & =\sup \left\{\|\lambda\|_{2} ; \lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in J t W(\mathbf{T})\right\} \\
& =\sup \left\{\left(\sum_{k=1}^{d}\left|\left\langle T_{k} x, x\right\rangle\right|^{2}\right)^{\frac{1}{2}} ; x \in \mathscr{H},\|x\|=1\right\} .
\end{aligned}
$$

It was shown in [4] that for an operator tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$, we have

$$
\begin{equation*}
\omega(\mathbf{T})=\sup _{\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}} \omega\left(\lambda_{1} T_{1}+\ldots+\lambda_{d} T_{d}\right) \tag{3}
\end{equation*}
$$

where \mathbb{B}_{d} denotes the open unit ball in \mathbb{C}^{d} with respect to the euclidean norm, and $\overline{\mathbb{B}}_{d}$ is its closure i.e.

$$
\overline{\mathbb{B}}_{d}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbb{C}^{d} ;\|\lambda\|_{2}^{2}:=\sum_{k=1}^{d}\left|\lambda_{k}\right|^{2} \leqslant 1\right\} .
$$

Given a d-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ of operators on \mathscr{H}, the joint norm of \mathbf{T} is defined as

$$
\|\mathbf{T}\|:=\sup \left\{\left(\sum_{k=1}^{d}\left\|T_{k} x\right\|^{2}\right)^{\frac{1}{2}} ; x \in \mathscr{H},\|x\|=1\right\}
$$

Notice that $\|\cdot\|$ and $\omega(\cdot)$ are equivalent norms on $\mathscr{B}(\mathscr{H})^{d}$. More precisely, for every $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$ we have

$$
\begin{equation*}
\frac{1}{2 \sqrt{d}}\|\mathbf{T}\| \leqslant \omega(\mathbf{T}) \leqslant\|\mathbf{T}\| \tag{4}
\end{equation*}
$$

Moreover, the inequalities in (4) are sharp (see [5, 31]).
Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$ be a d-tuple of operators, and consider $S=\left(\begin{array}{c}T_{1} \\ \vdots \\ T_{d}\end{array}\right)$ as an operator from \mathscr{H} into $\mathbb{H}:=\oplus_{i=1}^{d} \mathscr{H}$, that is,

$$
S=\left(\begin{array}{c}
T_{1} \tag{5}\\
\vdots \\
T_{d}
\end{array}\right): \mathscr{H} \rightarrow \mathbb{H}, x \mapsto^{t}\left(T_{1} x, \ldots, T_{d} x\right) .
$$

Then, we have $S^{*} S=\left(T_{1}^{*}, \ldots, T_{d}^{*}\right)\left(\begin{array}{c}T_{1} \\ \vdots \\ T_{d}\end{array}\right)=\sum_{k=1}^{d} T_{k}^{*} T_{k}$. Since S is an operator from \mathscr{H} into \mathbb{H}, then S has a classical polar decomposition $S=V P$, that is,

$$
\left(\begin{array}{c}
T_{1} \\
\vdots \\
T_{d}
\end{array}\right)=\left(\begin{array}{c}
V_{1} \\
\vdots \\
V_{d}
\end{array}\right) P=\left(\begin{array}{c}
V_{1} P \\
\vdots \\
V_{d} P
\end{array}\right),
$$

where $V=\left(\begin{array}{c}V_{1} \\ \vdots \\ V_{d}\end{array}\right)$ is a partial isometry from \mathscr{H} to \mathbb{H} and P is the positive operator on \mathscr{H} given by

$$
P=\left(S^{*} S\right)^{\frac{1}{2}}=\sqrt{T_{1}^{*} T_{1}+\ldots+T_{d}^{*} T_{d}}
$$

So $R:=V^{*} V=\left(V_{1}^{*}, \ldots, V_{d}^{*}\right)\left(\begin{array}{c}V_{1} \\ \vdots \\ V_{d}\end{array}\right)=\sum_{k=1}^{d} V_{k}^{*} V_{k}$ is the orthogonal projection onto the initial space of V which is

$$
\begin{equation*}
\left(\bigcap_{i=1}^{d} \mathscr{N}\left(T_{i}\right)\right)^{\perp}=\mathscr{N}(S)^{\perp}=\mathscr{N}(P)^{\perp}=\left(\bigcap_{i=1}^{d} \mathscr{N}\left(V_{i}\right)\right)^{\perp} . \tag{6}
\end{equation*}
$$

For $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$, the spherical Aluthge transform of \mathbf{T} is defined as

$$
\widehat{\mathbf{T}}=\left(\widehat{T}_{1}, \ldots, \widehat{T}_{d}\right):=\left(\sqrt{P} V_{1} \sqrt{P}, \ldots, \sqrt{P} V_{d} \sqrt{P}\right) \text { (cf. [10], [11], [25]). }
$$

This transformation has been recently investigated by C. Benhida et al. in [6]. It should be mention here that $\widehat{T}_{i}=\sqrt{P} V_{i} \sqrt{P}$ is not the Aluthge transform of T_{i} (for $i \in\{1, \ldots, d\})$. Further, the spherical Duggal transform of \mathbf{T} is defined, as in [26], by

$$
\mathbf{T}^{D}=\left(T_{1}^{D}, \ldots, T_{d}^{D}\right):=\left(P V_{1}, \ldots, P V_{d}\right) .
$$

Notice that for $i \in\{1, \ldots, d\}$, the operator $T_{i}^{D}=P V_{i}$ is not the Duggal transform of T_{i} which is first referred to in [17]. When the operators T_{k} are pairwise commuting, we say that \mathbf{T} is a commuting d-tuple.

Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$ be a commuting d-tuple of operators.There are several different notions of a spectrum. For a good description, the reader is referred to [14] and the references therein. There is a well-known notion of a joint spectrum of a commuting d-tuple \mathbf{T} called the Taylor joint spectrum denoted by $\sigma_{T}(\mathbf{T})$ (see [34]). It is shown in [6] that $\sigma_{T}(\widehat{\mathbf{T}})=\sigma_{T}(\mathbf{T})$ for commuting $\mathbf{T} \in \mathscr{B}(\mathscr{H})^{d}$. The joint spectral radius of \mathbf{T} is defined to be the number

$$
r(\mathbf{T})=\sup \left\{\|\lambda\|_{2} ; \lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \sigma_{T}(\mathbf{T})\right\} .
$$

