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SPLITTING OF OPERATORS FOR FRAME INEQUALITIES
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(Communicated by J. Pečarić)

Abstract. In this paper, we obtain some new inequalities for frames, which are parametrized by a
parameter λ ∈R . By suitable choices of λ , one obtains the known results as special cases. Our
new results also make the underlying mathematical structure that gives rise to these inequalities
more transparent than previous approaches: our results show that the main point is the splitting
S = S1 + S2 of a positive definite frame operator S into the two positive semidefinite operators
S1 and S2 .

1. Introduction

Frames in Hilbert spaces were first introduced in 1952 by Duffin and Schaeffer [6]
to study some deep problems in nonharmonic Fourier series, reintroduced in 1986 by
Daubechies, Grossmann and Meyer [5], and today frames play important roles in many
applications in several areas of mathematics, physics, and engineering, such as coding
theory [12, 15], sampling theory [20], quantum measurements [7], filter bank theory
[10] and image processing [4].

Let H be a separable Hilbert space and I a countable index set. A sequence of
vectors { fi}i∈I of H is a frame for H if there exist constants A, B > 0 such that

A‖ f‖2 � ∑
i∈I

|〈 f , fi〉|2 � B‖ f‖2, ∀ f ∈ H .

The numbers A, B are called lower and upper frame bounds, respectively. If A = B ,
then this frame is called an A -tight frame, and if A = B = 1, then it is called a Parseval
frame.

Suppose { fi}i∈I is a frame for H , then the frame operator is a positive self-
adjoint invertible operator, which is given by

S : H → H , S f = ∑
i∈I

〈 f , fi〉 fi.

The following reconstruction formula holds:

f = ∑
i∈I

〈 f , fi〉S−1 fi = ∑
i∈I

〈
f ,S−1 fi

〉
fi,
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where the family { f̃i}i∈I = {S−1 fi}i∈I is also a frame for H , which is called the
canonical dual frame of { fi}i∈I . The frame {gi}i∈I for H is called an alternate dual
frame of { fi}i∈I if the following formula holds:

f = ∑
i∈I

〈 f , fi〉gi = ∑
i∈I

〈 f ,gi〉 fi

for all f ∈ H (see [9]).
Let { fi}i∈I be a frame for H , for every J ⊂ I , we define the operator

SJ = ∑
i∈J

〈 f , fi〉 fi,

and denote Jc = I \ J .
In [1], the authors solved a long-standing conjecture of the signal processing com-

munity. They showed that for suitable frames { fi}i∈I , a signal f can (up to a global
phase) be recovered from the phase-less measurements {|〈 f , fi〉|}i∈I . Note, that this
only shows that reconstruction of f is in principle possible, but there is not an effective
constructive algorithm. While searching for such an algorithm, the authors of [2] dis-
covered a new identity for Parseval frames [3]. The authors of [8, 19] generalized these
identities to alternate dual frames and got some general results. The study of inequal-
ities has interested many mathematicians. Some authors have extended the equalities
and inequalities for frames in Hilbert spaces to generalized frames [13, 16, 17]. The fol-
lowing form was given in [3] (see [2] for a discussion of the origins of this fundamental
identity).

THEOREM 1. Let { fi}i∈I be a Parseval frame for H . For every J ⊂ I and every
f ∈ H , we have

∑
i∈J

|〈 f , fi〉|2 +

∥∥∥∥∥∑
i∈Jc

〈 f , fi〉 fi

∥∥∥∥∥
2

= ∑
i∈Jc

|〈 f , fi〉|2 +

∥∥∥∥∥∑i∈J
〈 f , fi〉 fi

∥∥∥∥∥
2

� 3
4
‖ f‖2. (1)

Later on, the author in [17] generalized Theorem 1 to general frames.

