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JOINT NUMERICAL RADIUS OF SPHERICAL ALUTHGE
TRANSFORMS OF TUPLES OF HILBERT SPACE OPERATORS

KAIS FEKI AND TAKEAKI YAMAZAKI

(Communicated by S. Varosanec)

Abstract. Let T = (T1,...,T;) be a d-tuple of operators on a complex Hilbert space 7. The
spherical Aluthge transform of T is the d -tuple given by T:= (VPVi\/P,... ,\/PV;\/P) where
P:= \/T[Ti+...+T;T; and (V1,...,Vy) is a joint partial isometry such that T = VyP for
all 1 <k<d. In this paper, we prove several inequalities involving the joint numerical radius
and the joint operator norm of T. Moreover, a characterization of the joint spectral radius of an
operator tuple T via n-th iterated of spherical Aluthge transform is established.

1. Introduction and Preliminaries

Throughout this paper, .7# will be a complex Hilbert space, with the inner product
(-,-) and the norm || - ||. Z(5) stands for the Banach algebra of all bounded linear
operators on 7 and I denotes the identity operator on 7. In all that follows, by
an operator we mean a bounded linear operator. The range and the null space of an
operator T are denoted by Z(T) and .4 (T), respectively. Also, T* will be denoted
to be the adjoint of 7. An operator T is called positive if (Tx,x) > 0 for all x € 57,
and we then write 7 > 0. Further, the square root of every positive operator 7' is
denoted by T If T e PB(H), then the absolute value of T is denoted by |T'| and
given by |T| = (T*T)%.

For T € #(), the spectral radius of T is defined by

r(T) =sup{[A|; 2 € o(T)},

where o(T) denotes the spectrum of 7. Moreover, the numerical radius and operator
norm of 7 are denoted by @ (T) and ||T|| respectively and they are given by

o (T) = sup{|(Tx,x)| ; x€ A, |[x[| = 1}

and
Tl =sup{||Tx|; x € 7, |[x]| = 1}.
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It is well-known that for T € #(.7°) we have

”Zﬂémax{r(T),%}éw(T)i I7]- M

It has been shown in [36] that if T € (), then

o(T) = sup , 2)

0k

]m(el‘er)’

where R(X) := X+TX* for a given operator X . For more results, we refer the reader to
the book by Gustafson and Rao [20].

An operator U € #(H) is said to be a partial isometry if ||Ux|| = ||x|| for every
x€ A (U)*. Let T =U|T| be the polar decomposition of T € %(.7#) with U is a par-
tial isometry. The Aluthge transform of T was first defined in [1] by 7 := |T|%U |T\% .
This transformation has attracted considerable attention over the last two decades (see,
for example, [2, 9, 16, 23, 24, 27, 37]). The following properties of T are well-known
(see [23]):

@ 7] <7,
(i) ~(T)=rT),
(iii) o(T) < o(T).

Let T = (Ty,...,Ty) € B()? be a d-tuple of operators. The joint numerical
range of T is introduced by A.T. Dash [15] as:

JIW(T) = {({Tix,x),...,(Tyx,x)); x € A, ||x|| = 1}.

If d =1, we get the definition of the classical numerical range of an operator 7', denoted
by W(T), which is firstly introduced by Toeplitz in [33]. It is well-known that W (T)
is convex (see [28, 19]). Unlike the classical numerical range, JtW(T) may be non
convex for d > 2. For a survey of results concerning the convexity of JtW(T), the
reader may see [15, 29] and their references. The joint numerical radius of an operator
tuple T = (T1,...,Ty) is defined in [12] as

O(T) = sup {|£[12:1 = (A1, .., Aa) € JIW(T)}

(S

d
= sup (Z <Tkx,x>2> xe st =1
k=1

It was shown in [4] that for an operator tuple T = (T,...,T;) € %(#)¢, we have

o(T) = sup oM+ ...+ M Ty), 3)
(A y--Ag)€By
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where B, denotes the open unit ball in C¢ with respect to the euclidean norm, and By
is its closure i.e.