It should be mention here that Chō and Z̀elazko proved in [13] that this definition of $r(\mathbf{T})$ is independent of the choice of the joint spectrum of \mathbf{T}. Furthermore, an analogue of the Gelfand-Beurling spectral radius formula for single operators has been established by Müller and Soltysiak in [30] for commuting tuples. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{m}\right) \in$ $\mathscr{B}(\mathscr{H})^{m}$ and $\mathbf{S}=\left(S_{1}, \ldots, S_{n}\right) \in \mathscr{B}(\mathscr{H})^{n}$. Then the product TS is defined by

$$
\mathbf{T S}=\left(T_{1} S_{1}, \ldots, T_{1} S_{n}, T_{2} S_{1}, \ldots, T_{2} S_{n}, \ldots, T_{m} S_{1}, \ldots, T_{m} S_{n}\right) \in \mathscr{B}(\mathscr{H})^{m n}
$$

Especially, $\mathbf{T}^{2}=\mathbf{T T}$ and $\mathbf{T}^{n+1}=\mathbf{T T}^{n}$. It was shown in [30] (cf. [7]) that if \mathbf{T} is commuting, then the joint spectral radius of \mathbf{T} is given by

$$
\begin{equation*}
r(\mathbf{T})=\lim _{n \rightarrow \infty}\left\|\mathbf{T}^{n}\right\|^{\frac{1}{n}} \tag{7}
\end{equation*}
$$

In this paper, we shall show several inequalities for spherical Aluthge transform which are known in the single operator case in Sections 2 and 3. Then, in Section 4 we shall show a characterization of joint spectral radius via n-th iterated of spherical Aluthge transform. It is an extension of the formula $\lim _{n \rightarrow \infty}\left\|\widetilde{T}_{n}\right\|=r(T)$, which is proved by the second author in [37], where \widetilde{T}_{n} means the n-th iterated of Aluthge transform of a single operator (see [37]).

2. Basic inequalities

In this section, we present basic inequalities for spherical Aluthge transform.
THEOREM 1. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$. Then,

$$
\|\widehat{\mathbf{T}}\| \leqslant\|\mathbf{T}\|
$$

In order to prove our first result, we need the following lemmas.
Lemma 1. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$. Then

$$
\|\mathbf{T}\|=\left\|\sum_{k=1}^{d} T_{k}^{*} T_{k}\right\|^{\frac{1}{2}}
$$

Proof. Since $\sum_{k=1}^{d} T_{k}^{*} T_{k} \geqslant 0$, then it follows that

$$
\|\mathbf{T}\|^{2}=\sup _{\|x\|=1} \sum_{k=1}^{d}\left\|T_{k} x\right\|^{2}=\sup _{\|x\|=1}\left\langle\sum_{k=1}^{d} T_{k}^{*} T_{k} x, x\right\rangle=\left\|\sum_{k=1}^{d} T_{k}^{*} T_{k}\right\| .
$$

Lemma 2. Let $A, X_{k} \in \mathscr{B}(\mathscr{H})$ for $k=1,2, \ldots, d$. Then

$$
\left\|\sum_{k=1}^{d} X_{k}^{*} A X_{k}\right\| \leqslant\left\|\sum_{k=1}^{d} X_{k}^{*} X_{k}\right\|\|A\|
$$

Proof. It can be seen that

$$
\begin{aligned}
\left\|\sum_{k=1}^{d} X_{k}^{*} A X_{k}\right\| & =\left\|\left(\begin{array}{ccc}
X_{1}^{*} & \cdots & X_{d}^{*} \\
0 & \cdots & 0 \\
\vdots & & \\
0 & \cdots & 0
\end{array}\right)\left(\begin{array}{cccc}
A & & \\
& \ddots & \\
& & A
\end{array}\right)\left(\begin{array}{cccc}
X_{1} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
X_{d} & 0 & \cdots & 0
\end{array}\right)\right\| \\
& \leqslant\left\|\left(\begin{array}{ccc}
A & & \\
& \ddots & \\
& & A
\end{array}\right)\right\|\left(\begin{array}{cccc}
X_{1} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
X_{d} & 0 & \cdots & 0
\end{array}\right) \|^{2} \\
& =\|A\|\left\|\left(\begin{array}{ccc}
X_{1}^{*} & \cdots & X_{d}^{*} \\
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0
\end{array}\right)\left(\begin{array}{cccc}
X_{1} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
X_{d} & 0 & \cdots & 0
\end{array}\right)\right\| \\
& =\|A\|\left\|\sum_{k=1}^{d} X_{k}^{*} X_{k}\right\| .
\end{aligned}
$$

This proves the desired inequality.
Proof of Theorem 1. First of all, we notice that, in view of Lemma 1, we have

$$
\|\mathbf{T}\|^{2}=\left\|\sum_{k=1}^{d} T_{k}^{*} T_{k}\right\|=\|P\|^{2}
$$

Further, by using Lemma 2, we see that

$$
\begin{aligned}
\|\widehat{\mathbf{T}}\|^{2} & =\left\|\sum_{k=1}^{d} \widehat{T}_{k}^{*} \widehat{T}_{k}\right\| \\
& =\left\|\sum_{k=1}^{d} P^{\frac{1}{2}} V_{k}^{*} P V_{k} P^{\frac{1}{2}}\right\| \\
& \leqslant\|P\|\left\|\sum_{k=1}^{d} P^{\frac{1}{2}} V_{k}^{*} V_{k} P^{\frac{1}{2}}\right\|=\|P\| \cdot\|P\|=\|\mathbf{T}\|^{2}
\end{aligned}
$$

where the third equation follows from the fact that $\sum_{k=1}^{d} V_{k}^{*} V_{k}$ is a projection onto $\overline{\mathscr{R}(P)}$.

Next, we shall show inequalities of joint numerical radius for spherical Aluthge transform. This discussion will be divided into two parts. We treat non-commuting tuples of operators in the first part.

THEOREM 2. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$. Then,

$$
\begin{equation*}
\omega(\widehat{\mathbf{T}}) \leqslant \frac{1}{2} \omega(\mathbf{T})+\frac{1}{2} \omega\left(\mathbf{T}^{D}\right) . \tag{8}
\end{equation*}
$$

To prove the result, we will use the following theorems.
Theorem A. ([21, 32]) Let $T \in \mathscr{B}(\mathscr{H})$. Then

$$
\overline{W(T)}=\bigcap_{\mu \in \mathbb{C}}\{\lambda \in \mathbb{C} ;|\lambda-\mu| \leqslant\|T-\mu I\|\}
$$