THEOREM 2. Let { fi}i∈I be a frame for H with canonical dual frame { f̃i}i∈I .
Then for every J ⊂ I and every f ∈ H , we have

∑
i∈J

|〈 f , fi〉|2 +∑
i∈I

∣∣∣〈SJc f , f̃i
〉∣∣∣2 = ∑

i∈Jc
|〈 f , fi〉|2 +∑

i∈I

∣∣∣〈SJ f , f̃i
〉∣∣∣2 � 3

4 ∑
i∈I

|〈 f , fi〉|2 . (2)

THEOREM 3. Let { fi}i∈I be a frame for H and {gi}i∈I be an alternate dual
frame of { fi}i∈I . Then for every J ⊂ I and every f ∈ H , we have

Re

(
∑
i∈J

〈 f ,gi〉 〈 f , fi〉
)

+

∥∥∥∥∥∑
i∈Jc

〈 f ,gi〉 fi

∥∥∥∥∥
2

= Re

(
∑
i∈Jc

〈 f ,gi〉 〈 f , fi〉
)

+

∥∥∥∥∥∑i∈J
〈 f ,gi〉 fi

∥∥∥∥∥
2

� 3
4
‖ f‖2. (3)
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2. Results and new proofs

First, we give some results for a operator which has same properties of frame
operator.

THEOREM 4. Let S : H → H be a positive definite operator. Furthermore, let
S1,S2 : H → H be positive semidefinite with S = S1 + S2 . Then the following are
true:

1. For i ∈ {1,2} , we have 0 � SiS−1Si � Si .

2. We have S2 +S1S−1S1 � S .

3. We have S1S−1S1 +S2S−1S2 � S .

4. S2 +S1S−1S1 = S1 +S2S−1S2 .

5. If p, q ∈ R are chosen such that ρ(a) := a2 +a · (q− p−1)+1−q � 0 for all
a ∈ [0,1] , then we have

p ·S1 +q ·S2 � S2 +S1S
−1S1.

6. If p, q ∈ R are chosen such that η(a) := a2 − a(1 + p) + q + p � 0 for all
a ∈ [0,1] , then we have

S1−S1S
−1S1 � p ·S2 +q ·S2.

7. If p, q ∈ R are chosen such that τ(a) := a2 + a · ( q−p
2 − 1)+ 1−q

2 � 0 for all
a ∈ [0,1] , then we have

p ·S1 +q ·S2 � S1S
−1S1 +S2S

−1S2.

In all of these statements, we write U � V for all operators U, V : H → H if U, V
are self-adjoint, and if furthermore V −U is positive semidefinite.

Proof. We first prove the following elementary fact: if P : H →H is a bounded
positive definite operator, then a self-adjoint, bounded operator X : H → H is pos-
itive semidefinite if and only if PXP is positive semidefinite. Indeed, if X is posi-
tive semidefinite, then 〈PXP f , f 〉 = 〈XP f ,P f 〉 for all f ∈ H , so that PXP is pos-
itive semidefinite. Conversely, if PXP � 0, we can apply what we just showed with
P−1 instead of P to see X = P−1(PXP)P−1 � 0. Overall, this means ∀U, V : H →
H self− adjoint and P : H → H positive definite , we have

U � V ⇔ PUP � PVP. (4)

Note that S−1/2 is positive definite and bounded, so that the operators U := S−1/2S1S−1/2

and V := S−1/2S2S−1/2 are positive semidefinite and bounded. Furthermore,

U +V = S−1/2(S1 +S2)S−1/2 = S−1/2SS−1/2 = IH . (5)
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Now, we properly start the proof:
(1). Since U, V are positive semidefinite, we have 0 �U �U +V = IH , and thus

IH −U � 0. Since IH −U and U commute, this implies U−U2 =U ·(IH −U) � 0,
i.e., 0 � U2 � U . In view of (4), this implies 0 � S1/2U2S1/2 � S1/2US1/2 . Since
S1/2US1/2 = S1 and S1/2U2S1/2 = S1S−1S1 , this implies the claim of the first part for
i = 1. The proof for i = 2 is similar.

(2). In view of (5) (with P = S−1/2 ), in view of the definition of U, V and because
of V = IH −U (see (5)), we have the following equivalence:

S2 +S1S
−1S1 � S ⇔V +UU � IH .

