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Abstract. We introduce the notion of approximate ω -orthogonality (referring to the numerical
radius ω ) and investigate its significant properties. Let T,S ∈ B(H ) and ε ∈ [0,1) . We say
that T is approximate ω -orthogonality to S and we write T ⊥ε

ω S if

ω2(T +λS) � ω2(T )−2εω(T)ω(λS), for all λ ∈ C.

We show that T ⊥ε
ω S if and only if inf

θ∈[0,2π)
Dθ

ω (T,S) � −εω(T)ω(S) in which Dθ
ω (T,S) =

lim
r→0+

ω2(T + reiθ S)−ω2(T )
2r

; and this occurs if and only if for every θ ∈ [0,2π) , there exists a

sequence {xθ
n } of unit vectors in H such that

lim
n→∞

|〈Txθ
n ,xθ

n 〉| = ω(T) and lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉} � −εω(T)ω(S),

where ω(T) is the numerical radius of T .

1. Introduction

The notion of orthogonality can be defined in many ways for normed spaces with-
out using the inner product structure. One of the most important types of orthogonality
in the setting of normed spaces is the Birkhoff–James orthogonality. Let (X ,‖ · ‖) be
a linear normed space and x,y ∈ X . Then x is called Birkhoff–James orthogonal to y ,
written as x ⊥B y , if ‖x+ λy‖� ‖x‖ for every λ ∈ C .

Many mathematicians generalized the notion of Birkhoff–James orthogonality in
the setup of normed spaces. Dragomir [5] introduced the notion of ε -Birkhoff–James
orthogonality in a real normed space X as follows.

Let x,y ∈ X and ε ∈ [0,1) . We say that x is ε -Birkhoff–James orthogonal to y if

‖x+ λy‖� (1− ε)‖x‖
for all λ ∈ R .

Chmieliński [2] introduced another notion of ε -Birkhoff–James orthogonality in
the setting of normed spaces, for ε ∈ [0,1) a vector x is said to be approximately
Birkhoff–James orthogonal to a vector y , written as x ⊥ε

B y , if

‖x+ λy‖2 � ‖x‖2−2ε‖x‖‖λy‖
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for all λ ∈ R . He also proved that in an inner product space x ⊥ε
B y if and only if

|〈x,y〉| � ε‖x‖‖y‖ . The notion of approximate orthogonality has been developed in
several settings; see e.g. [3, 11, 13].

Throughout the paper, let (H ,〈·, ·〉) be a Hilbert space and B(H ) be the algebra
of all bounded linear operators on H with the identity I . A capital letter denotes a
bounded linear operator. The numerical radius of T is defined by

ω(T ) = sup{|〈Tx,x〉| : x ∈ H ,‖x‖ = 1}.
We need some formulas for calculating the numerical radius. We state them in the
following lemmas.

LEMMA 1. [14, Theorem 3] Let T =
[

αI B
0 β I

]
∈ B(H1 ⊕H2) , where α,β ∈ C

with |α| = |β | . Then ω(T ) =

{
|α |
√

|α−β |2+‖B‖2

|α−β | , |α −β |2 > ‖B‖|α + β |
1
2 (|α + β |+‖B‖), |α −β |2 � ‖B‖|α + β |.

LEMMA 2. [8, Theorem 3.7] Let T,S,U,V ∈ B(H ) . Then

ω
([

T S
U V

])
� max

(
ω(T ),ω(V ),

ω(S+U)
2

,
ω(S−U)

2

)
,

and

ω
([

T S
U V

])
� max(ω(T ),ω(V ))+

ω(S+U)+ ω(S−U)
2

.

LEMMA 3. [12, Theorem 2.3] Suppose that U ∈ Mr,n−r(C) and T =
[
rIr U
0 sIn−r

]
for all r,s ∈ R . Then

ω(T ) =
1
2
|r+ s|+ 1

2

√
(r− s)2 +‖U‖2. (1)

Recently, Mal, Paul, and Sen [10] introduced the notion of ω -orthogonality for
operators in B(H ) . For T,S ∈ B(H ) , we say T to be ω -orthogonality to S , denoted
by T ⊥ω S if

ω(T + λS) � ω(T ) for all λ ∈ C.

We introduce an approximate counterpart of the above notion and present some of its
characterizations. The paper is organized as follows.

In section 2, we introduce the notion of approximate ω -orthogonality “⊥ε
ω ” and

prove that for operators T,S ∈ B(H ) and ε ∈ [0,1) , it holds that T ⊥ε
ω S if and only

if for every θ ∈ [0,2π) there exists a sequence {xθ
n} of unit vectors in H such that

lim
n→∞

|〈Txθ
n ,xθ

n 〉| = ω(T ), and lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉} � −εω(T )ω(S).