d
By = {}L = (A1, da) €CY A= 3 A < 1}'
k=1

Given a d-tuple T = (T1,...,T;) of operators on 5, the joint norm of T is
defined as

1
d 2
[T|| := sup (ZTMHz) sxe A, |Ix| =1
k=1

Notice that || -|| and @(-) are equivalent norms on ()¢ . More precisely, for every
T=(Ti,...,Ty) € B()* we have

1
—||T|| < o(T) < ||T]. 4
STl <em <] @
Moreover, the inequalities in (4) are sharp (see [5, 31]).
T;
Let T=(Ty,...,T;) € B(H)" be a d-tuple of operators, and consider S = | :
T;
as an operator from ¢ into H := @l‘-i: |, that is,
T
S=|:|:# —H x—"(Tix,...,Tyx). 5)
T
T J
Then, we have §*S = (T{",...,T;) | : | = Z T; Ty Since S is an operator from .7#’
T, k=1
into H, then S has a classical polar decomposition S = VP, that is,
T Vi ViP
=1 =] )
T, Vyu VP
Vi
where V = | © | is a partial isometry from . to H and P is the positive operator
Va

on ¢ given by

P=(S8)2 = \JT{Ti+ ..+ T Ty
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Vi
d
So R:=V*V=(V,...vi) | : | = 2 ViV is the orthogonal projection onto the

k=1
Va
initial space of V which is

d L d L
(ﬂmm) = AN () =N (P)" = (ﬂ JV(V») : (6)
i=1 i=1

For T = (Ty,...,T;) € ()%, the spherical Aluthge transform of T is defined
as

T=T,....T)) = (\/ﬁvﬂ/ﬁ,...,\/ﬁvm/ﬁ) (cf. [101, 11, [25]).

This transformation has been recently investigated by C. Benhida et al. in [6]. It
should be mention here that T; = v/PV;v/P is not the Aluthge transform of 7; (for
i €{1,...,d}). Further, the spherical Duggal transform of T is defined, as in [26], by

T = (1P,...,TP) := (PVy,...,PV,).

Notice that for i € {1,...,d}, the operator T.” = PV; is not the Duggal transform of 7;
which is first referred to in [17]. When the operators T; are pairwise commuting, we
say that T is a commuting d -tuple.

Let T = (Ty,...,T;) € B(A#)? be a commuting d-tuple of operators. There are
several different notions of a spectrum. For a good description, the reader is referred to
[14] and the references therein. There is a well-known notion of a joint spectrum of a
commuting d-tuple T called the Taylor joint spectrum denoted by o7(T) (see [34]).
It is shown in [6] that oF (’f‘) = or(T) for commuting T € %(#)¢. The joint spectral
radius of T is defined to be the number

r(T) =sup{||A|2;A = (A1,...,44) € or(T)}.

It should be mention here that Cho and Zelazko proved in [13] that this definition of
r(T) is independent of the choice of the joint spectrum of T. Furthermore, an analogue
of the Gelfand-Beurling spectral radius formula for single operators has been estab-
lished by Miiller and Soltysiak in [30] for commuting tuples. Let T = (T,...,T,) €
PB(A)" and S = (S1,...,S,) € B(A)". Then the product TS is defined by

TS = (TlSl,...,TlSn,TgSl,...,TgSn,...,TmSl,...,TmSn) E{@(%)mn

Especially, T> = TT and T"*!' = TT". It was shown in [30] (cf. [7]) that if T is
commuting, then the joint spectral radius of T is given by

. 1
/(1) = lim [T 7. )

In this paper, we shall show several inequalities for spherical Aluthge transform which
are known in the single operator case in Sections 2 and 3. Then, in Section 4 we shall
show a characterization of joint spectral radius via n-th iterated of spherical Aluthge
transform. It is an extension of the formula ,}E}}o |T,|| = r(T), which is proved by the

second author in [37], where 7~"n means the n-th iterated of Aluthge transform of a
single operator (see [37]).
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2. Basic inequalities
In this section, we present basic inequalities for spherical Aluthge transform.
THEOREM 1. Let T = (Ty,...,Ty) € B(H)*. Then,
1) < [T
In order to prove our first result, we need the following lemmas.