Theorem B. ([8], [18, Theorem 3.12.1]) Let A be a self-adjoint invertible operator and $X \in \mathscr{B}(\mathscr{H})$. Then

$$
2\|X\| \leqslant\left\|A X A^{-1}+A^{-1} X A\right\|
$$

Proof of Theorem 2. In view of (3), we have

$$
\begin{array}{r}
\omega(\mathbf{T})=\sup _{\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}} \omega\left(\lambda_{1} T_{1}+\ldots+\lambda_{d} T_{d}\right)=\sup _{\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}} \omega\left(U_{\lambda} P\right), \\
\omega(\widehat{\mathbf{T}})=\sup _{\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}} \omega\left(P^{\frac{1}{2}} U_{\lambda} P^{\frac{1}{2}}\right) \text { and } \omega\left(\mathbf{T}^{D}\right)=\sup _{\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}} \omega\left(P U_{\lambda}\right), \tag{10}
\end{array}
$$

where $U_{\lambda}=\lambda_{1} V_{1}+\ldots+\lambda_{d} V_{d}$. We shall prove
where $\overline{W(X)}$ means the closure of numerical range of $X \in \mathscr{B}(\mathscr{H})$. By taking into consideration Theorem A , it suffices to prove the following norm inequality.

$$
\begin{equation*}
\left\|P^{\frac{1}{2}} U_{\lambda} P^{\frac{1}{2}}-\mu I\right\| \leqslant\left\|\frac{U_{\lambda} P+P U_{\lambda}}{2}-\mu I\right\| \tag{11}
\end{equation*}
$$

for all $\mu \in \mathbb{C}$.
For $\varepsilon>0$, let $P_{\varepsilon}:=P+\varepsilon I>0$. Then P_{ε} is positive invertible. Then by Theorem B, we have

$$
\begin{aligned}
2\left\|P_{\varepsilon}^{\frac{1}{2}} U_{\lambda} P_{\varepsilon}^{\frac{1}{2}}-\mu I\right\| & \leqslant\left\|P_{\varepsilon}^{\frac{1}{2}}\left(P_{\varepsilon}^{\frac{1}{2}} U_{\lambda} P_{\varepsilon}^{\frac{1}{2}}-\mu I\right) P_{\varepsilon}^{-\frac{1}{2}}+P_{\varepsilon}^{-\frac{1}{2}}\left(P_{\varepsilon}^{\frac{1}{2}} U_{\lambda} P_{\varepsilon}^{\frac{1}{2}}-\mu I\right) P_{\varepsilon}^{\frac{1}{2}}\right\| \\
& =\left\|P_{\varepsilon} U_{\lambda}+U_{\lambda} P_{\varepsilon}-2 \mu I\right\|
\end{aligned}
$$

By letting $\varepsilon \searrow 0$, we get (11), and hence

$$
\overline{W\left(P^{\frac{1}{2}} U_{\lambda} P^{\frac{1}{2}}\right)} \subseteq \overline{W\left(\frac{U_{\lambda} P+P U_{\lambda}}{2}\right)} \subseteq \frac{1}{2}\left\{\overline{W\left(P U_{\lambda}\right)}+\overline{W\left(U_{\lambda} P\right)}\right\}
$$

Therefore, we get

$$
\omega\left(P^{\frac{1}{2}} U_{\lambda} P^{\frac{1}{2}}\right) \leqslant \frac{1}{2}\left(\omega\left(P U_{\lambda}\right)+\omega\left(U_{\lambda} P\right)\right)
$$

which in turn implies, by taking the supremum over all $\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}$, that

$$
\omega(\widehat{\mathbf{T}}) \leqslant \frac{1}{2} \omega(\mathbf{T})+\frac{1}{2} \omega\left(\mathbf{T}^{D}\right) .
$$

Hence, the proof is complete.
In the second part of this discussion, we shall treat commuting tuples of operators.
THEOREM 3. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$ be a commuting tuple of operators. Then

$$
\omega(\widehat{\mathbf{T}}) \leqslant \omega(\mathbf{T})
$$

To prove this, we will introduce the following lemma.
Lemma 3. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$, and let $T_{j}=V_{j} P$ with $P=\left(\sum_{j=1}^{d} T_{j}^{*} T_{j}\right)^{\frac{1}{2}}$. Then \mathbf{T} is commuting if and only if

$$
V_{j} P V_{k}=V_{k} P V_{j}
$$

holds for $j, k=1, \ldots, d$.

Proof. Since $T_{j} T_{k}=T_{k} T_{j}$, we have $V_{j} P V_{k} P=V_{k} P V_{j} P$, that is, $V_{j} P V_{k}=V_{k} P V_{j}$ holds on $\overline{\mathscr{R}(P)}$. By (6), $\overline{\mathscr{R}(P)^{\perp}}=\mathscr{N}(P)=\bigcap_{k=1}^{d} \mathscr{N}\left(V_{k}\right) \subseteq \mathscr{N}\left(V_{k}\right)$ for $k=1, \ldots, d$. Hence we have $V_{j} P V_{k}=V_{k} P V_{j}=0$ on $\mathscr{N}(P)$. Therefore $V_{j} P V_{k}=V_{k} P V_{j}$ holds on $\mathscr{H}=\overline{\mathscr{R}(P)} \oplus \mathscr{N}(P)$. The converse implication is obvious. Thus the proof is completed.

Proof of Theorem 3. Since (8), we have only to prove the following inequality:

$$
\omega\left(\mathbf{T}^{D}\right) \leqslant \omega(\mathbf{T})
$$

that is, we will prove that for every $\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}$, we have

$$
\begin{equation*}
\omega\left(P U_{\lambda}\right) \leqslant \omega\left(U_{\lambda} P\right) \tag{12}
\end{equation*}
$$

where $U_{\lambda}=\sum_{j=1}^{d} \lambda_{j} V_{j}$. Let $x \in \mathscr{H}$ with $\|x\|=1$ and $\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}$. Since $\sum_{k=1}^{d} V_{k}^{*} V_{k}$ is a projection onto $\overline{\mathscr{R}(P)}$, we have

$$
\left\langle P U_{\lambda} x, x\right\rangle=\left\langle\left(\sum_{k=1}^{d} V_{k}^{*} V_{k}\right) P U_{\lambda} x, x\right\rangle=\sum_{k=1}^{d}\left\langle V_{k} P U_{\lambda} x, V_{k} x\right\rangle .
$$

Moreover, by Lemma 3, we see that

$$
V_{k} P U_{\lambda}=V_{k} P\left(\sum_{j=1}^{d} \lambda_{j} V_{j}\right)=\left(\sum_{j=1}^{d} \lambda_{j} V_{j}\right) P V_{k}=U_{\lambda} P V_{k}
$$

Then, we obtain

$$
\left\langle P U_{\lambda} x, x\right\rangle=\sum_{k=1}^{d}\left\langle V_{k} P U_{\lambda} x, V_{k} x\right\rangle=\sum_{k=1}^{d}\left\langle U_{\lambda} P V_{k} x, V_{k} x\right\rangle
$$