But we saw in the previous part that U2 � U , so that V +UU � V +U = IH does
hold.

(3). Part (1) shows SiS−1Si � Si for i ∈ 1,2. Hence, S1S−1S1 + S2S−1S2 � S1 +
S2 = S .

(4). By multiplying from the left and from the right by S−1/2 , we see that the
claimed identity is equivalent to V +UU = U +VV . Because of V = IH −U , this is
in tun equivalent to

IH −U +UU = U +(IH −U)(IH −U),

which is easy seen to be true by expanding the right-hand side.
(5). In view of (4) (with P = S−1/2 ), from the definition of U, V , and because of

V = IH −U (see (5)), we have the following equivalence:

p ·S1 +q ·S2 � S2 +S1S
−1S1 ⇔ p ·U +q ·V � V +UU

⇔ p ·U +q · IH −q ·U � IH −U +UU

⇔U2 +U · (q− p−1)+ (1−q) · IH � 0

⇔ ρ(U) � 0.

But in the proof of part (1), we saw 0 � U � IH . Since we have ρ � 0 on [0,1] by
assumption, elementary properties of the spectral calculus (see e.g. [11, Theorem 4.2])
imply that ρ(U) is positive semidefinite, as desired.

(6). Just as in the proof of the previous part, we get the following equivalence:

S1−S1S
−1S1 � p ·S2 +q ·S⇔U −UU � p ·V +q · IH

⇔U −U2 � (p+q) · IH − p ·U
⇔U2− (1+ p) ·U +(p+q) · IH � 0

⇔ η(U) � 0.

Again, just as in the proof of the previous part, we see that η(U) is indeed positive
semidefinite, since 0 � U � IH and since η � 0 on [0,1] by assumption.
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(7). Just as in part (5), we get the following equivalence:

p ·S1 +q ·S2 � S1S
−1S1 +S2S

−1S2 ⇔ p ·U +q ·V � UU +VV

⇔ p ·U +q · (IH −U) � UU +(IH −U)(IH −U)

⇔ 2U2 +U · (q− p−2)+ IH · (1−q) � 0

⇔ τ(U) � 0.

Again, just as in the proof of the previous part, we see that τ(U) is indeed positive
semidefinite, since 0 � U � IH and since τ � 0 on [0,1] by assumption. �

THEOREM 5. Let S : H →H be a bounded, self-adjoint positive definite opera-
tor. Furthermore, let S1,S2 : H → H be bounded, self-adjoint, and positive semidef-
inite with S = S1 +S2 . Then for any λ ∈ R , we have(

λ − λ 2

4

)
·S1 +

(
1− λ 2

4

)
·S2 � S2 +S1S

−1S1 = S1 +S2S
−1S2 � S. (6)

Proof. The middle identity is a direct consequence of part (4) of Theorem 4. Like-
wise, the final estimate follows directly from part (2) of Theorem 4.

To prove the first part of the equation (6), we want to apply part (5) of Theorem
4 with the choices p = λ − λ 2

4 and q = 1− λ 2

4 . With these choices, the polynomial ρ
from Theorem 4 takes the form

ρ(a) = a2 +a · (q− p−1)+1−q

= a2−λa+
λ 2

4
=
(

a− λ
2

)2

,

so that ρ(a) � 0 for all a ∈ [0,1] , as required by part (5) of Theorem 4. An application
of that part of the Theorem 4 completes the proof. �

By choosing S to be the frame operator, and by choosing S1 := SJ and S2 := SJc ,
we see that S , S1 and S2 are positive semi-definite, that S is positive definite, and that
S = S1 +S2 . Furthermore, directly from the definitions, we see

〈S f , f 〉 = ∑
i∈I

‖〈 f , fi〉‖2 ,

〈S1 f , f 〉 = ∑
i∈J

‖〈 f , fi〉‖2 , 〈S2 f , f 〉 = ∑
i∈Jc

‖〈 f , fi〉‖2 , (7)