LEMMA 1. Let T = (Ty,...,T;) € B(H)". Then

|T|| = T

Proof. Since Zk | )Ty > 0, then it follows that

d
IT||* = sup Y [|Tix||* = sup 2 T} Tix, x)
[lx|=1x=1 x|=1 %=

- |Lnm).

LEMMA 2. Let A, X; € B(H) for k=1,2,....,d. Then

2 XFAX,|| <
k=1

ZXI:Xk
k=1

1Al

Proof. Tt can be seen that

Xi - X5
, o A X, 0---0
XA =] . ' :
k=1 :
. Al \x,0---0
A X, 0---0\°
< z
A X;0---0
X; - X3
o) (oo
=Al|] . o
o o) \Xa0-0
d
= [IA][ || X X X[ -
k=1
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This proves the desired inequality. [J

Proof of Theorem 1. First of all, we notice that, in view of Lemma 1, we have

d
IT|> = || > RT| = |IPII>.
k=1
Further, by using Lemma 2, we see that
ITI? =Y Tk Tk
k=1
d 1 1
=Y, P2V PV P2
k=1
doy 2
<P Y, P2VEVP2 || = |1P||-||P|| = || T]]?,
k=1

where the third equation follows from the fact that Z;le VVi is a projection onto
A(P).

Next, we shall show inequalities of joint numerical radius for spherical Aluthge
transform. This discussion will be divided into two parts. We treat non-commuting
tuples of operators in the first part.

THEOREM 2. Let T = (Ty,...,T;) € B(H#)?. Then,

o(T) < %a)(T)—i— %w(TD). (8)

To prove the result, we will use the following theorems.
THEOREM A. ([21,32]) Let T € B(s¢). Then

W(T) = ({A € C:|A —p| <||T — pl|]}.
neC

THEOREM B. ([8], [18, Theorem 3.12.1]) Let A be a self-adjoint invertible oper-
ator and X € #A(J). Then

21X < |JAXA™ +A71xA|.

Proof of Theorem 2. In view of (3), we have

(D(T) = sup (u(?LlTl +...+A,de) = sup (D(U}LP)7 9)
(Al,...,ld)eﬁd (Al,...,ld)eﬁd
o(T)= sup (P UP?) and o(T’)= sup o(PU;),  (10)

(A ehq) EBy (A5 2q)EBy



JOINT NUMERICAL RADIUS OF SPHERICAL ALUTHGE TRANSFORMS 411

where Uy = AVi +...4+ A4V;. We shall prove

—— U P1PU
W(P%U;LP%)QW<7)L + A),

2

where W (X) means the closure of numerical range of X € #(.#). By taking into
consideration Theorem A, it suffices to prove the following norm inequality.

U, P+ PU,

IPtuspt - < | 245

“IH (11)

forall u € C.
For € >0, let P; := P+ ¢€l > 0. Then P; is positive invertible. Then by Theorem
B, we have
1 1 Lol 1 _1 11 1 1
2||P£2U7LP£2 _”IH < HP£2 (PSZUAPEZ _.uI)Ps : +Pe : (PSZUJLPEZ _.LLI)PSZ ”
= [|PeUy, + Uy Pe — 21|

By letting € ™\, 0, we get (11), and hence

RN N U, P+ PU 1
W(P2U,PI) C W (%) c5 {W(PUA)JFW(UAP)}.

Therefore, we get
1 iy 1
o(PIUPY) < 3 ((u(PU,l) v a)(U,lP)> :
which in turn implies, by taking the supremum over all (4, ...,A) € By, that

o(T) < %a)(T)—i— %w(TD).

Hence, the proof is complete.
In the second part of this discussion, we shall treat commuting tuples of operators.

THEOREM 3. Let T=(Ty,...,T;) € B(H)¢ be a commuting tuple of operators.
Then
o(T) < o(T).

To prove this, we will introduce the following lemma.