Put $y_{k}=\frac{V_{k} x}{\left\|V_{k} x\right\|}$. Since $\sum_{k=1}^{d} V_{k}^{*} V_{k}$ is a projection onto $\overline{\mathscr{R}(P)}$, we have

$$
\begin{aligned}
\left|\left\langle P U_{\lambda} x, x\right\rangle\right| & =\left|\sum_{k=1}^{d}\left\|V_{k} x\right\|^{2}\left\langle U_{\lambda} P y_{k}, y_{k}\right\rangle\right| \\
& \leqslant \sum_{k=1}^{d}\left\|V_{k} x\right\|^{2}\left|\left\langle U_{\lambda} P y_{k}, y_{k}\right\rangle\right| \\
& \leqslant \sum_{k=1}^{d}\left\|V_{k} x\right\|^{2} \omega\left(U_{\lambda} P\right) \\
& =\left\langle\sum_{k=1}^{d} V_{k}^{*} V_{k} x, x\right\rangle \omega\left(U_{\lambda} P\right) \leqslant \omega\left(U_{\lambda} P\right)
\end{aligned}
$$

So, we get (12) as required. Thus, the proof is finished by taking the supremum over all $\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}$ in (12) and then using (9) together with (10).

Question 1. It would be interesting to know whether or not the inequalities $\omega\left(\mathbf{T}^{D}\right) \leqslant \omega(\mathbf{T})$ and $\omega(\widehat{\mathbf{T}}) \leqslant \omega(\mathbf{T})$ hold for non-commuting d-tuples of operators?

3. Precise estimation of joint numerical radius

In this section, we shall give a precise estimation of joint numerical radius.
THEOREM 4. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$ be a d-tuple of operators. Then,

$$
\omega(\mathbf{T}) \leqslant \frac{1}{2}\|\mathbf{T}\|+\frac{1}{2} \omega(\widehat{\mathbf{T}})
$$

REMARK 1. By letting $d=1$ in Theorem 4, we get the well-known result proved by the second author in [36] asserting that

$$
\omega(T) \leqslant \frac{1}{2}\|T\|+\frac{1}{2} \omega(\widetilde{T})
$$

for every $T \in \mathscr{B}(\mathscr{H})$.
Proof. By (9), we see that

$$
\omega(\mathbf{T})=\sup _{\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \mathbb{B}_{d}} \omega\left(U_{\lambda} P\right)
$$

where $U_{\lambda}=\lambda_{1} V_{1}+\ldots+\lambda_{d} V_{d}$. Now, let $x \in \mathscr{H}$ be such that $\|x\|=1$. By the generalized polarization identity (see [36]), we see that

$$
\begin{aligned}
\left\langle e^{i \theta} U_{\lambda} P x, x\right\rangle= & \left\langle e^{i \theta} P x, U_{\lambda}^{*} x\right\rangle \\
= & \frac{1}{4}\left(\left\langle P\left(e^{i \theta}+U_{\lambda}^{*}\right) x,\left(e^{i \theta}+U_{\lambda}^{*}\right) x\right\rangle-\left\langle P\left(e^{i \theta}-U_{\lambda}^{*}\right) x,\left(e^{i \theta}-U_{\lambda}^{*}\right) x\right\rangle\right) \\
& +\frac{i}{4}\left(\left\langle P\left(e^{i \theta}+i U_{\lambda}^{*}\right) x,\left(e^{i \theta}+i U_{\lambda}^{*}\right) x\right\rangle-\left\langle P\left(e^{i \theta}-i U_{\lambda}^{*}\right) x,\left(e^{i \theta}-i U_{\lambda}^{*}\right) x\right\rangle\right) .
\end{aligned}
$$

Noting that all inner products of the terminal side are all positive since $P \geqslant 0$. Hence, one observes that

$$
\begin{aligned}
\left\langle\Re\left(e^{i \theta} U_{\lambda} P\right) x, x\right\rangle & =\Re\left(\left\langle e^{i \theta} U_{\lambda} P x, x\right\rangle\right) \\
& =\frac{1}{4}\left(\left\langle\left(e^{i \theta}+U_{\lambda}^{*}\right)^{*} P\left(e^{i \theta}+U_{\lambda}^{*}\right) x, x\right\rangle-\left\langle\left(e^{i \theta}-U_{\lambda}^{*}\right)^{*} P\left(e^{i \theta}-U_{\lambda}^{*}\right) x, x\right\rangle\right) \\
& \leqslant \frac{1}{4}\left\langle\left(e^{i \theta}+U_{\lambda}^{*}\right)^{*} P\left(e^{i \theta}+U_{\lambda}^{*}\right) x, x\right\rangle \\
& \leqslant \frac{1}{4}\left\|\left(e^{i \theta}+U_{\lambda}^{*}\right)^{*} P\left(e^{i \theta}+U_{\lambda}^{*}\right)\right\| \\
& =\frac{1}{4}\left\|P^{\frac{1}{2}}\left(e^{i \theta}+U_{\lambda}^{*}\right)\left(e^{-i \theta}+U_{\lambda}\right) P^{\frac{1}{2}}\right\| \quad\left(\text { by }\left\|X^{*} X\right\|=\left\|X X^{*}\right\|\right) \\
& =\frac{1}{4}\left\|P+P^{\frac{1}{2}} U_{\lambda}^{*} U_{\lambda} P^{\frac{1}{2}}+2 \Re\left(e^{i \theta} P^{\frac{1}{2}} U_{\lambda} P^{\frac{1}{2}}\right)\right\| \\
& \leqslant \frac{1}{4}\|P\|+\frac{1}{4}\|P\|\left\|U_{\lambda}^{*} U_{\lambda}\right\|+\frac{1}{2}\left\|\Re\left(e^{i \theta} P^{\frac{1}{2}} U_{\lambda} P^{\frac{1}{2}}\right)\right\| \\
& \leqslant \frac{1}{4}\|P\|+\frac{1}{4}\|P\|\left\|U_{\lambda}^{*} U_{\lambda}\right\|+\frac{1}{2} \omega\left(P^{\frac{1}{2}} U_{\lambda} P^{\frac{1}{2}}\right) \quad(\text { by }(2)) .
\end{aligned}
$$

So, by taking the supremum over all $x \in \mathscr{H}$ with $\|x\|=1$ in the above inequality and then using (2) we get

$$
\begin{align*}
\omega\left(U_{\lambda} P\right) & \leqslant \frac{1}{4}\|P\|+\frac{1}{4}\|P\|\left\|U_{\lambda}^{*} U_{\lambda}\right\|+\frac{1}{2} \omega\left(P^{\frac{1}{2}} U_{\lambda} P^{\frac{1}{2}}\right) \\
& \leqslant \frac{1}{4}\|P\|+\frac{1}{4}\|P\|\left\|U_{\lambda}^{*} U_{\lambda}\right\|+\frac{1}{2} \omega(\widehat{\mathbf{T}}) \quad(\text { by } \tag{13}
\end{align*}
$$