〈S jS
−1S j f , fi〉 = 〈S(S−1S j f ),S−1S j f 〉 = ∑

i∈I

∥∥〈S−1S j f , fi〉
∥∥2

, j = 1, 2.
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COROLLARY 1. Let { fi}i∈I be a frame for H with frame operator S . Then for
any λ ∈ R , for all J ⊂ I , and any f ∈ H , we have(

λ − λ 2

4

)
·∑
i∈J

‖〈 f , fi〉‖2 +
(

1− λ 2

4

)
· ∑
i∈Jc

‖〈 f , fi〉‖2

� ∑
i∈Jc

‖〈 f , fi〉‖2 +∑
i∈I

∥∥〈S−1SJ f , fi〉
∥∥2

= ∑
i∈J

‖〈 f , fi〉‖2 +∑
i∈I

∥∥〈S−1SJc f , fi〉
∥∥2

� ∑
i∈I

‖〈 f , fi〉‖2 . (8)

Proof. We choose S1, S2 as outlined before equation (7). In view of the “trans-
lation table” in equation (7), and by the definition of the relation “U � V ” for self-
adjoint operator U, V , the equation (8) is equivalent to (6). By Theorem 5, the result
holds. �

REMARK 1. If we take λ = 1 in (8), Corollary 1 is equivalent to Theorem 2. If
we consider S as a fusion frame operator in Theorem 5, we can easily get the [14,
Theorem 3]. If we consider S as a HS-frame operator in Theorem 5, we can easily get
the [17, Theorem 3.5].

THEOREM 6. Let S : H →H be a bounded, self-adjoint positive definite opera-
tor. Furthermore, let S1,S2 : H → H be bounded, self-adjoint, and positive semidef-
inite with S = S1 +S2 . Then for any λ ∈ R , we have

0 � S1−S1S
−1S1 � (λ −1) ·S2 +

(
1− λ

2

)2

·S. (9)

Proof. The first estimate of equation (9) is a direct consequence of part (1) of
Theorem 4. To prove the second estimate, we want to apply part (6) of Theorem 4,

with p = λ −1 and q =
(
1− λ

2

)2
= 1−λ + λ 2

4 . With these choices, the polynomial

η from the Theorem 4 takes the form

η(a) = a2−a · (1+ p)+q+ p

= a2−λa+
λ 2

4
=
(

a− λ
2

)2

,

so that η(a) � 0 for all a ∈ [0,1] , as required by part (6) of Theorem 4. An application
of that theorem thus finishes the proof. �
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COROLLARY 2. Let { fi}i∈I be a frame for H with frame operator S . Then for
any λ ∈ R , for all J ⊂ I , and any f ∈ H , we have

0 � ∑
i∈J

‖〈 f , fi〉‖2 −∑
i∈I

∥∥〈S−1SJ f , fi〉
∥∥2

� (λ −1) · ∑
i∈Jc

‖〈 f , fi〉‖2 +
(

1− λ
2

)2

·∑
i∈I

‖〈 f , fi〉‖2 .

Proof. By choosing S1 = SJ and S2 = SJc , and by using the “translation table”
given in equation (7), we see that the claim is equivalent to (9), and result holds by
Theorem 6. �

REMARK 2. If we consider S as a fusion frame operator in Theorem 6, we can
easily get the [14, Theorem 5]. If we consider S as a g-frame operator in Theorem 6
for Hilbert C*-modules, we can easily get the [18, Theorem 2.4].

THEOREM 7. Let S : H →H be a bounded, self-adjoint positive definite opera-
tor. Furthermore, let S1,S2 : H → H be bounded, self-adjoint, and positive semidef-
inite with S = S1 +S2 . Then for any λ ∈ R , we have(

2λ − λ 2

2
−1

)
·S1 +

(
1− λ 2

2

)
·S2 � S1S

−1S1 +S2S
−1S2 � S. (10)

Proof. The second of these inequalities is a direct consequence of part (3) of The-
orem 4. To prove the first estimate, we want to involve part (7) of Theorem 4 with
p = 2λ − λ 2