LEMMA 3. Let T=(Ty,...,T;) € B()", andlet Ty = V;P with P= ($4_ T T})?.
Then T is commuting if and only if ‘

VPV = V;PV;

holds for j,k=1,...,d.
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Proof. Since T;T; = T;T;, we have V;PV;P = V;PV;P, that is, V;PV;
d

By (6), Z(P) = N(P)= ()N (Vi) S AN(V) for k=1,....d.
k=1

Hence we have V;PV; = V;PV; =0 on 4 (P). Therefore V;PV; = V;PV; holds on
A = % (P)@® A (P). The converse implication is obvious. Thus the proof is com-
pleted. [

— V;PV;
holds on Z(P)

Proof of Theorem 3. Since (8), we have only to prove the following inequality

o(T) < o(T),
that is, we will prove that for every (A1,...,4) € B;, we have

®(PU;) < o(UyP), (12)
where U; = zj?:lx,-vj. Let x € 2 with |x|| =1 and (A4,

,Aq) € B;. Since
>¢_ ViV is a projection onto % (P), we have

d
(PU,x,x) (2 Vi Vk> PUx,x) = Y (ViPU,x,Vix).
k=1 k=1

Moreover, by Lemma 3, we see that

d
ViPU) = V;P (2 /lej> = (
=1 j

j
Then, we obtain

M=

/lej> PV = U, PV,.
1

d d
(PU,x,x) 2 ViPUy X, Vix) = 2 Uy PVix, Vix).

Put y; = H&ﬁ“ Since 3¢, V'V, is a projection onto Z(P), we have
% 2
[(PULx,x)| = | 3 Vil (Up Py, yi)
k=1

d
< Z Vx| |* [ (U Pyi, yie)|

w.
U
._.

<Y IVirlPo(Uz P)

k=

[SUREN

= (D, ViVix,x) o(Uy P) < (U, P).
k=1

So, we get (12) as required. Thus, the proof is finished by taking the supremum over
all (A44,...,44) € By in (12) and then using (9) together with (10)

QUESTION 1. It would be interesting to know whether or not the inequalities
< o(T) and o(T) < © old for non-commuting d -tuples of operators
TP T) and o(T T) hold f ing d -tuples of ?
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3. Precise estimation of joint numerical radius
In this section, we shall give a precise estimation of joint numerical radius.

THEOREM 4. Let T = (Ty,...,T;) € B(#)¢ be a d-tuple of operators. Then,
1 | RS
<= ~o(T).
o(T) < 5T + 5 o(T)

REMARK 1. By letting d = 1 in Theorem 4, we get the well-known result proved
by the second author in [36] asserting that

1 1~
< = —
forevery T € A(H).
Proof. By (9), we see that
o(T)= sup  o(UyP),

where Uy = 4V| +...+ A4V,;. Now, let x € 7 be such that ||x|| = 1. By the gener-
alized polarization identity (see [36]), we see that

(U, Px,x) = (¢ Px,Ujx)
1 ) . . .
= 5 ((P(e® + U, (¢ + U7)x) = (P(e” = Up)x, (¢ = U})x))
+ i((P(eie +iU3)x, (¢ +iU3)x) — (P(e — iU )x, (€ —iU;)x)).

Noting that all inner products of the terminal side are all positive since P > 0. Hence,
one observes that

(R(e® U, P)x,x) = R(("U, Px, x))
= i (((e® +U5)"P(e"® + Uy )x,x) — ((® — U})*P(e® — Uj )x,x))
< %((&9 +U;) P(e"® + Uj)x, x)

< 1] ruppe +up

1 . .
- HP% (€ +U) (e + Uy )P}

(by [|X*X[| = [[XX"[])

1 1 . Ullew, i00d 0 1
< ZIPI+Z 1P U504 + 5 | (e PR P)

1 .
- HP—i—P%U,{U;LP% +2R(PPEU, PY)

1 1 . 1 1 1
< ZIPI+Z 1P U302 + 50 (PPUaP?) - oy ).