On the other hand, let $x \in \mathscr{H}$ with $\|x\|=1$ and $\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}$. By applying the Cauchy-Schwarz inequality and making elementary calculations we see that

$$
\begin{aligned}
\left\langle U_{\lambda}^{*} U_{\lambda} x, x\right\rangle & =\sum_{j=1}^{d} \sum_{k=1}^{d} \overline{\lambda_{j}} \lambda_{k}\left\langle V_{k} x, V_{j} x\right\rangle \leqslant \sum_{j=1}^{d} \sum_{k=1}^{d}\left|\lambda_{j}\right| \cdot\left|\lambda_{k}\right| \cdot\left\|V_{k} x\right\| \cdot\left\|V_{j} x\right\| \\
& =\left(\sum_{k=1}^{d}\left|\lambda_{k}\right| \cdot\left\|V_{k} x\right\|\right)^{2} \leqslant\left(\sum_{j=1}^{d}\left|\lambda_{j}\right|^{2}\right)\left(\sum_{j=1}^{d}\left\|V_{j} x\right\|^{2}\right) \\
& =\left(\sum_{j=1}^{d}\left|\lambda_{j}\right|^{2}\right)\left(\sum_{j=1}^{d}\left\langle V_{j}^{*} V_{j} x, x\right\rangle\right) \leqslant\left(\sum_{j=1}^{d}\left|\lambda_{j}\right|^{2}\right)\left\|\sum_{i=1}^{d} V_{i}^{*} V_{i}\right\| \leqslant 1
\end{aligned}
$$

So, by taking the supremum over all $x \in \mathscr{H}$ with $\|x\|=1$, we obtain $\left\|U_{\lambda}^{*} U_{\lambda}\right\| \leqslant 1$. This yields, by using (13), that

$$
\omega\left(U_{\lambda} P\right) \leqslant \frac{1}{2}\|P\|+\frac{1}{2} \omega(\widehat{\mathbf{T}}) .
$$

Thus, by taking the supremum over all $\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in \overline{\mathbb{B}}_{d}$ in the above inequality and then using (9), we obtain

$$
\omega(\mathbf{T}) \leqslant \frac{1}{2}\|P\|+\frac{1}{2} \omega(\widehat{\mathbf{T}})
$$

Therefore, we get the desired result since $\|P\|=\|\mathbf{T}\|$.

4. Joint spectral radius

In this section, we shall characterize the joint spectral radius via spherical Aluthge transform.

THEOREM 5. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$ be a commuting d-tuple of operators. Then

$$
\lim _{n \rightarrow \infty}\left\|\widehat{\mathbf{T}}_{n}\right\|=r(\mathbf{T})
$$

where $\widehat{\mathbf{T}}_{n}$ means the n-th iteration of spherical Aluthge transform, i.e., $\widehat{\mathbf{T}}_{n}:=\widehat{\widehat{\mathbf{T}}_{n-1}}$, and $\widehat{\mathbf{T}}_{0}:=\mathbf{T}$ for a non-negative integer n.

We will prove this by similar arguments as in [35]. In order to achieve the goals of the present section, we need the following results.

Theorem C. ([3]) Let $A, B, X \in \mathscr{B}(\mathscr{H})$. Then

$$
\left\|A^{*} X B\right\|^{2} \leqslant\left\|A^{*} A X\right\|\left\|X B B^{*}\right\|
$$

Theorem D. ([22]) Let $A, B \in \mathscr{B}(\mathscr{H})$ be positive, and $X \in \mathscr{B}(\mathscr{H})$. Then

$$
\left\|A^{\alpha} X B^{\alpha}\right\| \leqslant\|A X B\|^{\alpha}\|X\|^{1-\alpha}
$$

for all $0 \leqslant \alpha \leqslant 1$.
LEMMA 4. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \in \mathscr{B}(\mathscr{H})^{d}$ be a commuting d-tuple of operators. Then the spherical Aluthge transform $\widehat{\mathbf{T}}$ is also a commuting d-tuple of operators.

Proof. Let $T_{k}=V_{k} P$. Then $\widehat{\mathbf{T}}=\left(\widehat{T}_{1}, \ldots, \widehat{T}_{d}\right)=\left(P^{\frac{1}{2}} V_{1} P^{\frac{1}{2}}, \ldots, P^{\frac{1}{2}} V_{d} P^{\frac{1}{2}}\right)$. By Lemma 3, we have $V_{j} P V_{k}=V_{k} P V_{j}$ for all $j, k=1, \ldots, d$. Hence we have

$$
\widehat{T}_{j} \widehat{T}_{k}=P^{\frac{1}{2}} V_{j} P V_{k} P^{\frac{1}{2}}=P^{\frac{1}{2}} V_{k} P V_{j} P^{\frac{1}{2}}=\widehat{T}_{k} \widehat{T}_{j}
$$

LEMMA 5. There is an $s \geqslant r(\mathbf{T})$ for which $\lim _{n \rightarrow \infty}\left\|\widehat{\mathbf{T}}_{n}\right\|=s$.
Proof. By Theorem 1, a sequence $\left\{\left\|\widehat{\mathbf{T}}_{n}\right\|\right\}_{n=0}^{\infty}$ is decreasing, and

$$
\left\|\widehat{\mathbf{T}}_{n}\right\| \geqslant r\left(\widehat{\mathbf{T}}_{n}\right)=r(\mathbf{T})
$$

for all non-negative integer n, where the last equation is shown in [6]. Hence there exists a limit point s of $\left\{\left\|\widehat{\mathbf{T}}_{n}\right\|\right\}_{n=0}^{\infty}$ such that $s \geqslant r(\mathbf{T})$.