In section 3, we introduce the notion of ω -derivation and study its connection with
the approximate ω -orthogonality by showing that T ⊥ε

ω S if and only if inf
θ∈[0,2π)

Dθ
ω(T,S)

� −εω(T )ω(S) , where Dθ
ω(T,S) = lim

r→0+

ω2(T + reiθS)−ω2(T )
2r

.
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2. Approximate numerical radius orthogonality

In this section, we introduce the notion of approximate ω -orthogonality and state
some of its basic properties.

DEFINITION 1. Let T,S∈ B(H ) and ε ∈ [0,1) . We say that T is approximately
ω -orthogonal to S and we write T ⊥ε

ω S if

ω2(T + λS) � ω2(T )−2εω(T)ω(λS) for all λ ∈ C.

It is easy to see that T ⊥ε
ω S and αT ⊥ε

ω βS (α,β ∈ C) are equivalent. The
following example shows that the relation ⊥ε

ω is not symmetric, in general.

EXAMPLE 1. Suppose that T =
[
i 0
0 i

]
and S =

[
0 1
0 −1

]
are in M2(C) and ε ∈

[0, 0.7) . Lemma 1 and Lemma 3 show that ω(T ) = 1 and ω(S) =
1+

√
2

2
, respec-

tively. Further, it follows from Lemma 2 that

ω(T + λS) = ω
([

i λ
0 i−λ

])
� max

{
|i−λ |,1,

|λ |
2

}
.

Hence, ω2(T + λS) � ω2(T )−2εω(T)ω(λS) , that is T ⊥ε
ω S .

For λ = −i
2 , we get

ω(S− i
2
T ) = ω

([ 1
2 1
0 − 1

2

])
=

√
2

2
≈ 0.707,

whence ω2(S− i
2T ) ≈ 0.499 and ω2(S) ≈ 1.457. Hence, ω2(S− i

2T ) < ω2(S)−
2ε 1

2ω(S)ω(T ) . Thus, S �⊥ε
ω T .

The following proposition yields some relations between the approximateBirkhoff–
James orthogonality ⊥ε

B and the approximate ω -orthogonality ⊥ε
ω under some mild

conditions.

PROPOSITION 1. Let T,S ∈ B(H ) and ε ∈ [0,1) .
(i) If T = T ∗ , then T ⊥ε

ω S implies that T ⊥ε
B S .

(ii) If T 2 = 0, then T ⊥ε
B S entails that T ⊥ε

ω S .

Proof. (i) Let T = T ∗ and T ⊥ε
ω S . Then ω(T ) = ‖T‖ and for all λ ∈ C ,

‖T + λS‖2 � ω2(T + λS) � ω2(T )−2εω(T )ω(λS)

= ‖T‖2−2ε‖T‖ω(λS) � ‖T‖2−2ε‖T‖‖λS‖.
Thus T ⊥ε

B S .
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(ii) Let T 2 = 0 and T ⊥ε
B S . Then ω(T ) = 1

2‖T‖ and

ω2(T + λS) � 1
4
‖T + λS‖2 � 1

4
(‖T‖2−2ε‖T‖‖λS‖) = ω2(T )− 1

2
ε‖T‖‖λS‖

= ω2(T )− εω(T )‖λS‖ � ω2(T )−2εω(T )ω(λS),

which yields the required result. �

The following example shows that T ⊥ε
B S does not entail T ⊥ε

ω S , in general.

EXAMPLE 2. Suppose that T =
[
0 1
0 −1

]
and S =

[
1 0
0 0

]
are in M2(C) and ε ∈

[0, 0.01) . Then ‖T‖ =
√

2 and ‖S‖= 1 and for every λ ∈ C , we have

‖T + λS‖2 =
2+ |λ |2 +

√
4+ |λ |4

2
.

Hence ‖T + λS‖2 � 2 � 2− 2ε|λ | = ‖T‖2 −√
2ε‖T‖‖λS‖ � ‖T‖2 − 2ε‖T‖‖λS‖ .

Thus T ⊥ε
B S.

In addition, by Lemma 3, we have ω(T ) = 1+
√

2
2 , ω(S) = 1, and for λ = 1,

ω(T +S) = ω
([

1 1
0 −1

])
=

√
5

2
.

We therefore get 1.25 = ω2(T + S) < ω2(T )− 2εω(T )ω(S) ≈ 1.43 for ε = 0.01.
Hence for ε ∈ [0, 0.01) , we reach T �⊥ε

ω S .

