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APPROXIMATE ®-ORTHOGONALITY AND @-DERIVATION

MARYAM AMYARI AND MARZIEH MORADIAN KHIBARY

(Communicated by J. Pecari¢)

Abstract. We introduce the notion of approximate @ -orthogonality (referring to the numerical
radius @) and investigate its significant properties. Let 7,S € B(.%) and € € [0,1). We say
that T is approximate @ -orthogonality to S and we write T L% S if
@*(T+AS) > 0*(T)-2e0(T)o(AS),  forall A € C.
We show that 7 L% S if and only if . 1[3f2 )DZ(T7S) > —ea(T)w(S) in which DY (T,S) =
€02
2 i0 2

(T - T
L @4 re?S) — 0(T)
r—0t 2r
sequence {x} of unit vectors in 7 such that

; and this occurs if and only if for every 6 € [0,27), there exists a

lim | (70,9
n—soo

= (T) and lim Re{e " (Tx? x0)(sx8,x0)} > —e(T)w(S),
frasec

where @(7T') is the numerical radius of 7.

1. Introduction

The notion of orthogonality can be defined in many ways for normed spaces with-
out using the inner product structure. One of the most important types of orthogonality
in the setting of normed spaces is the Birkhoff-James orthogonality. Let (X, || -||) be
a linear normed space and x,y € X. Then x is called Birkhoff-James orthogonal to y,
written as x Lpy, if |[x+ Ay|| > ||x|| forevery A € C.

Many mathematicians generalized the notion of Birkhoff-James orthogonality in
the setup of normed spaces. Dragomir [5] introduced the notion of &€ -Birkhoff—James
orthogonality in a real normed space X as follows.

Let x,y € X and € € [0,1). We say that x is €-Birkhoff-James orthogonal to y if

lx+Ay] = (1—¢)|lx]|

forall A € R.

Chmielinski [2] introduced another notion of & -Birkhoff-James orthogonality in
the setting of normed spaces, for € € [0,1) a vector x is said to be approximately
Birkhoff-James orthogonal to a vector y, written as x J_g v, if

2 2
[+ Ay[" 2= [|x[| — 2&]|x]|[| Ay
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for all A € R. He also proved that in an inner product space x L% y if and only if
[{(x,¥)| < €|lx||||y]|- The notion of approximate orthogonality has been developed in
several settings; see e.g. [3, 11, 13].

Throughout the paper, let (#,(-,-)) be a Hilbert space and B(.7¢’) be the algebra
of all bounded linear operators on 57 with the identity /. A capital letter denotes a
bounded linear operator. The numerical radius of 7T is defined by

o(T) = sup{|(Tx,x)| :x € A, x| = 1}.

We need some formulas for calculating the numerical radius. We state them in the
following lemmas.

O(()I gl} € B(sA @ 54), where a,3 € C

_ B2 BlI2
VI PEE  Jo— B2 > 1B oc+ B
Yo+ Bl+11BI), lec— B> < |1B][[ec+BI.

LEMMA 1. [14, Theorem 3] Let T = [
with |a| = |B|. Then o(T) = {

LEMMA 2. [8, Theorem 3.7] Let T,S,U,V € B(J). Then
TS o(S+U) o(S-U)
o([f3]) 2 max (0.0, 250, 2E 00,

and
TS o(S+U)+o(S-U)
0] ({U V]) <max(o(T),0(V))+ > .
rl, U
LEMMA 3. [12, Theorem 2.3] Suppose that U € M,.,,—(C) and T = [O o ]
n—r
forall r,;s € R. Then
1 1
a)(T):§|r+s\+§ (r—s)2+|U|* (1)

Recently, Mal, Paul, and Sen [10] introduced the notion of @ -orthogonality for
operators in B(.#). For T,S € B(7¢), we say T to be @-orthogonality to S, denoted
by T Ly S if

o(T+AS)> w(T) forall AeC.
We introduce an approximate counterpart of the above notion and present some of its
characterizations. The paper is organized as follows.