LEMMA 6. For any positive integer k and non-negative integer n,

$$
\left\|\widehat{\mathbf{T}}_{n+1}^{k}\right\| \leqslant\left\|\widehat{\mathbf{T}}_{n}^{k}\right\|
$$

Proof. Since $\widehat{\mathbf{T}}_{n+1}=\widehat{\mathbf{T}}_{n}$, we only prove $\left\|\widehat{\mathbf{T}}^{k}\right\| \leqslant\left\|\mathbf{T}^{k}\right\|$. We notice that by Lemma $1,\left\|\mathbf{T}^{k}\right\|$ is given as follows:

$$
\left\|\mathbf{T}^{k}\right\|^{2}=\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d} T_{i_{1}}^{*} \cdots T_{i_{k}}^{*} T_{i_{k}} \cdots T_{i_{1}}\right\| .
$$

Let $A_{k}:=\operatorname{diag}(P, \ldots, P)$ be a $d^{k}-$ by $-d^{k}$ operator matrix, and let

$$
X_{k}=\left(\begin{array}{cccc}
V_{1} P \cdots P V_{1} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
V_{d} P \cdots P V_{d} & 0 & \cdots & 0
\end{array}\right)
$$

be a d^{k}-by- d^{k} operator matrix, where the 1 st column contains $V_{i_{1}} P V_{i_{2}} P \cdots P V_{i_{k}}$ for all $i_{1}, \ldots, i_{k}=1,2, \ldots, d$. Then by Theorem C,

$$
\begin{align*}
\left\|\widehat{\mathbf{T}}^{k}\right\|^{2} & =\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d}{\widehat{T_{i_{1}}}}^{*} \cdots \widehat{T_{i_{k}}} * \widehat{T_{i_{k}}} \cdots \widehat{T_{i_{1}}}\right\| \\
& =\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d} P^{\frac{1}{2}} V_{i_{1}}^{*} P \cdots P V_{i_{k}}^{*} P V_{i_{k}} P \cdots P V_{i_{1}} P^{\frac{1}{2}}\right\| \\
& =\left\|A_{k}^{\frac{1}{2}} X_{k}^{*} A_{k} X_{k} A_{k}^{\frac{1}{2}}\right\|=\left\|A_{k}^{\frac{1}{2}} X_{k} A_{k}^{\frac{1}{2}}\right\|^{2} \leqslant\left\|A_{k} X_{k}\right\|\left\|X_{k} A_{k}\right\| . \tag{14}
\end{align*}
$$

Now, it can be seen that

$$
\begin{align*}
\left\|A_{k} X_{k}\right\| & =\left\|X_{k}^{*} A_{k}^{2} X_{k}\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d} V_{i_{1}}^{*} P \cdots P V_{i_{k}}^{*} P^{2} V_{i_{k}} P \cdots P V_{i_{1}}\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d} V_{i_{1}}^{*} P \cdots P V_{i_{k}}^{*} P\left(\sum_{i_{k+1}=1}^{d} V_{i_{k+1}}^{*} V_{i_{k+1}}\right) P V_{i_{k}} P \cdots P V_{i_{1}}\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}=1}^{d} V_{i_{1}}^{*}\left(\sum_{i_{2}, \ldots, i_{k+1}=1}^{d} P V_{i_{2}}^{*} P \cdots P V_{i_{k}}^{*} P V_{i_{k+1}}^{*} V_{i_{k+1}} P V_{i_{k}} P \cdots P V_{i_{2}} P\right) V_{i_{1}}\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}=1}^{d} V_{i_{1}}^{*}\left(\sum_{i_{2}, \ldots, i_{k+1}=1}^{d} T_{i_{2}}^{*} \cdots T_{i_{k}}^{*} T_{i_{k+1}}^{*} T_{i_{k+1}} \cdots T_{i_{2}}\right) V_{i_{1}}\right\|^{\frac{1}{2}} \\
& \leqslant\left\|\sum_{i_{1}=1}^{d} V_{i_{1}}^{*} V_{i_{1}}\right\|^{\frac{1}{2}}\left\|\sum_{i_{2}, \ldots, i_{k+1}=1}^{d} T_{i_{2}}^{*} \cdots T_{i_{k+1}}^{*} T_{i_{k+1}} \cdots T_{i_{2}}\right\|^{\frac{1}{2}}=\left\|\mathbf{T}^{k}\right\|, \tag{15}
\end{align*}
$$

where the last inequality follows from Lemma 2 and the fact that $\sum_{k=1}^{d} V_{k}^{*} V_{k}$ is a projection onto $\overline{\mathscr{R}(P)}$. Moreover

$$
\begin{aligned}
\left\|X_{k} A_{k}\right\| & =\left\|A_{k} X_{k}^{*} X_{k} A_{k}\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d} P V_{i_{1}}^{*} P \cdots P V_{i_{k}}^{*} V_{i_{k}} P \cdots P V_{i_{1}} P\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d} T_{i_{1}}^{*} \cdots T_{i_{k}}^{*} T_{i_{k}} \cdots T_{i_{1}}\right\|^{\frac{1}{2}}=\left\|\mathbf{T}^{k}\right\| .
\end{aligned}
$$

Hence we have

$$
\left\|\widehat{\mathbf{T}}^{k}\right\| \leqslant\left\|A_{k} X_{k}\right\|^{\frac{1}{2}}\left\|X_{k} A_{k}\right\|^{\frac{1}{2}} \leqslant\left\|\mathbf{T}^{k}\right\| .
$$

Lemma 7. For any positive integer k,

$$
\left\|\widehat{\mathbf{T}}_{n+1}^{k}\right\| \leqslant\left\|\widehat{\mathbf{T}}_{n}^{k+1}\right\|^{\frac{1}{2}}\left\|\widehat{\mathbf{T}}_{n}^{k-1}\right\|^{\frac{1}{2}}
$$

for all $n \geqslant 0$.
Proof. We shall prove $\left\|\widehat{\mathbf{T}}^{k}\right\| \leqslant\left\|\mathbf{T}^{k+1}\right\| \frac{1}{2}\left\|\mathbf{T}^{k-1}\right\|^{\frac{1}{2}}$. Let A_{k} and X_{k} be defined in the proof of Lemma 6. Then, by (14) and Theorem D, we have

$$
\left\|\widehat{\mathbf{T}}^{k}\right\|=\left\|A_{k}^{\frac{1}{2}} X_{k} A_{k}^{\frac{1}{2}}\right\| \leqslant\left\|A_{k} X_{k} A_{k}\right\|^{\frac{1}{2}}\left\|X_{k}\right\|^{\frac{1}{2}}
$$

By taking into consideration the fact that $\sum_{k=1}^{d} V_{k}^{*} V_{k}$ is an orthogonal projection onto $\overline{\mathscr{R}(P)}$, it can be observed that

$$
\begin{aligned}
\left\|A_{k} X_{k} A_{k}\right\| & =\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d} P V_{i_{1}}^{*} P \cdots P V_{i_{k}}^{*} P^{2} V_{i_{k}} P \cdots P V_{i_{1}} P\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d} P V_{i_{1}}^{*} P \cdots P V_{i_{k}}^{*} P\left(\sum_{i_{k+1}=1}^{d} V_{i_{k+1}}^{*} V_{i_{k+1}}\right) P V_{i_{k}} P \cdots P V_{i_{1}} P\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}, \ldots, i_{k+1}=1}^{d} P V_{i_{1}}^{*} P \cdots P V_{i_{k}}^{*} P V_{i_{k+1}}^{*} V_{i_{k+1}} P V_{i_{k}} P \cdots P V_{i_{1}} P\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}, \ldots, i_{k+1}=1}^{d} T_{i_{1}}^{*} \cdots T_{i_{k+1}}^{*} T_{i_{k+1}} \cdots T_{i_{1}}\right\|^{\frac{1}{2}}=\left\|\mathbf{T}^{k+1}\right\|
\end{aligned}
$$

