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POSITIVE DEFINITENESS ON PRODUCTS VIA

GENERALIZED STIELTJES AND OTHER FUNCTIONS

V. A. MENEGATTO

(Communicated by I. Pinelis)

Abstract. Let (X ,ρ) and (Y,σ) be quasi-metric spaces and λ a fixed positive real number. This
paper establishes the positive definiteness of functions of the form

Gr(t,u) =
1

h(u)r f

(
g(t)
h(u)

)
, (t,u) ∈ {ρ(x,x′) : x,x′ ∈ X}×{σ(y,y′) : y,y′ ∈ Y},

on X ×Y , where r � λ , f belongs to the convex cone of all generalized Stieltjes functions
of order λ , and g and h are positive valued conditionally negative definite functions on (X ,ρ)
and (Y,σ) , respectively. As a bypass, it establishes the positive definiteness of functions of the
form

Hr(t,u) =
1

g(t)r f

(
g(t)
h(u)

)
, (t,u) ∈ {ρ(x,x′) : x,x′ ∈ X}×{σ(y,y′) : y,y′ ∈ Y},

for a generalized complete Bernstein function f of order λ , under the same assumptions on
r , g and h . The paper also provides necessary and sufficient conditions for the strict positive
definiteness of the two models when the spaces involved are metric. The two results yield addi-
tional methods to construct positive definite and strictly positive definite functions on a product
of metric spaces by integral transforms.

1. Introduction

Let (X ,ρ) be a quasi-metric space and write Dρ
X = {ρ(x,x′) : x,x′ ∈ X} . A con-

tinuous function f : Dρ
X → R is said to be positive definite on X if

n

∑
j,k=1

c jck f (ρ(x j,xk)) � 0,

for n � 1, real numbers c1, . . . ,cn , and points x1, . . . ,xn in X . If in addition to that, the
inequalities are strict whenever the points x j are distinct and at least one c j is nonzero,
then f is said to be strictly positive definite on X . If (Y,σ) is another quasi-metric
space, a continuous function f : Dρ

X ×Dσ
Y → R is positive definite on X ×Y , if

n

∑
j,k=1

c jck f (ρ(x j,xk),σ(y j,yk)) � 0,
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for n � 1, real numbers c1, . . . ,cn , and points (x1,y1), . . . ,(xn,yn) in X ×Y . The pos-
itive definite function f is strictly positive definite on X ×Y , if the inequalities above
are strict when the points (x j,y j) are distinct and at least one c j is nonzero. The
classes introduced above will be denoted by PD(X ,ρ) , SPD(X ,ρ) , PD(X ×Y,ρ ,σ) ,
and SPD(X ×Y,ρ ,σ) , respectively. The nomenclature introduced so far agrees with
that in the classical reference [17] and in the survey paper [1]. In particular, by saying
that a pair (X ,ρ) is a quasi-metric space we mean that X is a nonempty set and ρ is
a nonnegative function acting on X ×X so that ρ(x,x′) = ρ(x′,x) and ρ(x,x) = 0, for
x,x′ ∈ X .

This paper is mainly concerned with the construction of positive definite and
strictly positive definite functions on a product of quasi-metric spaces, the motivation of
which coming from a classical result of T. Gneiting on space-time covariance functions
proved in [4]. Gneiting’s result establishes that for a fixed bounded and completely
monotone function f , the formula

Gr(t,u) =
1

h(u)r f

(
g(t)
h(u)

)
, (t,u) ∈ Dρ

X ×Dσ
Y , (1)

defines a positive definite function on X ×Y , whenever r � d/2, X = R
d , Y = R

d′ ,
ρ and σ are the respective squared distances on X and Y , g(t) = t , t ∈ Dρ

X , and h
is a positive valued function possessing a completely monotone derivative. Gneiting’s
paper is highly-cited and the interested reader can access some of these many citations
in order to get acquainted with the many developments implied by this important result,
not only in mathematics but also in statistics.