In section 2, we introduce the notion of approximate @ -orthogonality “_L%” and
prove that for operators 7,5 € B(J#) and € € [0,1), it holds that T L% S if and only
if for every 6 € [0,27) there exists a sequence {x%} of unit vectors in .7 such that

lim [(Tx?,x%)| = o(T), and lim Re{e " (Tx? x2)(5x0,x0)} > —e(T)w(S).

In section 3, we introduce the notion of @ -derivation and study its connection with
the approximate w-orthogonality by showing that T 1 £ S if and only if 5 i[nf )Dg (T,S)
€|0,2m

2 T iOS ) T
> —ea(T)o(S), where DY(T,S) = lim o*( +re2 ) —0(T)
r— r



APPROXIMATE ®-ORTHOGONALITY AND @ -DERIVATION 465
2. Approximate numerical radius orthogonality

In this section, we introduce the notion of approximate @ -orthogonality and state
some of its basic properties.

DEFINITION 1. Let 7,S € B(2¢) and € € [0,1). We say that T is approximately
-orthogonal to S and we write 7 L% S if

0*(T+A8) = 0*(T) —2ew(T)w(AS) for all A € C.

It is easy to see that 7 L5 S and oT L% BS(a,B € C) are equivalent. The
following example shows that the relation L% is not symmetric, in general.

EXAMPLE 1. Suppose that T = [(l) ?] and § = [8 _11} are in M(C) and € €
1 2
[0,0.7). Lemma | and Lemma 3 show that o(7) =1 and o(S) = +2\/_, respec-

tively. Further, it follows from Lemma 2 that

a)(T+/lS):a)<[éijAD Zmax{i—k|7l7%}.

Hence, 0?(T +AS) > 0*(T) —2ew(T)w(AS), thatis T L& S.
For A = _Ti,weget

i L V2
—_— = 2 = — X~ U.
o(S 2T) m([o ﬂ) 2 0.707,

whence ®*(S— £T) ~ 0.499 and ©?*(S) ~ 1.457. Hence, 0*(S—4T) < w*(S) —
2e30(S)o(T). Thus, S L5 T.

The following proposition yields some relations between the approximate Birkhoff—
James orthogonality L% and the approximate w-orthogonality L% under some mild
conditions.

PROPOSITION 1. Let T,S € B(57) and € € [0,1).
() If T=T%,then T L¢ S implies that T L% S.
(ii) If 7> =0, then T L% S entails that T L%, S.

Proof. () Let T=T* and T L% S. Then o(T) = ||T|| and forall A € C,
|T+AS|)? > 0*(T +AS) > 0*(T) — 2e0(T) 0 (AS)
T — 26| T]lo(AS) > IT]]> — 2€]| T A5
Thus 7 L% S.
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(i) Let 7> =0 and T L% S. Then o(T) = §||T|| and

1
wz(T+7LS)>ZHT+7LSH2 L2 =26l 1251) ()—58\\TIIII7LSH
:wz(T)—sa)( MAS| = 0*(T) —2e0(T)w(AS),
which yields the required result. [J

The following example shows that 7 L% S does not entail 7 L% S, in general.

01
0—
[0,0.01). Then ||T|| = v/2 and ||| = 1 and for every A € C, we have
24 AP+ A+ AR
3 .

Hence [T +AS|* > 2 >2—2¢e[A| = ||T|* — v2¢||T||[|AS]| > |T|]* —2&|T|[[|AS].-
Thus T 15 S.

In addition, by Lemma 3, we have o(T) =

creno(y )%

We therefore get 1.25 = 0*(T + §) < 0*(T) —2eo(T)w(S) ~ 1.43 for &€ = 0.01.
Hence for € € [0,0.01), wereach T /% S

EXAMPLE 2. Suppose that 7 = [ J and S = [(1) 8} are in M(C) and € €

IT+ 28] =

‘/_ , 0(S)=1,and for A =1,

%

We give an example of two operators T and S such that T [, S, while T 1% S.

00
[%7 1). Straightforward computations give us (7) =2, o(S) = 3. If A = —1, then

m(T—S):w(BjD :§<2.

Hence, T [ S. From Lemma 2, we also have
o(T+AS)=0w ({231 ﬂ) > max{|1[,|A +2[}.