414 K. FEKI AND T. YAMAZAKI

So, by taking the supremum over all x € . with ||x|| =1 in the above inequality and
then using (2) we get

1 1 . 1 1 1
o (ULP) < ZIIPI +ZIIPI U3 Us | + s (PEULP?)
1 1 | PN
<z IPI+ ZIPIHUiUa | + 3 0(T) - (by (). (13)

On the other hand, let x € # with ||x|| =1 and (Ay,...,A4) € B;. By applying the
Cauchy-Schwarz inequality and making elementary calculations we see that

d d d d
(U0 x) = 20 D Aihi(Viex, Vi) Z 2 AL Al - (Vx| - (V]|
j=lk=1

M - ||ka||>2 (Z |4, 2) (.i”vsz>
i |4 |2> (jéw;‘vjx,@) < (jémﬂ) iVi*Vl

i=1
So, by taking the supremum over all x € J# with |x|| = 1, we obtain ||U;U, || <1
This yields, by using (13), that

Il
—
™M

<1

I
VR
T

1 1~
CO(U)LP) < EHPH + ECO(T)

Thus, by taking the supremum over all (A;,...,A;) € B, in the above inequality and
then using (9), we obtain

1 | PN
o(T) < <||P —w(T).
(T) < 5 IPI| + 5 0(T)

Therefore, we get the desired result since |P|| = ||T||. O

4. Joint spectral radius

In this section, we shall characterize the joint spectral radius via spherical Aluthge
transform.

THEOREM 5. Let T = (Ty,...,T;) € B(H)? be a commuting d -tuple of opera-
tors. Then N
lim [T, | = r(T),
where 'f,, means the n-th iteration of spherical Aluthge transform, i.e., 'i‘,, = ’f‘n, 1
and Ty :=T for a non-negative integer n.

We will prove this by similar arguments as in [35]. In order to achieve the goals of
the present section, we need the following results.
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THEOREM C. ([3]) Let A,B,X € #(5). Then
IA*XB||* < [|A*AX | [|XBB"||.
THEOREM D. ([22]) Let A,B € B() be positive, and X € Z(#). Then
IA“X B || < [lAX B X'~
foral0<a < 1.

LEMMA 4. Let T=(T\,...,T;) € B(H)" be a commuting d-tuple of operators.
Then the spherical Aluthge transform T is also a commuting d -tuple of operators.

Proof. Let Ty=ViP. Then T=(Ti,...,T;) = (P*V\P?,...,P2V,P?). By Lemma
3, we have V;PV, =V} PV; forall j,k=1,...,d. Hence we have

T:T; = PIV;PV,P% = P2V,PV;P? = ,T;. [

LEMMA 5. There is an s > r(T) for which lim | T,|| = s.

Proof. By Theorem 1, a sequence { H'f‘nH};"zo is decreasing, and
IT]l = r(T) = r(T)

for all non-negative integer n, where the last equation is shown in [6]. Hence there
exists a limit point s of {||T,| };"_, such that s > r(T). O

LEMMA 6. For any positive integer k and non-negative integer n,

Proof. Since T, = T,, we only prove H’TkH < ||T¥||. We notice that by Lemma

mk
Tn

<]

1, ||T*|| is given as follows:

k 2 d * *
HT H = 2 T TiT, T,

i eip=1

Let Ay := diag(P,...,P) be a d*~by—d* operator matrix, and let
ViP---PV; 0---0

X = : : :
VyP---PV;0---0
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be a d*~by—d* operator matrix, where the 1st column contains V;, PV;,P- - PV;, for all
it,...,ix =1,2,...,d. Then by Theorem C,