We give an example of two operators T and S such that T �⊥ω S , while T ⊥ε
ω S .

EXAMPLE 3. Suppose that T =
[
2 0
0 0

]
and S =

[
1 1
0 1

]
are in M2(C) and ε ∈

[ 2
3 ,1) . Straightforward computations give us ω(T ) = 2, ω(S) = 3

2 . If λ = −1, then

ω(T −S) = ω
([

1 −1
0 −1

])
=

√
5

2
< 2.

Hence, T �⊥ω S . From Lemma 2, we also have

ω(T + λS) = ω
([

2+ λ λ
0 λ

])
� max{|λ |, |λ +2|}.

Thus, ω2(T + λS) � max{|λ |2, |2 + λ |2} � 4− 6ε|λ | = ω2(T )− 2ε|λ |ω(T )ω(S) .
Therefore, T ⊥ε

ω S .

Mal et al. [10, Theorem 2.3] characterized the ω -orthogonality of bounded linear
operators acting on a Hilbert space. In [16], the authors investigated some aspects of
the ω -orthogonality. Inspired by these papers, we characterize the approximate ω -
orthogonality of operators in B(H ) .
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THEOREM 1. Let T,S ∈ B(H ) and ε ∈ [0,1) . The relation T ⊥ε
ω S holds if and

only if for every θ ∈ [0,2π) , there exists a sequence {xθ
n}n∈N of unit vectors in H

such that the following two conditions hold:
(i) lim

n→∞
|〈Txθ

n ,xθ
n 〉| = ω(T ) ,

(ii) lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉} � −εω(T )ω(S) .

Proof. (⇐= ) Let λ ∈ C . Then λ = |λ |eiθ for some θ ∈ [0,2π) . By the assump-
tion, there exists a sequence {xθ

n}n∈N of unit vectors in H such that (i) and (ii) hold.
Thus,

ω2(T + λS) � lim
n→∞

|〈(T + λS)xθ
n ,xθ

n 〉|2

= lim
n→∞

(
|〈Txθ

n ,xθ
n 〉|2 +2|λ |Re{e−iθ 〈Txθ

n ,xθ
n 〉〈Sxθ

n ,xθ
n 〉}+ |λ |2|〈Sxθ

n ,xθ
n 〉|2

)
� lim

n→∞

(
|〈Txθ

n ,xθ
n 〉|2 +2|λ |Re{e−iθ 〈Txθ

n ,xθ
n 〉〈Sxθ

n ,xθ
n 〉}

)
� ω2(T )−2εω(T )ω(λS)

Thus, T ⊥ε
ω S .

(=⇒) Let θ ∈ [0,2π) . We derive from T ⊥ε
ω S that ω2(T + λS) � ω2(T )−

2εω(T )ω(λS) for all λ ∈ C . Hence, ω2
(
T + eiθ

n S
)

� ω2(T )−2εω(T )ω
(

eiθ

n S
)

for

all n ∈ N .
For every n ∈ N there exists xθ

n with ‖xθ
n‖ = 1 such that

ω2
(

T +
eiθ
n

S

)
− 1

n2 <

∣∣∣∣
〈(

T +
eiθ

n
S

)
xθ
n ,xθ

n

〉∣∣∣∣
2

,

whence

ω2(T )− 2ε
n

ω(T )ω(S)− 1
n2

� ω2
(

T +
eiθ

n
S

)
− 1

n2

<

∣∣∣∣
〈(

T +
eiθ

n
S

)
xθ
n ,xθ

n

〉∣∣∣∣
2

= |〈Txθ
n ,xθ

n 〉|2 +
2
n
Re{e−iθ 〈Txθ

n ,xθ
n 〉〈Sxθ

n ,xθ
n 〉}+

1
n2 |〈Sxθ

n ,xθ
n 〉|2. (2)

Therefore,
n
2
(ω2(T )−|〈Txθ

n ,xθ
n 〉|2) < Re{e−iθ 〈Txθ

n ,xθ
n 〉〈Sxθ

n ,xθ
n 〉}

+
1
2n

ω2(S)+
1
2n

+ εω(T )ω(S) (n ∈ N),

and hence

0 � Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉}+
1
2n

ω2(S)+
1
2n

+ εω(T )ω(S) (n ∈ N). (3)
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Note that {〈Txθ
n ,xθ

n 〉} and {〈Sxθ
n ,xθ

n 〉} are two bounded sequences in C . Therefore,
by passing to subsequences of {xθ

n}n∈N , if necessary, we can assume that these two
sequences are convergent. Now, inequality (3) implies that

lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉} � −εω(T )ω(S).