Some extensions and generalizations of Gneiting’s result deserve to be mentioned
at once: Zastavnyi and Porcu results in [19] apply to the very same model but replacing
(Rd′ ,ρ) with a normed linear space (E,‖·‖) and the Bernstein function with a positive
valued function h for which the functions y ∈ [0,∞) �→ exp(−sh(y)) , s > 0, belong to
PD(E,‖·‖) . However, the reader is advised that [19] deals with a setting different from
the one considered here, once the notion of positive definiteness on E used there is in
the group sense. In [18], White and Porcu presented a contribution in the case in which
(Rd ,ρ) is replaced with the unit sphere Sd endowed with its natural geodesic distance,
keeping all the rest the same. Very recently, [12] presented not only a new proof of the
original Gneiting’s model but also a considerable improvement, by replacing (Rd′ ,σ)
with a quite general quasi-metric space (Y,σ) and the Bernstein function h with a
positive valued conditionally negative definite function on (Y,σ) as done in [19]. We
recall that a continuous function f : Dσ

Y → R belongs to CND(Y,σ) (the triplet CND
stands for conditionally negative definite) if for n � 1 and points y1, . . . ,yn in Y , it
holds

n

∑
j,k=1

c jck f (ρ(y j,yk)) � 0,

for all real numbers c1, . . . ,cn satisfying ∑n
j=1 c j = 0. Conditionally negative definite

functions are studied in [2, 6] and references quoted there while characterizations in
some specific spaces can be found in [11, 17]. The most popular method to create
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examples of conditionally negative definite functions uses this known result: if H be-
longs to PD(X ,σ) , then −h belongs to CND(X ,σ) . Additional constructions can be
extracted from [2].

In [10] the focus changed considerably. By fixing f in an specific convex cone
Sb

λ , λ > 0, of bounded completely monotone functions, it was shown that Gr belongs
to PD(X ×Y,ρ ,σ) for r � λ , whenever (X ,ρ) and (Y,σ) are general quasi-metric
spaces, g is a nonnegative valued function in CND(X ,ρ) and h is a positive valued
function in CND(Y,σ) . So, by restricting f to a smaller class of functions, the result
in [10] promoted more generality on the spaces and also on the permissible functions g
and h in Gneiting’s model. In addition to that, the result also presented necessary and
sufficient conditions for the strict positive definiteness of the resulting functions Gr in
the case in which (X ,ρ) and (Y,σ) are metric spaces. This was quite an achievement
once the desirable strict positive definiteness property was never analyzed/obtained be-
fore within Gneiting’s model and its extensions and generalizations.

The results to be described in this paper enhance and complement those proved in
[10]. After introducing a few technical results in Section 2, we show in Section 3 that
if f is a (not necessarily bounded) generalized Stieltjes function of order λ , then the
formula (1) defines an element in PD(X ×Y,ρ ,σ) whenever r � λ , (X ,ρ) and (Y,σ)
are quasi-metric spaces and g and h are positive valued functions in CND(X ,ρ) and
CND(Y,σ) , respectively. Further, if (X ,ρ) and (Y,σ) are metric spaces, we provide
necessary and sufficient conditions for the strict positive definiteness of the model in
most cases. In Section 4, we present modified versions of the main results proved in
Section 3 that hold in the case when f comes from a set we call the class of generalized
complete Bernstein functions of order λ . In Section 5, we include a list of variations
of the models based on certain stability properties of the standard complete Bernstein
functions of order λ = 1. A short conclusion in Section 6 closes the paper.

2. Technical results

In this section we quote two known auxiliary lemmas to be required in Section 3
along with an independent result on separable positive definite functions on a product
X ×Y of quasi-metric spaces.

Let us begin with a lemma that provides information on the positive semi-definite-
ness of the Schur exponential of matrices of negative type (see [14]). Recall that a real
symmetric matrix A = [Ajk]nj,k=1 of order n is of negative type if

n

∑
j,k=1

c jckA jk � 0,

for all real numbers satisfying ∑n
j=1 c j = 0.