Thus, @*(T +AS) > max{|A|%, |2+ A]>} > 4 —6¢|A| = @*(T) — 2¢|A|0(T)w(S).
Therefore, T LE S.

EXAMPLE 3. Suppose that T = [2 O} and S = [ 1] are in M(C) and € €

Mal et al. [10, Theorem 2.3] characterized the ® -orthogonality of bounded linear
operators acting on a Hilbert space. In [16], the authors investigated some aspects of
the w-orthogonality. Inspired by these papers, we characterize the approximate -
orthogonality of operators in B(.7).
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THEOREM 1. Let T,S € B() and € € [0,1). The relation T L% 'S holds if and
only if for every 0 € [0,21), there exists a sequence {x%},cn of unit vectors in A
such that the following two conditions hold:

(i) lim [(T),x7)| = o(T),

(ii) lim Re{e " (Tx? x%)(5x0 x0)} > —e(T)w(S).
Proof. (<=)Let A € C. Then A = |A|e’® for some 6 € [0,27). By the assump-

tion, there exists a sequence {xg }nen of unit vectors in 7 such that (i) and (ii) hold.
Thus,

0 (T +A8) > r}gn|<(T+?LS) )2
Tim (769,68 P+ 212 [Refe ™ (T, x0) (KT x7)} + 12538 x8) )
tim ((Tx8 582+ 2/ Re{e™ (7). x8) (S27.2)})
>w2<T>—2ew< Jo(AS)

Thus, T LS.
(=) Let 6 € [0,2m). We derive from T 1% S that @ (T—l—?LS) > w?(T)

2e(T)w(AS) forall A € C. Hence, @ <T—|— 78) > 0*(T)—2e0(T)w %S) for
all n e N.
For every n € N there exists x? with ||x¢|| = 1 such that
2
0 1
(T—l—e—S) - =< ‘<<T+—S) 0 9> ,
n
whence
2¢e 1
(1) - Zo(T)a(s) - -
i0 1
<o’ <T+ e—S) - =
n n
2
<[((reSs)tt)
) _— 1
= [(Txd x5)* + ;Re{e_"’(Tx,?,xg)<Sx,‘3,x,?>} + ;\(ng,xg>\2~ 2)
Therefore,
n —i T 5 o
E(wz(T) — (T, x0)?) < Refe ™ (Tx] ) (Sx0,x9) }
1 1
T
+— > 0*(8)+— 2n +en(T)w(S) (neN),
and hence

0 < Ref{e O(Tx? x0)(sx0 x0)} + 2—1nw2(5) + 2—1n +en(T)oS) (meN). @3)
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Note that { (Tx%,x%)} and {(Sx? x%)} are two bounded sequences in C. Therefore,
by passing to subsequences of {x®},cn, if necessary, we can assume that these two
sequences are convergent. Now, inequality (3) implies that

lim Re{e "% (Tx? x8)(Sx8 x0)} > —ew(T)w(S).
n—oo
Thus, (ii) is valid.
We shall prove (i). It follows from (2) that
2¢ 1
2

T)——o(To(S)——=

0X(T) = = o(T)o(S) - -

2 : ——r 1
< ‘<sz7xg> ‘2 + _Re{e_le<Txgvxg><ngvxg>} + _2|<ng7)€3>|2
n n

2 1
2 2
< T )] +;\<TXS,XE>\|<SXS,XS>\+n—2|<Sx,?,x,?>|

2 1
< (T3 )P+ S o(TS] + 5 @3(S),

for all n € N. Hence
(1) 2 (T3 8P > @X(T) ~ 2 0(T)o(s) -~ ~a(T)]s] - -
for all n € N. Therefore, lim |[(Tx?,x%)| = o(T). O

REMARK 1. Due to the homogeneity of the relation L%, without loss of gener-
ality, we may assume that 0(7) = @(S) = 1. Then T L% S if and only if for every
6 € [0,27) there exists a sequence {x¢},cn of unit vectors in .7 such that the follow-
ing two conditions hold:

(i) lim (T x0) =1,

(i) lim Re{e @ (Tx? x0)(sx0 x0)} > —¢.
n—oo
Given an operator T € B(¢), the set of all sequences in the closed unit ball of
¢ at which T attains its numerical radius in limits is denoted by

Moy = {{m} + [l = 1, lim (T, 3| = (7))

In the following result, we show that under some mild conditions, L§ behaves
like a symmetric relation. Recall that the Crawford number of an operator T € B(¢)
is defined by

o(T) = inf{[(Tx,x)| : [|x[| = 1}.