Thus, (ii) is valid.
We shall prove (i). It follows from (2) that

ω2(T )− 2ε
n

ω(T )ω(S)− 1
n2

� |〈Txθ
n ,xθ

n 〉|2 +
2
n
Re{e−iθ 〈Txθ

n ,xθ
n 〉〈Sxθ

n ,xθ
n 〉}+

1
n2 |〈Sxθ

n ,xθ
n 〉|2

� |〈Txθ
n ,xθ

n 〉|2 +
2
n
|〈Txθ

n ,xθ
n 〉||〈Sxθ

n ,xθ
n 〉|+

1
n2 |〈Sxθ

n ,xθ
n 〉|2

� |〈Txθ
n ,xθ

n 〉|2 +
2
n

ω(T )‖S‖+
1
n2 ω2(S),

for all n ∈ N . Hence

ω2(T ) � |〈Txθ
n ,xθ

n 〉|2 � ω2(T )− 2ε
n

ω(T )ω(S)− 1
n2 −

2
n

ω(T )‖S‖− 1
n2 ω2(S),

for all n ∈ N . Therefore, lim
n→∞

|〈Txθ
n ,xθ

n 〉| = ω(T ) . �

REMARK 1. Due to the homogeneity of the relation ⊥ε
ω , without loss of gener-

ality, we may assume that ω(T ) = ω(S) = 1. Then T ⊥ε
ω S if and only if for every

θ ∈ [0,2π) there exists a sequence {xθ
n}n∈N of unit vectors in H such that the follow-

ing two conditions hold:
(i) lim

n→∞
|〈Txθ

n ,xθ
n 〉| = 1,

(ii) lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉} � −ε .

Given an operator T ∈ B(H ) , the set of all sequences in the closed unit ball of
H at which T attains its numerical radius in limits is denoted by

M∗
ω(T ) = {{xn} : ‖xn‖ = 1, lim

n→∞
|〈Txn,xn〉| = ω(T )}.

In the following result, we show that under some mild conditions, ⊥ε
ω behaves

like a symmetric relation. Recall that the Crawford number of an operator T ∈ B(H )
is defined by

c(T ) = inf{|〈Tx,x〉| : ‖x‖ = 1}.
PROPOSITION 2. Let T,S ∈ B(H ) and c(T ) �= 0 and ε ∈ [0,1) . If T ⊥ε

ω S and
M∗

ω(S) ∩M∗
ω(T+λS) �= /0 for all λ ∈ C , then S ⊥ε

ω T .

Proof. Let λ ∈ C . Put β :=
ω(S)
c(T )

. Since ⊥ε
ω is homogeneous, we have βT ⊥ε

ω

S . Hence ω2(βT +λS) � ω2(βT )−2εω(βT)ω(λS) . Let {xn} ∈M∗
ω(S)∩M∗

ω(T+ λ
β S)

.
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We have

ω2(βT )−2εω(βT )ω(λS)

� ω2(βT + λS)

= lim
n→∞

|〈(βT + λS)xn,xn〉|2

= lim
n→∞

(
|〈βTxn,xn〉|2 +2Reλ 〈βTxn,xn〉〈Sxn,xn〉+ |λ |2|〈Sxn,xn〉|2

)
.

From limn→∞ |〈βTxn,xn〉|2 � ω2(βT ) , we infer that

lim
n→∞

(
2Reλ 〈βTxn,xn〉〈Sxn,xn〉+ |λ |2|〈Sxn,xn〉|2

)
� −2εω(βT )ω(λS). (4)

From β =
ω(S)
c(T )

, we conclude that limn→∞(β 2|〈Txn,xn〉|2 −|〈Sxn,xn〉|2) � 0. Thus

ω2(S+ λ βT) � lim
n→∞

|〈(S+ λ βT)xn,xn〉|2

= lim
n→∞

(
|〈Sxn,xn〉|2 +2Reλ 〈βTxn,xn〉〈Sxn,xn〉+ |λ |2|〈βTxn,xn〉|2

)
� lim

n→∞

(
|〈Sxn,xn〉|2 +2Reλ 〈βTxn,xn〉〈Sxn,xn〉+ |λ |2|〈Sxn,xn〉|2

)
� lim

n→∞
|〈Sxn,xn〉|2 −2εω(βT)ω(λS) (by (4)).

It follows from the assumption that limn→∞ |〈Sxn,xn〉| = ω(S) . Therefore

ω2(S+ λ βT ) � ω2(S)−2εω(S)ω(β λT),

since ω(μS) = |μ |ω(S) for each μ ∈ C . Thus S ⊥ε
ω T . �

For compact operators, in particular in the case where H is finite dimensional,
Theorem 1 yields the following result.