LEMMA 1. Let A be a matrix of negative type of order n. The following asser-
tions hold for the Schur exponential B := [e−Ajk ]nj,k=1 of −A:

(i) B is positive semi-definite.
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(ii) B is positive definite if and only if −A is diagonally dominant in the sense that
A j j +Akk < 2Ajk , for j �= k .

Lemma 2 below is technical and extends the following well-known property: If
g is a function in CND(X ,ρ) , then t ∈ Dρ

X �→ exp(−sg(t)) belongs to PD(X ,ρ) for
s > 0. Assertion (i) is proved in [2, p. 74] while Assertion (ii) is a consequence of As-
sertion (i) , the Bernstein-Widder Theorem on integral representations for completely
monotone functions in [15, p. 3], and Lemma 1. A proof is sketched in [10]. Recall
that a function f : (0,∞)→R is completely monotone if it is C∞ and (−1)n f (n)(t) � 0
for n = 0,1, . . . and t ∈ (0,∞) .

LEMMA 2. Let (X ,ρ) be a quasi-metric space, f a completely monotone func-
tion and g a positive valued function in CND(X ,ρ) . The following assertions hold:

(i) f ◦ g belongs to PD(X ,ρ) .

(ii) If f is nonconstant, then f ◦ g belongs to SPD(X ,ρ) if and only if g(t) > g(0) ,
t ∈ Dρ

X \ {0} .

Next, we establish positive definiteness results for special positive definite func-
tions on X ×Y defined by separated variables. Hereafter, a trivial quasi-metric space
will mean a quasi-metric space having just one point.

PROPOSITION 1. Let (X ,ρ) and (Y,σ) be quasi-metric spaces and f1 and f2
completely monotone functions. If g and h are positive valued functions in CND(X ,ρ)
and CND(Y,σ) , respectively, then the following assertions hold for the function F
given by

F(t,u) = f1(g(t)) f2(h(u)), (t,u) ∈ Dρ
X ×Dσ

Y .

(i) F belongs to PD(X ×Y,ρ ,σ) .

(ii) If F belongs to SPD(X×Y,ρ ,σ) , then g(t) > g(0) , for t ∈Dρ
X \{0} and h(u) >

h(0) , for u ∈ Dσ
Y \ {0} .

(iii) If (X ,ρ) (respect. (Y,σ)) is nontrivial and F belongs to SPD(X×Y,ρ ,σ) , then
f1 (respectively, f2 ) is nonconstant.

Proof. Assertion (i) follows from Lemma 2-(i) and the Schur Product Theorem
[5, p. 477] combined. If g(t) = g(0) for some t ∈ Dρ

X \ {0} , we can pick two distinct
points (x1,y1) and (x2,y2) in X ×Y with ρ(x1,x2) = t and y1 = y2 in order to obtain
the singular matrix

[F(ρ(x j,xk),σ(y j,yk))]
2
j,k=1 = [ f1(g(0)) f2(h(0))]2j,k=1 .

A similar reasoning can be implemented if h(u) = h(0) for some u ∈ Dσ
Y \ {0} . In

either case, F cannot belong to SPD(X ×X ,ρ ,σ) and (ii) follows.
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If (X ,ρ) is nontrivial and f1 is constant, say C , we can pick two distinct points
(x1,y1) and (x2,y2) in X ×Y with y1 = y2 in order to obtain the singular matrix

[F(ρ(x j,xk),σ(y j,yk))]
2
j,k=1 = [C f2(h(0))]2j,k=1 .

Thus, F cannot belong to SPD(X ×X ,ρ ,σ) and (iii) follows. �

Regarding strict positive definiteness, the following result also holds.

THEOREM 1. Let (X ,ρ) and (Y,σ) be metric spaces, f1 , f2 nonconstant com-
pletely monotone functions and g and h positive valued functions in CND(X ,ρ) and
CND(Y,σ) , respectively. The following assertions are equivalent for the function F
introduced in Proposition 1:

(i) F belongs to SPD(X ×Y,ρ ,σ)

(ii) g(t) > g(0) , for t ∈ Dρ
X \ {0} , and h(u) > h(0) , for u ∈ Dσ

Y \ {0} .