2 −1 and q = 1− λ 2

2 . With these choices, the polynomial τ from Theorem
4 takes the form

τ(a) = a2 +a ·
(

q− p
2

−1

)
+

1−q
2

= a2−λa+
λ 2

4
=
(

a− λ
2

)2

,

so that τ(a) � 0 for all a ∈ [0,1] , as required in part (7) of Theorem 4. An application
of that theorem thus finishes the proof. �

COROLLARY 3. Let { fi}i∈I be a frame for H with frame operator S . Then for
any λ ∈ R , for all J ⊂ I , and any f ∈ H , we have(

2λ − λ 2

2
−1

)
·∑
i∈J

‖〈 f , fi〉‖2 +
(

1− λ 2

2

)
· ∑
i∈Jc

‖〈 f , fi〉‖2

� ∑
i∈I

∥∥〈S−1SJ f , fi〉
∥∥2

+∑
i∈I

∥∥〈S−1SJc f , fi〉
∥∥2

� ∑
i∈I

‖〈 f , fi〉‖2 .
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Proof. By choosing S1 = SJ and S2 = SJc , and by using the “translation table”
given in equation (7), we see that the claim is equivalent to (10). Then the result holds
by Theorem 7. �

REMARK 3. If we consider S as a continuous fusion frame operator in Theorem
6, we can easily get the [14, Theorem 2.13]. If we consider S as a g-frame operator in
Theorem 6 for Hilbert C*-modules, we can easily get the [18, Theorem 2.4].

Next, we give a new type of inequality of frames of Theorem 3. We first need the
following lemma.

LEMMA 1. Let U,V be two bounded linear operators in H and U +V = IH ,
then for any λ ∈ R , we have

U∗U + λ · (V ∗ +V) � λ (2−λ ) · IH .

Proof. Since U +V = IH , we have

U∗U + λ (V ∗ +V) = U∗U −λ (U∗+U)+2λ · IH
= U∗U −λ · (U∗+U)+2λ · IH + λ 2 · IH −λ 2 · IH
= (U −λ · IH )∗(U −λ · IH )+ λ (2−λ ) · IH
� λ (2−λ ) · IH . �

THEOREM 8. Let { fi}i∈I be a frame for H and {gi}i∈I be an alternate dual
frame of { fi}i∈I . Then for any λ ∈ R , for all J ⊂ I , and any f ∈ H , we have

Re

(
∑
i∈J

〈 f ,gi〉〈 f , fi〉
)

+

∥∥∥∥∥∑
i∈Jc

〈 f ,gi〉 fi

∥∥∥∥∥
2

� (2λ −λ 2) ·Re

(
∑
i∈J

〈 f ,gi〉 〈 f , fi〉
)

+(1−λ 2) ·Re

(
∑
i∈Jc

〈 f ,gi〉 〈 f , fi〉
)

.

Proof. For any J ⊂ I and f ∈ H , we define operators U,V as

U f = ∑
i∈Jc

〈 f ,gi〉 fi, V f = ∑
i∈J

〈 f ,gi〉 fi.

Clearly, U, V are bounded linear operators and U +V = IH . From Lemma 1, for any
f ∈ H , we have

〈U∗U f , f 〉+ λ 〈V f , f 〉+ λ 〈V f , f 〉 � (2λ −λ 2)〈IH f , f 〉 ,

and then,
‖U f‖2 +2λRe〈V f , f 〉 � (2λ −λ 2)Re〈IH f , f 〉 ,
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which implies

‖U f‖2 � (2λ −λ 2)Re 〈IH f , f 〉−2λRe〈V f , f 〉
= (2λ −λ 2)Re 〈(U +V) f , f 〉−2λRe〈V f , f 〉
= (2λ −λ 2)Re 〈U f , f 〉−λ 2Re〈V f , f 〉
= (2λ −λ 2)Re 〈U f , f 〉+(1−λ 2)Re 〈V f , f 〉−Re〈V f , f 〉 .