THEOREM 2. Let T,S ∈ B(H ) be two compact operators and ε ∈ [0,1) . Then
T ⊥ε

ω S holds if and only if for every θ ∈ [0,2π) , there exists a unit vector xθ ∈ H

such that |〈Txθ ,xθ 〉| = ω(T ) and Re{e−iθ 〈Txθ ,xθ 〉〈Sxθ ,xθ 〉} � −εω(T )ω(S) .

Proof. (⇐= ) It is obvious by Theorem 1.
(=⇒) Let θ ∈ [0,2π) . It follows from Theorem 1 that there exists a sequence

{xθ
n}n∈N of unit vectors in H such that both (i) lim

n→∞
|〈Txθ

n ,xθ
n 〉| = ω(T ) and (ii)

lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉} � −εω(T )ω(S) hold.

Since the closed unit ball of H is weakly compact, {xθ
n} has a weakly convergent

subsequence. Without loss of generality, we assume that {xθ
n} weakly converges, say

to xθ . Hence, 〈xθ
n − xθ ,T ∗y〉 → 0 as n → ∞ for all y ∈ H . Therefore {Txθ

n} weakly
converges to Txθ . Similarly {Sxθ

n} weakly converges to Sxθ .
On the other hand, since {xθ

n} is norm-bounded and the operators T and S are
compact, by passing to subsequences, we can assume that {Txθ

n} and {Sxθ
n} are norm-

convergent. Thus, limn→∞ Txθ
n = Txθ and limn→∞ Sxθ

n = Sxθ in the norm topology.



470 M. AMYARI AND M. MORADIAN KHIBARY

Therefore, limn→∞〈Txθ
n ,xθ

n 〉 = 〈Txθ ,xθ 〉 and limn→∞〈Sxθ
n ,xθ

n 〉 = 〈Sxθ ,xθ 〉 . Now by
considering (i) and (ii), the proof is completed. �

EXAMPLE 4. Suppose that x,y ∈ H are unit vectors and x⊗ y denotes the rank
one operator defined by (x⊗ y)(z) := 〈z,y〉x, z ∈ H .

The authors in [7, Lemma 3.2] proved that ω(x⊗y) = 1
2 (|〈x,y〉|+‖x⊗ y‖) for all

x,y ∈ H . Hence, for the compact operator x⊗ x , we get ω(x⊗ x) = ‖x‖2 . Let ε ∈
[0,1) . From Theorem 2, x⊗x⊥ε

ω y⊗y if and only if for every θ ∈ [0,2π) , there exists
a unit vector xθ ∈ H such that |〈(x⊗ x)(xθ ),xθ 〉| = |〈xθ ,x〉|2 = 1 = ‖x‖2 = ω(x⊗ x)
and Re{e−iθ |〈xθ ,x〉|2|〈xθ ,y〉|2} = cosθ |〈xθ ,x〉|2|〈xθ ,y〉|2 � −ε .

From equality case in the Cauchy–Schwarz inequality and 1 = |〈xθ ,x〉| we infer
that xθ = x . If x and y are orthogonal, then 〈x,y〉= 0 and above discussion shows that
x⊗ x ⊥ε

ω y⊗ y , since |〈(x⊗ x)(x),x〉| = ‖x‖2 = ω(x⊗ x) and cosθ |〈x,x〉|2|〈x,y〉|2 =
0 � −ε .

Moreover, if ε > 0 is given and unit vectors xε ,yε ∈H are such that ε < |〈xε ,yε〉|2
and θε ∈ [0,π) is such that −1 < cosθε < −ε

|〈xε ,yε 〉|2 , then the inequality cosθε |〈xε ,yε〉|2 <

−ε ensures that x⊗ x �⊥ε
ω y⊗ y .

PROPOSITION 3. Let T,S ∈ B(H ) , the operator T be positive, and T ⊥ε
ω S and

ε ∈ [0,1) . Then (T + I)⊥ε
ω S .

Proof. Let θ ∈ [0,2π) . By the assumption, there exists a sequence {xθ
n} of unit

vectors such that

lim
n→∞

|〈Txθ
n ,xθ

n 〉| = ω(T ), and lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉} � −εω(T )ω(S).