Proof. In view of Proposition 1-(ii) , only the implication (ii) => (i) needs to be
proved. We know already that F ∈ PD(X ×X ,ρ ,σ) by Proposition 1-(i) . In order to
handle the strict positive definiteness of F under the assumptions of the theorem and
the two conditions in (ii) , we invoke the Bernstein-Widder Theorem to write

fi(t) =
∫

[0,∞)
e−stdμi(s), t � 0; i = 1,2,

for some (not necessarily finite) positive measures μ1 and μ2 on [0,∞) . Hence,

f1(g(t)) f2(h(u)) =
∫

[0,∞)
e−g(t)sdμ1(s)

∫
[0,∞)

e−h(u)s′dμ2(s′)

=
∫

[0,∞)

[∫
[0,∞)

e−g(t)s−h(u)s′dμ1(s)
]
dμ2(s′), (t,u) ∈ Dρ

X ×Dσ
Y .

The Schur Product Theorem and Lemma 2-(i) imply that the functions

(t,u) ∈ Dρ
X ×Dσ

Y �→
∫

[0,∞)
e−g(t)s−h(u)s′dμ1(s), s′ > 0, (2)

belong to PD(X ×Y,ρ ,σ) . If f2 is nonconstant, F will belong to SPD(X×Y,ρ ,σ) as
long as we can show that the functions in (2) belong to SPD(X ×Y,ρ ,σ) . However, if
f1 is nonconstant, it is promptly seen that the strict positive definiteness of F on X ×Y
will follow as long as we can show that the functions (t,u) ∈Dρ

X ×Dσ
Y �→ e−g(t)s−h(u)s′ ,

s,s′ > 0, belong to SPD(X×Y,ρ ,σ) . In other words, we need to prove that for s,s′ > 0
and distinct points (x1,y1), . . . ,(xn,yn) in X ×Y , the matrix[

e−g(ρ(x j ,xk))s−h(σ(y j ,yk))s′
]n

j,k=1
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is positive definite. If n = 1, there is nothing to be proved. If n � 2, according to
Lemma 1, the positive definiteness holds if and only if

g(0)s+h(0)s′ < g(ρ(x j,xk))s+h(σ(y j,yk))s′, j �= k.

But, for j �= k , the fact that the points used above are distinct yields that either x j �= xk or
y j �= yk . Since the spaces are metric, we have that either ρ(x j,xk) > 0 or σ(y j,yk) > 0.
This fact along with the assumptions in (ii) imply that either g(ρ(x j,xk)) > g(0) or
h(σ(y j,yk)) > h(0) . This closes the proof. �

3. Main results

Let us begin with the formal definition of a generalized Stieltjes function of order
λ > 0. It is a function f : (0,∞) → [0,∞) that has a representation in the form

f (x) = Cf +
Df

xλ +
∫

(0,∞)

1

(x+ s)λ dμ f (s), x > 0, (3)

where Cf = limx→∞ f (x) , Df � 0, and μ f is a positive measure on (0,∞) such that

∫
(0,∞)

1

(1+ s)λ dμ f (s) < ∞.

They were exploited in [8, 9, 16] and other references quoted in there where many
examples can be found. We will write Sλ to indicate the set of all generalized Stieltjes
functions of order λ . The elementary identity

Γ(λ )
(s+ t)λ =

∫ ∞

0
e−sve−tvvλ−1dv, s,t > 0, (4)

along with the Bernstein-Widder Theorem show that every function in Sλ is com-
pletely monotone.

The main results in this section are given in the next three theorems.

THEOREM 2. Let (X ,ρ) and (Y,σ) be quasi-metric spaces. Assume f belongs
to Sλ , g is a positive valued function in CND(X ,ρ) and h is a positive valued function
in CND(Y,σ) . For r � λ , set Gr as in (1). The following assertions hold:

(i) Gr belongs to PD(X ×Y,ρ ,σ) .