PROPOSITION 2. Let 7,8 € B(47) and ¢(T) #0 and € € [0,1). If T L% S and

M5y VM 725y 7 0 forall 2 € C, then S LG, T
o(S) .
Proof. Let A € C. Put § := W Since L% is homogeneous, we have BT L%
c

2 " 2 " * *
$. Henee 02(BT+75) > 02(BT) ~2e0(BT)0(S) . Let {xn) € My (WL o
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We have
0?*(BT) —2ew0(BT)w(AS)
(BT +75)
Zr}ij(}oK(ﬁT-i'IS)xn,anz
= nlglgo <|<ﬁTxnaxn> ‘2 +2Rek <ﬁTxn7xn><an7xn> + M ‘2|<an7xn> ‘2>
From limy, e, |(BTXn,%,)|? < ®*(BT), we infer that
lim (2Re)L<BTxn,xn><an,xn>+|M2|<an,xn>\2> > 2e0(BT)0(AS). @)
o)
o(T)’
0*(S+ABT) > r}gn (S +ABT)xn,x,)|?

From f = we conclude that lim,, e (B2|(T X, %,)|* — |(Sxs,%,)|?) = 0. Thus

Tim (]S %02+ 2ReA (BT 0,5 (S %) + A P (BT 5 1) 2)
> Tim (|(Sn,0)[> + 2ReA (BT, x0) (S ) + A2 |<an7x,,>\2>
{

> lim |(Sxn, ) > — 2e0(BT) 0(15) (by (4)).

It follows from the assumption that limy,—.c. | (Sx,,X,)| = @(S). Therefore
0> (S+ABT) = 0*(S) —2ew(S)w(BAT),
since o(uS) = |u|o(S) foreach p € C. Thus S L5 7. O

For compact operators, in particular in the case where 77 is finite dimensional,
Theorem 1 yields the following result.

THEOREM 2. Let T,S € B(J) be two compact operators and € € [0,1). Then
T L% S holds if and only if for every 6 € [0,21), there exists a unit vector X e

such that |(Tx% x%)| = o(T) and Re{e 0 (Tx% x9)(Sx0 x0)} > —ew(T)w(S).

Proof. (<=) Itis obvious by Theorem 1.
(=) Let 6 €[0,27). It follows from Theorem 1 that there exists a sequence
{x9} e of unit vectors in .7 such that both (i) lim [(Tx% x%)| = o(T) and (i)

lim Re{e ®(Tx? x9)(Sx0,x8)} > —ew(T)w(S) hold.

Since the closed unit ball of 7’ is weakly compact, {xg} has a weakly convergent
subsequence. Without loss of generality, we assume that {x®} weakly converges, say
to x%. Hence, (x¢ —x% T*y) — 0 as n — oo forall y € J#. Therefore {Tx%} weakly
converges to Tx% . Similarly {Sx9} weakly converges to Sx?.

On the other hand, since {x?} is norm-bounded and the operators 7 and S are
compact, by passing to subsequences, we can assume that {7x%} and {Sx%} are norm-
convergent. Thus, lim, ...Tx? = Tx® and lim, ...Sx% = $x? in the norm topology.
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Therefore, lim, .o.(Tx? x8) = (Tx? x%) and lim, ...(Sx% x%) = (Sx? x%). Now by
considering (i) and (ii), the proof is completed. [

EXAMPLE 4. Suppose that x,y € .77 are unit vectors and x ® y denotes the rank
one operator defined by (x®y)(z) := (z,y)x, z € H.

The authors in [7, Lemma 3.2] proved that @(x®y) = 1 (|(x,y)|+ [|x®y||) for all
x,y € . Hence, for the compact operator x ® x, we get ®(x ®x) = [|x||>. Let € €
[0,1). From Theorem 2, x®@x L& y®y if and only if for every 6 € [0,27), there exists
a unit vector x? € # such that |((x®x)(x?),x%)| = |(x%x)> =1 = ||x[|* = 0(x®x)
and Re{e™|(x% x)[*|(x®,y) |’} = cos 0] (x® x) P (1%, ) |* > —&.