Since T is positive, ω(T + I) = ω(T )+1 and lim
n→∞

Re〈Txθ
n ,xθ

n 〉 = lim
n→∞

〈Txθ
n ,xθ

n 〉 .
Hence,

lim
n→∞

Re{e−iθ 〈Sxθ
n ,xθ

n 〉} � −εω(S)

and

lim
n→∞

|〈(T + I)xθ
n ,xθ

n 〉|2 = lim
n→∞

(
|〈Txθ

n ,xθ
n 〉|2 + |〈Ixθ

n ,xθ
n 〉|2 +2Re〈Txθ

n ,xθ
n 〉

)
= ω2(T )+1+2ω(T) = ω2(T + I).

Thus,

lim
n→∞

Re{e−iθ 〈(T + I)xθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉}
= lim

n→∞
Re{e−iθ 〈Txθ

n ,xθ
n 〉〈Sxθ

n ,xθ
n 〉}+ lim

n→∞
Re{e−iθ 〈Ixθ

n ,xθ
n 〉〈Sxθ

n ,xθ
n 〉}

� −εω(T )ω(S)− εω(S)
� −εω(S)ω(T + I).

Therefore, (T + I) ⊥ε
ω S . �

Our last result of this section reads as follows.
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PROPOSITION 4. Let S,K ∈ B(H ) be positive operators of norm one, K � S ,
and ε ∈ [0,1) . If T ⊥ε

ω S , then T ⊥2ε
ω S+K .

Proof. Let θ ∈ [0,2π) . There exists a sequence {xθ
n}n∈N of unit vectors in H

such that lim
n→∞

|〈Txθ
n ,xθ

n 〉|= ω(T ) and lim
n→∞

〈Sxθ
n ,xθ

n 〉Re{e−iθ 〈Txθ
n ,xθ

n 〉}�−εω(T) hold.

We may assume that limn→∞〈Sxθ
n ,xθ

n 〉 > 0. We have

lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Kxθ
n ,xθ

n 〉} = lim
n→∞

〈Kxθ
n ,xθ

n 〉 lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉}

� lim
n→∞

〈Kxθ
n ,xθ

n 〉
−εω(T )

limn→∞〈Sxθ
n ,xθ

n 〉
� −εω(T ) = −εω(T )ω(K).

Hence,

lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉(S+K)xθ
n ,xθ

n 〉} = lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉}
+ lim

n→∞
Re{e−iθ 〈Txθ

n ,xθ
n 〉〈Kxθ

n ,xθ
n 〉}

� −εω(T )ω(S)− εω(T)ω(K)
� −2εω(T )ω(S+K) (as 0 � S,K � S+K).

Hence T ⊥2ε
ω S+K . �

3. Numerical radius derivation

In this section, we introduce the notion of ω -derivation and provide a characteri-
zation of ⊥ε

ω by employing this notion.
Let θ ∈ [0,2π) . For given operators T,S∈B(H ) , the function f : R→R defined

by f (r) = ω2(T + reiθ S) is convex. To show this, let r,s ∈ R and α ∈ [0,1] . By the
convexity of the real function g(r) = r2 , we have

f (αr+(1−α)s) = ω2(T +(αr+(1−α)s)eiθS)

= ω2(α(T + reiθS)+ (1−α)(T + seiθ S))

�
(

αω((T + reiθ S)+ (1−α)ω((T + seiθS))
)2

� αω2(T + reiθ S)+ (1−α)ω2(T + seiθS)
= α f (r)+ (1−α) f (s).

Thus, for every θ ∈ [0,2π) the function Dθ
ω : B(H )×B(H ) → R defined by

Dθ
ω(T,S) := lim

r→0+

ω2(T + reiθS)−ω2(T )
2r

exists, and we call it ω -derivation.
Furthermore, the functions f (r) = ω2(T + reiθ S) and g(r) = 2rεω(T )ω(S), ε ∈

[0,1) are convex functions and so is h(r) = ω2(T + reiθ S)+2rεω(T)ω(S) .



472 M. AMYARI AND M. MORADIAN KHIBARY

The following theorem gives a characterization of the approximate ω -orthogonality
for operators.

THEOREM 3. Let T,S ∈ B(H ) and ε ∈ [0,1) . The relation T ⊥ε
ω S holds if and

only if inf
θ∈[0,2π)

Dθ
ω(T,S) � −εω(T )ω(S) .

Proof. (=⇒) Suppose that θ ∈ [0,2π) . It follows from T ⊥ε
ω S that ω2(T +

reiθ S) � ω2(T )−2rεω(T)ω(S) for all r ∈ R+ . We have

Dθ
ω (T,S) = lim

r→0+

ω2(T + reiθ S)−ω2(T )
2r

= lim
r→0+

ω2(T + reiθ S)−ω2(T )+2rεω(T )ω(S)
2r

+ lim
r→0+

−2rεω(T )ω(S)
2r

= lim
r→0+

ω2(T + reiθ S)−ω2(T )+2rεω(T )ω(S)
2r

− εω(T )ω(S).