(ii) If Gr belongs to SPD(X ×Y,ρ ,σ) , then g(t) > g(0) , for t ∈ Dρ
X \ {0} , and

h(u) > h(0) , for u ∈ Dσ
Y \ {0} .

Further, in the case in which (X ,ρ) is nontrivial, the following additional assertion
holds:

(iii) If Gr belongs to SPD(X ×Y,ρ ,σ) , then either Df > 0 or μ f is not the zero
measure.
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Proof. Direct calculation reveals that

Gr(t,u) =
Cf

h(u)r +
Df

g(t)λ h(u)r−λ +
1

h(u)r−λ

∫
(0,∞)

1

[g(t)+ sh(u)]λ
dμ f (s). (5)

The functions t ∈ (0,∞) �→ t−α , α = λ ,r,r − λ , are completely monotone. Thus,
Lemma 2-(i) and Proposition 1-(i) yields that (t,u) ∈Dρ

X ×Dσ
Y �→Df g(t)−λh(u)−r+λ

belongs to PD(X ×Y,ρ ,σ) . On the other hand, it is obvious that the same is true of
(t,u)∈Dρ

X ×Dσ
Y �→ h(u)−α , α = r,r−λ . A similar reasoning reveals that (t,u)∈Dρ

X ×
Dσ

Y �→ exp(−vg(t)− vh(u)) belongs to PD(X ×Y,ρ ,σ) for v > 0. Since integration
with respect to an independent parameter does not affect positive definiteness, it follows
from (4) that all the functions

(t,u) ∈ Dρ
X ×Dσ

Y �→ 1

[g(t)+ sh(u)]λ
, s > 0,

belong to PD(X ×Y,ρ ,σ) . Furthermore, the cone PD(X ×Y,ρ ,σ) being closed under
products, we have that

(t,u) ∈ Dρ
X ×Dσ

Y �→ 1

h(u)r−λ

∫
(0,∞)

1

[g(t)+ sh(u)]λ
dμ f (s)

belongs to PD(X ×Y,ρ ,σ) as well. Assertion (i) follows from the fact that PD(X ×
Y,ρ ,σ) is a convex cone.

If g(t) = g(0) , for some t ∈ Dρ
X \ {0} , by picking two distinct points (x1,y1) and

(x2,y2) in X ×Y such that ρ(x1,x2) = t and y1 = y2 , we obtain the singular matrix

[Gr(ρ(x j,xk),σ(y j,yk))]
2
j,k=1 =

[
1

h(0)r f

(
g(0)
h(0)

)]2

j,k=1

If h(u) = h(0) , for some u ∈ Dσ
Y \ {0} , we can take two distinct points (x1,y1) and

(x2,y2) in X ×Y such that x1 = x2 and σ(y1,y2) = u to obtain the very same matrix.
Thus, (ii) holds.

Next, assume (X ,ρ) is nontrivial. If Df = 0 and μ f is the zero measure, then we
can take two distinct points (x1,y1) and (x2,y2) in X ×Y such that y1 = y2 and reach
the singular matrix

[Gr(ρ(x j,xk),σ(y j,yk))]
2
j,k=1 =

[
Cf

h(0)r

]2

j,k=1
.

Thus, Gr cannot belong to SPD(X ×Y,ρ ,σ) and (iii) is proved. �

THEOREM 3. Let (X ,ρ) and (Y,σ) be metric spaces. Assume f belongs to Sλ ,
g is a positive valued function in CND(X ,ρ) and h is a positive valued function in
CND(Y,σ) . If D f > 0 , and r > λ , then the following assertions for Gr as in (1) are
equivalent:
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(i) Gr belongs to SPD(X ×Y,ρ ,σ) .

(ii) g(t) > g(0) , for t ∈ Dρ
X \ {0} , and h(u) > h(0) , for u ∈ Dσ

Y \ {0} .