On the other hand, one has

$$
\begin{aligned}
\left\|X_{k}\right\| & =\left\|\sum_{i_{1}, \ldots, i_{k}=1}^{d} V_{i_{1}}^{*} P \cdots P V_{i_{k}}^{*} V_{i_{k}} P \cdots P V_{i_{1}}\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}, \ldots, i_{k-1}=1}^{d} V_{i_{1}}^{*} P \cdots P\left(\sum_{i_{k}=1}^{d} V_{i_{k}}^{*} V_{i_{k}}\right) P \cdots P V_{i_{1}}\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i_{1}, \ldots, i_{k-1}=1}^{d} V_{i_{1}}^{*} P \cdots V_{i_{k-1}}^{*} P^{2} V_{i_{k-1}} \cdots P V_{i_{1}}\right\|^{\frac{1}{2}} \\
& =\left\|X_{k-1}^{*} A_{k-1}^{2} X_{k-1}\right\|^{\frac{1}{2}} \leqslant\left\|\mathbf{T}^{k-1}\right\|
\end{aligned}
$$

where the last inequality follows from (15). Therefore

$$
\left\|\widehat{\mathbf{T}}^{k}\right\| \leqslant\left\|A_{k} X_{k} A_{k}\right\|^{\frac{1}{2}}\left\|X_{k}\right\|^{\frac{1}{2}} \leqslant\left\|\mathbf{T}^{k+1}\right\|^{\frac{1}{2}}\left\|\mathbf{T}^{k-1}\right\|^{\frac{1}{2}}
$$

Lemma 8. For each positive integer $k,\left\|\mathbf{T}^{k+1}\right\| \leqslant\left\|\mathbf{T}^{k}\right\|\|\mathbf{T}\|$.
Proof.

$$
\begin{aligned}
\left\|\mathbf{T}^{k+1}\right\|^{2} & =\left\|\sum_{i_{1}, \ldots, i_{k+1}=1}^{d} T_{i_{1}}^{*} \cdots T_{i_{k+1}}^{*} T_{i_{k+1}} \cdots T_{i_{1}}\right\| \\
& =\left\|\sum_{i_{1}=1}^{d} T_{i_{1}}^{*}\left(\sum_{i_{2}, \ldots, i_{k+1}=1}^{d} T_{i_{2}}^{*} \cdots T_{i_{k+1}}^{*} T_{i_{k+1}} \cdots T_{i_{2}}\right) T_{i_{1}}\right\| \\
& \leqslant\left\|\sum_{i_{1}=1}^{d} T_{i_{1}}^{*} T_{i_{1}}\right\|\left\|\sum_{i_{2}, \ldots, i_{k+1}=1}^{d} T_{i_{2}}^{*} \cdots T_{i_{k+1}}^{*} T_{i_{k+1}} \cdots T_{i_{2}}\right\| \quad \text { (by Lemma 2) } \\
& =\|\mathbf{T}\|^{2}\left\|\mathbf{T}^{k}\right\|^{2} . \quad \square
\end{aligned}
$$

LEMMA 9. For any positive integer $k, \lim _{n \rightarrow \infty}\left\|\widehat{\mathbf{T}}_{n}^{k}\right\|=s^{k}$.
Proof. We will prove the lemma by induction. Since $\lim _{n \rightarrow \infty}\left\|\widehat{\mathbf{T}}_{n}\right\|=s$ by Lemma 5 , the lemma is proven for $k=1$. Assume the lemma is proven for $1 \leqslant k \leqslant m$. By Lemmas 7 and 8,

$$
\begin{align*}
\left\|\widehat{\mathbf{T}}_{n+1}^{k}\right\| & \leqslant\left\|\widehat{\mathbf{T}}_{n}^{k+1}\right\|^{\frac{1}{2}}\left\|\widehat{\mathbf{T}}_{n}^{k-1}\right\|^{\frac{1}{2}} \\
& \leqslant\left\|\widehat{\mathbf{T}}_{n}^{k}\right\|^{\frac{1}{2}}\left\|\widehat{\mathbf{T}}_{n}\right\|^{\frac{1}{2}}\left\|\widehat{\mathbf{T}}_{n}^{k-1}\right\|^{\frac{1}{2}} . \tag{16}
\end{align*}
$$

Let $t:=\lim _{n \rightarrow \infty}\left\|\widehat{\mathbf{T}}_{n}^{m+1}\right\|$. The existence of limit follows from Lemma 6. Taking limits, the induction hypothesis and (16) show that

$$
s^{m} \leqslant t^{\frac{1}{2}} S^{\frac{m-1}{2}} \leqslant s^{\frac{m}{2}} S^{\frac{1}{2}} S^{\frac{m-1}{2}}=s^{m}
$$

It follows that $t=s^{m+1}$, and the proof is completed.
Proof of Theorem 5. It follows from Lemmas 6 and 9 that, for each positive integer k, the decreasing sequence $\left\{\left\|\widehat{\mathbf{T}}_{n}^{k}\right\|^{\frac{1}{k}}\right\}_{n=0}^{\infty}$ converges to s. Therefore

$$
\begin{equation*}
s \leqslant\left\|\widehat{\mathbf{T}}_{n}^{k}\right\|^{\frac{1}{k}} \tag{17}
\end{equation*}
$$

for all n and k. Now fix an n. If $r(\mathbf{T})<s$, then by Lemma 4 and (7),

$$
\lim _{k \rightarrow \infty}\left\|\mathbf{T}^{k}\right\|^{\frac{1}{k}}=r\left(\widehat{\mathbf{T}}_{n}\right)=r(\mathbf{T})
$$

would imply that $\left\|\widehat{\mathbf{T}}_{n}^{k}\right\|^{\frac{1}{k}}<s$ for sufficiently large k. Clearly this is a contradiction to (17). Therefore, we must have $s=r(\mathbf{T})$, and the result follows from Lemma 5.

REMARK 2. For a d-tuple of operators \mathbf{T} and a natural number n, \mathbf{T}^{n} is a d^{n} tuple of operators. Then we should consider d^{n}-tuple of operators for $n=1,2, \ldots$ to use (7). However, since $\widehat{\mathbf{T}}_{n}$ is also a d-tuple of operators, we only treat d-tuple of operators to get $r(\mathbf{T})$ by Theorem 5 .