Since ω2(T+reiθ S)−ω2(T )+2rεω(T )ω(S)
2r � 0, passing to the limit, we get

Dθ
ω(T,S) � −εω(T )ω(S).

Thus, inf
θ

Dθ
ω(T,S) � −εω(T )ω(S) .

(⇐= ) Let inf
θ∈[0,2π)

Dθ
ω(T,S) � −εω(T )ω(S) . Then for every θ ∈ [0,2π) we have

Dθ
ω(T,S) � −εω(T )ω(S) . Hence

−εω(T )ω(S) � Dθ
ω(T,S) = lim

r→0+

ω2(T + reiθ S)−ω2(T )+2rεω(T )ω(S)
2r

− εω(T )ω(S)

=
1
2

lim
r→0+

h(r)−h(0)
r−0

− εω(T )ω(S),

whence h′(0) = limr→0+
h(r)−h(0)

r−0 � 0.
Then the convexity of h implies that h(r)−h(0) � (r−0)h′(0) � 0 and so h(r) �

h(0) for every r � 0. Therefore, ω2(T + reiθ S) � ω2(T )− 2rεω(T )ω(S) for every
θ ∈ [0,2π) . This entails that T ⊥ε

ω S . �

COROLLARY 1. Let T,S ∈ B(H ) and ε ∈ [0,1) . The following statements are
equivalent:

(i) T is approximately ω -orthogonal to S .
(ii) inf

θ∈[0,2π)
Dθ

ω(T,S) � −εω(T )ω(S) .

(iii) For every θ ∈ [0,2π) , there exists a sequence {xθ
n} of unit vectors in H such

that lim
n→∞

|〈Txθ
n ,xθ

n 〉| = ω(T ) and lim
n→∞

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉} � −εω(T )ω(S) .
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REMARK 2. Let T ∈ B(H ) . Lumer [9, Theorem 11] proved that

lim
r→0+

‖I + rT‖−1
r

= sup
‖x‖=1

Re〈Tx,x〉.

Dragomir [4, Theorem 66] proved that

lim
r→0+

ω(I + rT )−1
r

= sup
‖x‖=1

Re 〈Tx,x〉.

Therefore, for every θ ∈ [0,2π) , we have

Dθ
ω(I,T ) = lim

r→0+

ω2(I + reiθT )−1
2r

= lim
r→0+

ω(I + reiθT )−1
r

lim
r→0+

ω(I + reiθ T )+1
2

= lim
r→0+

ω(I + reiθT )−1
r

= sup
‖x‖=1

Re〈eiθ Tx,x〉.

REMARK 3. Let T,S ∈ B(H ) and ε ∈ [0,1) . We showed that T ⊥ε
ω S if and

only if inf
θ∈[0,2π)

Dθ
ω(T,S) � −εω(T )ω(S) . In virtue of

lim
r→0+

ω(T + reiθS)−ω(T)
r

= lim
r→0+

ω2(T + reiθS)−ω2(T )
r(ω(T + reiθS)+ ω(T))

= lim
r→0+

(ω2(T + reiθS)−ω2(T )
r

· 1
ω(T + reiθS)+ ω(T)

)

=
1

ω(T )
lim

r→0+

ω2(T + reiθ S)−ω2(T )
2r

=
1

ω(T )
Dθ

ω (T,S), (5)

we may say that T ⊥ε
ω S if and only if lim

r→0+

ω(T + reiθ S)−ω(T)
r

�−εω(S) for every

θ ∈ [0,2π) .

If θ = 0, then Dragomir [4] proved that

[S,T ] := lim
r→0+

ω2(T + rS)−ω2(T )
2r

(T,S ∈ B(H ))

gives rise to a semi-inner product-type on B(H ) , see also [1].
Now, we list here some properties of the above semi-inner product type.

LEMMA 4. Let θ ∈ [0,2π) and let T,S ∈ B(H ) . Then the following statements
hold:
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(i) [eiθ T,eiθ T ] = ω2(T ) .
(ii) [ieiθ T,eiθ T ] = 0 and [0,T ] = [eiθ T,0] = 0 .
(iii) The following Cauchy–Schwarz type inequality holds∣∣∣[eiθ S,T

]∣∣∣ � ω(T )ω(S).

(iv) The mapping [eiθ S,T ] is subadditive in the first variable, that is, for all oper-
ators R ∈ B(H ) , it holds that

[eiθ (S+R),T ] � [eiθ S,T ]+ [eiθR,T ].