From equality case in the Cauchy—Schwarz inequality and 1 = |(x® x)| we infer
that x® = x. If x and y are orthogonal, then (x,y) = 0 and above discussion shows that
x®x L y®y, since [{(x@x)(x),x)] = [[x]> = @(x®x) and cos ] {x,x)[*|(x,y)]> =
0> —e¢.

Moreover, if € > 0 is given and unit vectors xg,ye € # are such that & < |{xg,ye)|*
and 6 € [0,7) is such that —1 < cos 6, < B then the inequality cos 0 |(xe,ye)|> <

—&
|<X£7)’£>
—g ensures that x®@x L& y®y.

PROPOSITION 3. Let T,S € B(.%), the operator T be positive, and T 1 ¢ S and
e€[0,1). Then (T +1) L5 S.

Proof. Let 6 € [0,27). By the assumption, there exists a sequence {x} of unit
vectors such that

lim [(Tx? x%)| = o(T), and lim Re{e 0 (Tx? x%)(5x0 x0)} > —ew(T)w(S).
n—oo

n—oo

Since T is positive, @(T +1) = o(T) +1 and lim Re(Tx? x%) = lim (Tx? x?).

Hence, o YHM
lim Re{e 0 (Sx0 x0)} > —ew(S)
and
Tim [((7 +1)x8.x8) 2 = lim (70,68 2+ {18 x8) 2+ 2Re( T, ) )
= 0*(T) + 14 20(T) = 0*(T +1).
Thus,

lim Re{e™®{(T + 1)y, ) (Sx9,x8) }
= lim Re{e ™" (T x) (Sx@,xf) } + lim Re{e ™ (L] x7) (Sxd.x0) }
> —eo(T)o(S)—en(S)
> —eo(S)o(T+1).
Therefore, (T+1) L5 S. O

Our last result of this section reads as follows.
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PROPOSITION 4. Let S,K € B(s#) be positive operators of norm one, K < S,
and e €[0,1). If T L& S, then T L2 S+K.

Proof. Let 6 € [0,2). There exists a sequence {x{},cn of unit vectors in 57’
such that lim [(Tx%,x%)| = o(T) and lim (Sx%,x%)Re{e " (Tx? x%)} > —ew(T) hold.
n—oo N—o0

We may assume that lim,..(Sx? x%) > 0. We have
lim Re{e 0 (Tx? x0)(Kx% x2)} = lim (Kx? x) lim Re{e % (Tx? x%)}
n—oo n—oo n—oo

_ —eo(T)
> lim (K. 9, v
Jim (K26 %) limy, o (Sx8, x0)

>—e0(T)=—co(T)o(K).
Hence,
lim Re{e @ (Tx? x0)(S+K)x0,x9)} = lim Re{e 0 (Tx? x)(sx% xO)}
n—o0 n—oo

+ lim Re{e 0(Tx? x0)(Kkx% x%)}
> —eo(T)o(S)—eo(T)w(K)
> 2e0(To(S+K) (as0<S,K<S+K).
Hence T 126 S+K. O

3. Numerical radius derivation

In this section, we introduce the notion of @-derivation and provide a characteri-
zation of L% by employing this notion.

Let 6 € [0,2r). For given operators T, S € B(.7), the function f: R — R defined
by f(r) = @*(T +re®S) is convex. To show this, let r,s € R and o € [0,1]. By the
convexity of the real function g(r) = r?, we have

flor+ (1 —a)s) = @*(T + (or+ (1 — a)s)e'®s)
= (0T +7e8) + (1 — &)(T + 5¢5))
< (@a((T +re?S) + (1 - @)o((T+ 5¢S)))’
< o (T +re®S) + (1 — o) 0*(T + 5¢'5)
— af(r)+ (1= a)f(s).
Thus, for every 6 € [0,27) the function DY : B(#) x B(#') — R defined by

2 i6 2
. 0 (T+re"S)—w*(T)
DY(T,S) := lim
w( ’ ) r—>10+ 2r

exists, and we call it @-derivation.
Furthermore, the functions f(r) = ®?(T + re’leS)' and g(r) =2reo(T)w(S), € €
[0,1) are convex functions and so is 4(r) = @*(T + re’®S) + 2rew(T)w(S).
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The following theorem gives a characterization of the approximate w-orthogonality
for operators.