~clI2 4y ke
HT H = z T, T, T, T
ifmig=1

d
=\ > p%WTP...px/i:pwkp...pwlp%

it ig=1
Lo 1 11
= || AL XEArXiAg H = 'A,kaAlg < [ ARXe I Xk A (14)
Now, it can be seen that
1
Ak = [1X; A7 X2
d 2
2
= 2 Vl.*l‘p...pvl.:p V; PPV
i ig=1
d d 2
* * *
= 2 Vilp'“PVikP z Vik+1Vik+l PVyP---PV
i]yenig=1 igr1=1
d d 2
|V X PViPPVIPVD Vi PVPPVLP |V,
i1=1 2,k 1=1
d d 3
= ZVZT 2 Tl;Tt: i:“nkﬂ'“Tiz Vi
=1 inips1=1
d % d 2
< | X vivi Y LT T Tyf =T (15)
=1 i1 =1

where the last inequality follows from Lemma 2 and the fact that ¥¢_, V;V; is a pro-

jection onto Z(P). Moreover

1
| ArXy XiAr|| 2

I

(| XeAk||

d 2

> PViP---PViV;P---PV, P

i eip=1

1

2

d
k
Y T T T =T

i

i]yenig=1

Hence we have R . .
HTkH < ARXe 1 2 (|1 XAx |2 < HTkH O
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LEMMA 7. For any positive integer k,

Nl—

T <||T

forall n > 0.

Proof. We shall prove ||T|| < ||T*!||2|T~!||2. Let A and X; be defined in
the proof of Lemma 6. Then, by (14) and Theorem D, we have
1 1
< JARXRAR 2 (| Xk |2 -

Tl = A2 x42
1= Jaixia;

By taking into consideration the fact that Ele ViVi is an orthogonal projection onto
2 (P), it can be observed that

d 2

IAXAKll = || Y, PViiP---PV;P?V,P---PV;P

i]yenig=1

d
-z PviTP---Pvi:P<z tm)PvikP---thP

i1k =1 irr1=1
y :
= X 1PVP -PV;PV; Vi  PVyP---PVyP
Uyeenslk+ 17
Z ’ k+1
. * * _ —+
=| 2T T T =1
el 41=
On the other hand, one has
2
I = 2 VP PVViP PV,
..... lkl
2
= 2 VTP~~~P<2 >P~~~PV,-l
iyeenip_1=1 ix=1
d 2
2
= Z 1Vp Vi PV ---PVy
U yeenslf—1=

HXI;FAA%AXk—lH% < HTk_l’ )

where the last inequality follows from (15). Therefore

= 1 L L 1
T < ARXRARI 21Xl 2 < T2 T2 O
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LEMMA 8. For each positive integer k, | T < || T¥||||T||.

Proof.
k412 d
*
HT+ H _ Z T;T ikHTikH"'Til
i]senikr1=1
d d
= ZT: 2 T l_;:HTikH...z;.2 T;
i=1 i2eesipg1 =1
d d
<IXHE|| X T T Ty (byLemma2)
i=1 i2yemsify1=1
21k (12
= [T~ O

LEMMA 9. For any positive integer k, lim ||TX| = s*.
N—o0

Proof. We will prove the lemma by induction. Since lim | T,|| = s by Lemma
n—>00

5, the lemma is proven for k = 1. Assume the lemma is proven for 1 < k < m. By

Lemmas 7 and 8,
ik k14 k=14
ITheall < IR 12T 2 6
kit ot k=14
Tl I T2 T2

Let 7 := lim | T”"*!||. The existence of limit follows from Lemma 6. Taking limits, the
Nn—oo

induction hypothesis and (16) show that

s < st < sEsts" T = gm.
It follows that = 5”1 and the proof is completed. [
Proof of Theorem 5. 1t follows from Lemmas 6 and 9 that, for each positive integer
k, the decreasing sequence {||Tﬁ | 3 }=_, converges to s. Therefore
s < [T % (a7)
for all n and k. Now fix an n. If #(T) < s, then by Lemma 4 and (7),

lim [|T4£ = r(T,) = r(T)

would imply that H’f",‘lH% < s for sufficiently large k. Clearly this is a contradiction to
(17). Therefore, we must have s = r(T), and the result follows from Lemma 5.

REMARK 2. For a d-tuple of operators T and a natural number n, T" is a d"-
tuple of operators. Then we should consider d"-tuple of operators for n=1,2,... to
use (7). However, since T, is also a d-tuple of operators, we only treat d-tuple of
operators to get #(T) by Theorem 5.
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