Proof. (i) and (ii) are clear.
(iii) It is easy to see that for any r > 0

−ω(S) =
ω(T )− rω(S)−ω(T)

r
� ω(T + reiθS)−ω(T)

r

� ω(T )+ rω(S)−ω(T)
r

= ω(S). (6)

It follows from (5) and (6) that

[eiθ S,T ] = Dθ
ω(T,S) = ω(T ) lim

r→0+

ω(T + reiθS)−ω(T)
r

� ω(T )ω(S)

.
Similarly, one can show that [eiθ S,T ] � −ω(T )ω(S) . Therefore,

|[eiθ S,T ]| � ω(T )ω(S).

(iv) Since f (r) = ω2(T + reiθS) is convex, we have

ω2
(

2T + reiθ (S+R)
2

)
� 1

2
ω2(T + reiθS)+

1
2

ω2(T + reiθR),

whence

2
(

ω2(T +
r
2
eiθ (S+R))−ω2(T )

)
�

(
ω2(T + reiθ S)−ω2(T )

)
+

(
ω2(T + reiθ R)−ω2(T )

)
.

Hence

lim
r→0+

2
(

ω2(T + r
2eiθ (S+R))−ω2(T )

)
2r

� lim
r→0+

ω2(T + reiθ S)−ω2(T )
2r

+ lim
r→0+

ω2(T + reiθR)−ω2(T )
2r

.

Thus, [eiθ (S+R),T ] � [eiθ S,T ]+ [eiθR,T ] . �

In the following proposition, we show a relation between Dθ
ω (T,S) and

Re{e−iθ 〈Txθ
n ,xθ

n 〉〈Sxθ
n ,xθ

n 〉}
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under some mild conditions.

PROPOSITION 5. Let θ ∈ [0,2π) be fixed and let T,S∈B(H ) . If {xr
n}∈M∗

ω(T )∩
M∗

ω(T+reiθ S) for all r ∈ R+ , then

[eiθ S,T ] = Dθ
ω (T,S) = lim

r→0+
lim
n→∞

Re{e−iθ 〈Txr
n,x

r
n〉〈Sxr

n,xr
n〉}.

Proof. We have

ω2(T + reiθS) = lim
n→∞

|〈(T + reiθS)xr
n,x

r
n〉|2

= lim
n→∞

(
|〈Txr

n,x
r
n〉|2 +2rRe{e−iθ 〈Txr

n,x
r
n〉〈Sxr

n,xr
n〉}+ r2|〈Sxr

n,x
r
n〉|2

)
.

Thus,

ω2(T + reiθ S)−ω2(T )
2r

=
limn→∞

(
|〈Txr

n,x
r
n〉|2 +2rRe{e−iθ 〈Txr

n,x
r
n〉〈Sxr

n,xr
n〉}+ r2|〈Sxr

n,x
r
n〉|2

)
−ω2(T )

2r

= lim
n→∞

2rRe{e−iθ 〈Txr
n,x

r
n〉〈Sxr

n,xr
n〉}+ r2|〈Sxr

n,x
r
n〉|2

2r

Hence

lim
n→∞

Re{e−iθ 〈Txr
n,x

r
n〉〈Sxr

n,xr
n〉} � ω2(T + reiθ S)−ω2(T )

2r

� lim
n→∞

Re{e−iθ 〈Txr
n,x

r
n〉〈Sxr

n,xr
n〉}+ rω(S).

Letting r → 0+ , we get the desired equality. �

REMARK 4. The intersection M∗
ω(T ) ∩M∗

ω(T+reiθ S) can be nonempty. Following

we provide two examples:
(i) If {xn} ∈M∗

ω(T ) such that 〈Sxn,xn〉= 0 for each n , then ω(T +reiθ S) = ω(T ) ,
that is {xn} ∈ M∗

ω(T )∩M∗
ω(T+reiθ S) for all r ∈ R+ .

(ii) If T = I and {xr
n} ∈ M∗

ω(I+reiθ S) for all r ∈ R+ , then{xr
n} ∈ M∗

ω(I) . Hence

{xr
n} ∈ M∗

ω(T )∩M∗
ω(I+reiθ S) for all r ∈ R

+ .

REMARK 5. Under the conditions of Proposition 5, Remark 3 yields that

lim
r→0+

ω(T + reiθS)−ω(T)
r

=
1

ω(T )
Dθ

ω (T,S)

=
1

ω(T )
lim

r→0+
lim
n→∞

(
Re{e−iθ 〈Txr

n,x
r
n〉〈Sxr

n,xr
n〉}

)
.
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