THEOREM 3. Let T,S € B() and € € [0,1). The relation T L& S holds if and
onlyif inf DO(T,S)> —en(T)w(S).
0e0,27)

Proof. (=) Suppose that 6 € [0,27). It follows from T L& S that @*(T +
re’8) > w*(T) — 2rew(T)w(S) forall r € R*. We have

2T i9s_ 2T
D8 (T.8) = tim ST re”S) = O (T)

r—0t 2r
2T +re'%S) — 0*(T) + 2re(T) o (S —2ren(T)w(S
—im @ (T +re'”S) — o°(T) +2rea(T)o( )Jr fim reo(T)w(S)
r—0+ 2r r—0+ r
2 i0 2
. 0 (T+re®S)— 0*(T)+2reo(T)w(S)
= r£%1+ 2 —ea(T)o(S).

0*(T+7re'%8)— 0 (T)+2rew(T) o (S)
2r

Since > 0, passing to the limit, we get
DO(T,S) > —en(T)o(S).
Thus, ingg(RS) > —eo(T)o(S).
(<) Let o 1[51f2 )DZ(T,S) > —e(T)o(S). Then for every 6 € [0,27) we have
€|0,2m

D (T,S) > —ew(T)w(S). Hence

—ea(T)o(S) < DY(T,S) = lim (T +re%S) — 0*(T) + 2reo(T) o(S)

i P —ea(T)o(S)

whence 7'(0) = lim,_o+ h(rzzg(o) >0.

Then the convexity of 4 implies that A(r) —h(0) = (r—0)#’(0) > 0 and so h(r) >
h(0) for every r > 0. Therefore, ®*(T + re®S) > w*(T) — 2rew(T)w(S) for every
0 € [0,2r). This entails that 7 L5 S. O

COROLLARY 1. Let T,S € B() and € € |0,1). The following statements are
equivalent:
(i) T is approximately w-orthogonal to S.
(ii) inf DO(T,8)>—ew(T)n(S).
0€(0,27)

(iii) For every 0 € [0,21), there exists a sequence {x%} of unit vectors in H# such
that lim |(Tx? x%)| = o(T) and lim Re{e " (Tx% x%)(Sx8 x0)} > —ea(T)w(S).
n—o0 n—oo
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REMARK 2. Let T € B(.#). Lumer [9, Theorem 11] proved that

I+rT| -1
lim Tl =1 = sup Re(Tx,x).

L
r=0 r [lxll=1

Dragomir [4, Theorem 66] proved that

o(I+rT)—1
lim o+ -1 = sup Re(Tx,x).

o0t r =1
Therefore, for every 6 € [0,27), we have

2(14reT) -1
DO (1,T) = lim o (I+re"T)—1

r—0t Zr
I[+re®T)—1 I+re®T)+1
_ im o(I+re'®T) lim o(l+re'T)+
r—0t r r—0t 2
07y _
_ lim o(I+re'®T)—1
r—0t r

= sup Re (¢"Tx,x).
[l =1

REMARK 3. Let 7,S € B(#) and € € [0,1). We showed that 7 L% S if and
only if , 1[{)1f2 )DZ)(T,S) > —eo(T)w(S). In virtue of
€l0,2x

. o(T+re?S) —w(T) . 0*(T +re%S) — 0*(T)
lim = lim .
r—0+ r r—0t r(@(T +re®S) + o(T))
2 0y _ 2
— lim (w (T +re®S)— 0 (T) ‘1 )
0+ r o (T + re’®S) + o(T)
1 2 i0¢y _ 2
_ lim @ (T +re®S) — 0=(T)
o(T) r—0+ 2r
L e
=——=D,(T,S 5
STPATS) ©

T +re'®S) — o(T
we may say that 7 L& S if and only if 1i1(1)1+ (T +re7S) = o )2 —ew(S) forevery
r— r
0 €10,2m).
If 8 =0, then Dragomir [4] proved that
T +7rS)— (T
[S,T]:= lim O (T +rS) = 0°(T)
r—0t Zr

(T,S € B(2))

gives rise to a semi-inner product-type on B(.¢), see also [1].
Now, we list here some properties of the above semi-inner product type.