Hence

‖U f‖2 +Re〈V f , f 〉 � (2λ −λ 2)Re〈U f , f 〉+(1−λ 2)Re〈V f , f 〉 ,

thus

Re

(
∑
i∈J

〈 f ,gi〉〈 f , fi〉
)

+

∥∥∥∥∥∑
i∈Jc

〈 f ,gi〉 fi

∥∥∥∥∥
2

� (2λ −λ 2) ·Re

(
∑
i∈J

〈 f ,gi〉〈 f , fi〉
)

+(1−λ 2) ·Re

(
∑
i∈Jc

〈 f ,gi〉 〈 f , fi〉
)

. �

In the sequel we give a more general result. Consider a bounded sequence of
complex numbers {ai}i∈I . In Theorem 8 we take

U f = ∑
i∈Jc

ai 〈 f ,gi〉 fi, V f = ∑
i∈J

(1−ai)〈 f ,gi〉 fi.

We can get the following result.

COROLLARY 4. Let { fi}i∈I be a frame for H and {gi}i∈I be an alternate dual
frame of { fi}i∈I . Then for all bounded sequences {ai}i∈I we have

Re

(
∑
i∈J

(1−ai)〈 f ,gi〉〈 f , fi〉
)

+

∥∥∥∥∥∑
i∈Jc

ai 〈 f ,gi〉 fi

∥∥∥∥∥
2

� (2λ −λ 2) ·Re

(
∑
i∈J

(1−ai)〈 f ,gi〉 〈 f , fi〉
)

+(1−λ 2) ·Re

(
∑
i∈Jc

ai 〈 f ,gi〉 〈 f , fi〉
)

REMARK 4. If we take λ = 1
2 Theorem 8, we can obtain the inequality in Theo-

rem 3.
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[8] P. GĂVRUŢA, On some identities and inequalities for frames in Hilbert spaces, Journal of mathemat-
ical analysis and applications, 321, 1 (2006), 469–478.

[9] D. HAN AND D. R. LARSON, Frames, bases and group representations, American Mathematical
Society, 697, 2006.

[10] J. KOVACEVIC AND P. L. DRAGOTTI AND V. K. GOYAL, Filter bank frame expansions with erasures,
IEEE Transactions on Information Theory, 48, 6 (2002), 1439–1450.

[11] S. LANG, Real and functional analysis, Springer Science and Business Media, 2012.
[12] J. LENG AND D. HAN AND T. HUANG, Optimal dual frames for communication coding with proba-

bilistic erasures, IEEE transactions on signal processing, 59, 11 (2011), 5380–5389.
[13] D. LI AND J. LENG, On Some New Inequalities For Continuous Fusion Frames in Hilbert Spaces,

Mediterranean Journal of Mathematics, 15, 4 (2018), 173.
[14] D. LI AND J. LENG, On some new inequalities for fusion frames in Hilbert spaces, Mathematical

Inequalities & Applications, 20, 3 (2017), 889–900.
[15] D. LI AND J. LENG AND T. HUANG AND Q. GAO, Frame expansions with probabilistic erasures,

Digital Signal Processing, 72, (2018), 75–82.
[16] J. LI AND Y. ZHU, Some equalities and inequalities for g-Bessel sequences in Hilbert spaces, Applied

Mathematics Letters, 25, (2012), 1601–1607.
[17] A. PORIA, Some identities and inequalities for Hilbert-Schmidt frames, Mediterranean Journal of

Mathematics, 14, 2 (2017), 59.
[18] Z. XIANG, New inequalities for g-frames in Hilbert C*-modules, Journal of Mathematical Inequalities,

10, 3 (2016), 889–897.
[19] X. ZHU AND G. WU, A note on some equalities for frames in Hilbert spaces, Applied Mathematics

Letters, 23, 7 (2010), 788–790.
[20] P. ZHAO AND C. ZHAO AND P. CASAZZA, Perturbation of regular sampling in shift-invariant spaces

for frames, IEEE Transactions on Information Theory, 52, 10 (2006), 4643–4648.

(Received September 10, 2020) Dongwei Li
School of Mathematics

HeFei University of Technology
230009, P. R. China

e-mail: dongweili@huft.edu.cn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