REFERENCES

[1] A. Aluthge, On p-hyponormal Operators for $0<p<1$, Integral Equations Operator Theory, 13 (1990), 307-315.
[2] T. Ando, Aluthge transforms and the convex hull of the spectrum of a Hilbert space operator, Recent advances in operator theory and its applications, Oper. Theory Adv. Appl. 160 (2005), 21-39.
[3] R. Bhatia and C. Davis, A Cauchy-Schearz inequality for operators with applications, Linear Algebra Appl. 223/224 (1995), 119-129.
[4] H. Baklouti and K. Feki, On joint spectral radius of commuting operators in Hilbert spaces, Linear Algebra Appl. 557 (2018) 455-463.
[5] H. Baklouti, K. Feki and O. A. M. Sid Ahmed, Joint numerical ranges of operators in semiHilbertian spaces, Linear Algebra Appl. 555 (2018) 266-284.
[6] C. Benhida, R. E. Curto, S. H. Lee and J. Yoon, Joint spectra of spherical Aluthge transforms of commuting n-tuples of Hilbert space operators, C. R. Math. Acad. Sci. Paris 357 (2019), 799-802, https://doi.org/10.1016/j.crma.2019.10.003.
[7] J. W. Bunce, Models for n-tuples of noncommuting operators, J. Funct. Anal. 57 (1984), 21-30.
[8] G. Corach, H. Porta and L. Recht, An operator inequality, Linear Algebra Appl., 142 (1990), 153-158.
[9] M. Chō, I. B. Jung and W. Y. Lee, On Aluthge Transforms of p-hyponormal Operators, Integral Equations Operator Theory, 53 (2005), 321-329.
[10] R. Curto and J. Yoon, Toral and spherical Aluthge transforms of 2 -variable weighted shifts, C. R. Acad. Sci. Paris 354 (2016), 1200-1204.
[11] R. Curto and J. Yoon, Aluthge transforms of 2 -variable weighted shifts, Integral Equations Operator Theory 90 (2018), Paper number 52, 32 pp .
[12] M. Chō, M. Takaguchi, Boundary points of joint numerical ranges, Pacific J. Math 95 (1981), 27-35.
[13] M. ChŌ, W. Z̀ELAZKO, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258.
[14] R. E. Curto, Applications of several complex variables to multiparameter spectral theory. In Surveys of some recent results in operator theory, Vol. II, volume 192 of Pitman Res. Notes Math. Ser., pages 25-90. Longman Sci. Tech., Harlow, 1988.
[15] A. T. DASH, Joint numerical range, Glasnik Mat. 7 (1972), 75-81.
[16] K. Dy Kema and H. Schultz, Brown measure and iterates of the Aluthge transform for some operators arising from measurable actions, Trans. Amer. Math. Soc. 361 (2009), 6583-6593.
[17] C. Foias, I. Jung, E. Ko, C. Pearcy, Complete contractivity of maps associated with the Aluthge and Duggal transforma-tions, Pac. J. Math. 209 (2003) 249-259.
[18] T. Furuta, Invitation to linear operators. From matrices to bounded linear operators on a Hilbert space, Taylor \& Francis Group, London, 2001.
[19] K. E. Gustafson, The Toeplitz-Hausdorff Theorem of linear Operators, Proc. Amer. Math. Soc. 25 (1970), 203-204.
[20] K. E. Gustafson, D. K. M. RaO, Numerical Range, Springer-Verlag, New York, 1997.
[21] S. Hildebrandt, Numerischer Wertebereich und normale Dilatationen, Acta Sci. Math. (Szeged) 26 (1965), 187-190.
[22] E. HEinZ, Beiträge zur Störungstheoric der Spektralzerlegung, Math. Ann. 123 (1951), 415-438.
[23] I. Jung, E. Ko and C. PEARCY, Aluthge transform of operators, Integral Equations Operator Theory 37 (2000), 437-448.
[24] I. B. Jung, E. Ko and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations Operator Theory 40 (2001), 52-60.
[25] J. Kim and J. Yoon, Aluthge transforms and common invariant subspaces for a commuting n-tuple of operators, Integral Equations Operator Theory 87 (2017) 245-262.
[26] J. Kim and J. Yoon, Taylor spectra and common invariant subspaces through the Duggal and generalized Aluthge transforms for commuting n-tuples of operators, J. Operator Theory 81 (2019) 81-105, http://dx.doi.org/10.7900/jot.2017nov27. 2210.
[27] S. H. Lee, W. Y. Lee and J. Yoon, Subnormality of Aluthge transform of weighted shifts, Integral Equations Operator Theory 72 (2012), 241-251.
[28] C. K. Li, C-Numerical Ranges and C-Numerical Radii, Linear and Multilinear Algebra 37 (1994), 51-82.
[29] C. K. Li and Y. T. Poon, Convexity of the joint numerical range, SIAM J. Matrix Anal. Appl. 21 (1999), 668-678.
[30] V. MÜLLER, AND A. Soltysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333.
[31] G. Popescu, Unitary invariants in multivariable operator theory, Memoirs of the American Mathematical Society, 200 (941), vi+91 pp (2009).
[32] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968) 417-424.
[33] O. Toeplitz, Das algebraische Analogou zu einem satze von fejer, Math. Zeit, 2 (1918), 187-197.
[34] J. L. TAYLOR, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970) 172-191.
[35] D. WANG, Heinz and McIntosh inequalities, Aluthge transformation and the spectral radius, Math. Inequal. Appl. 6 (2003), 121-124.
[36] T. YAMAZAKI, On upper and lower bounds for the numerical radius and an equality condition, Studia Math. 178 (2007), 83-89.
[37] T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc. 130 (2002), 1131-1137.
(Received September 2, 2020)

> Kais Feki
> University of Monastir
> Faculty of Economic Sciences and Management of Mahdia
> Mahdia, Tunisia
> and
> Laboratory Physics-Mathematics and Applications $($ LR/l3/ES-22)
> Faculty of Sciences of Sfax, University of Sfax Sfax, Tunisia
> e-mail: kais.feki@fsegma.u-monastir.tn; kais.feki@hotmail.com
> Takeaki Yamazaki Toyo University Saitama, Japan
> e-mail: t-yamazaki@toyo.jp

[^0]: Mathematics subject classification (2010): Primary 47A13; Secondary 47A12, 47A30.
 Keywords and phrases: Spherical Aluthge transform, Duggal transform, joint numerical radius, joint spectral radius, joint operator norm.