LEMMA 4. Let 0 € [0,27) and let T,S € B(S). Then the following statements
hold:
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(i) [T, eT] = 0*(T).

(ii) [ie®T,e®T] = 0 and [0,T] = [¢"°T,0] = 0.

(iii) The following Cauchy—Schwarz type inequality holds
‘ [ef"& T] ‘ < o(T)o(S).

(iv) The mapping [eieS ,T| is subadditive in the first variable, that is, for all oper-
ators R € B(7), it holds that

[€®(S+R),T] < [95,T] + [e"R, T).

Proof. (i) and (ii) are clear.

(iii) It is easy to see that for any r > 0

o(T) —roS) —o(T) _ o(T + re'?S) — w(T)
r = r

—o0(S)=

It follows from (5) and (6) that

95,7~ DB(1.5) = (1) tim 2LTH72%5) —0(T)

r—07t r

Similarly, one can show that [¢’%S,T] > —o(T)®(S). Therefore,
€5, T]| < o(T)o(S).

(iv) Since f(r) = @*(T + re'®S) is convex, we have

2T +re'®(S+R 1 . 1 .
o’ (M) < S0 T+7e8)+ 30*(T +re"R),

2
whence
2 (w2(T + %eie (S+R))— w2(r))
< (AT +7e8) = 0X(T) ) + (03T + 7e"R) — (T) ).
Hence

z(w2(r +Le®(S+R)) — w2(r))

lim
r—0T 2r
2 i0 2 2 i0 2
(T S)— o (T o (T R) — o (T
< lim (T +res) T) | (i @I+ re"R) (7).
r—0t 2r r—0+ 2r

Thus, [¢"?(S+R),T] < [9S,T]+ [¢°R,T]. O
In the following proposition, we show a relation between Dfa (T,S) and

Refe ™ (Tx0,20) (S38,20)}
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under some mild conditions.

PROPOSITION 5. Let 6 € [0,27) be fixedand let 7,S e B(27). If {x},} € M) N

MZ)(TJrre,-QS) for all »r € R*, then

(%S, T) = D% (T,S) = lim lim Re{e " (Tx x)(Sx, x)}.

r—Qt n—oo

Proof. We have
@*(T +re®S) = lim [((T + re'®8)x" X" ?
n—oo

= lim (76,20 P+ 2rRe{e ™ (T, X, S0 ) } + 7255 6,) )

Jim
Thus,
@ (T +re'fS) — w?(T)
2r
lim e ((7:65,25) 2+ 2rRe {0 (T, 0, 837,530} 2 (7 i) ) = 02(T)
2r
. 2rRe{e*"9<sz,xz><s;z,xz>}+r2|<sz,xz>\2
n—ee r

Hence

> i0 2
. — T +re®S)— o (T
lim Re{e "0 (T, 1) (Sxf, )} < & ( —Hez Feth
n—oo "

< lim Re{e ™0 (T X2V (Sxr ¥V} + roo(S).

I
N—s00 n

Letting r — 0T, we get the desired equality. [

REMARK 4. The intersection MZ;(T) NnM* can be nonempty. Following

o(T+rel®S)
we provide two examples:

) If {x,} € Mg, 7y such that (Sx4,%,) = 0 for each n, then @ (T +re'®S) = w(T),
thatis {x,} € Mg, 7 OMZ(THE,.GS) forall re RY.

() If T=1 and {x,} € My, 1 a0y forall re RT, then{x;} € My, . Hence

{xn} € Moy My o) forall r e R*.

REMARK 5. Under the conditions of Proposition 5, Remark 3 yields that

T i9S _ T 1
lim (T +re”S) — o ): D(T,S)
o r o(T)
1 _ -
= oz i im (Re{e™™* (7,557,371} )
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