Proof. One implication follows from Theorem 2-(ii) . As for the converse, assume
Df > 0, r > λ , and also the two assumptions on g and h quoted in (ii) . Theorem 1
reveals that

(t,u) ∈ Dρ
X ×Dσ

Y �→ Df

g(t)λ h(u)r−λ

belongs to SPD(X ×Y,ρ ,σ) . Thus, since the other two summands in (5) define func-
tions in PD(X ×Y,ρ ,σ) , we may infer that Gr belongs to SPD(X ×Y,ρ ,σ) . �

THEOREM 4. Let (X ,ρ) and (Y,σ) be metric spaces. Assume f belongs to Sλ ,
g is a positive valued function in CND(X ,ρ) and h is a positive valued function in
CND(Y,σ) . If (X ,ρ) is nontrivial, D f = 0 , and r � λ , then the following assertions
for Gr as in (1) are equivalent:

(i) Gr belongs to SPD(X ×Y,ρ ,σ) .

(ii) f is nonconstant, g(t) > g(0) , for t ∈ Dρ
X \ {0} , and h(u) > h(0) , for u ∈ Dσ

Y \
{0} .

Proof. If Gr belongs to SPD(X×Y,ρ ,σ) , (X ,ρ) is nontrivial, and Df = 0, The-
orem 2-(iii) yields that μ f is nonzero. In particular, f is nonconstant. This along with
Theorem 2-(ii) shows that (ii) holds. Conversely, if f is nonconstant and Df = 0, we
know already via Theorem 2-(iii) that μ f is not the zero measure. Hence, in order to
show Gr belongs to SPD(X ×Y,ρ ,σ) , it suffices to verify that

(t,u) ∈ Dρ
X ×Dσ

Y �→
∫

(0,∞)

1

[g(t)+ sh(u)]λ
dμ f (s)

belongs to SPD(X ×Y,ρ ,σ) . Indeed, the strict positive definiteness of Gr will follow
from Oppenheim’s inequality ([5, p.509]) and the elementary properties of the classes
PD(X ×Y,ρ ,σ) and SPD(X ×Y,ρ ,σ) . However, to show that, it suffices to prove that

(t,u) ∈ Dρ
X ×Dσ

Y �→ 1

[g(t)+ sh(u)]λ

belongs to SPD(X ×Y,ρ ,σ) , for s > 0. But, from equality (4), it is promptly seen that
it is then sufficient to show that the functions

(t,u) ∈ Dρ
X ×Dσ

Y �→ e−g(t)v−h(u)sv, v,s > 0,

belong to SPD(X ×Y,ρ ,σ) . Repeating the arguments developed in the second half of
the proof of Theorem 1 closes the proof. �

An obvious simplification of Theorem 4 is as follows.
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THEOREM 5. Let (X ,ρ) and (Y,σ) be metric spaces. Assume f belongs to Sλ ,
g is a positive valued function in CND(X ,ρ) and h is a positive valued function in
CND(Y,σ) . If (X ,ρ) is nontrivial, f is nonconstant, D f = 0 , and r � λ , then the
following assertions for Gr as in (1) are equivalent:

(i) Gr belongs to SPD(X ×Y,ρ ,σ) .

(ii) g(t) > g(0) , for t ∈ Dρ
X \ {0} , and h(u) > h(0) , for u ∈ Dσ

Y \ {0} .

Under the setting of Theorem 4 the assumptions on g may be relaxed depend-
ing upon the additional assumptions f carries. Indeed, if Df = 0 and the integral∫
(0,∞) s

−λ dμ f (s) is finite, is easy to see that f is bounded. In particular, it has a contin-
uous extension to [0,∞) . Thus, the function g does not need to be positive valued, that
is, it may assume the value 0. This particular situation belongs to the setting adopted in
[10].

REMARK 1. Taking into account the proof of Theorem 5, it is easily seen that the
equivalence in Theorem 3 still holds in the case in which Df > 0, r = λ , and μ f is
nonzero. So, the only missing case in Theorems 2 and 4 is that where Df > 0, r = λ
and μ f is the zero measure. However, a procedure analogous to that employed in the
proof of Theorem 2-(iii) , shows that if Gr belongs to SPD(X ×Y,ρ ,σ) , Df > 0 and
r = λ , then either Cf > 0 or μ f is not the zero measure. In other words, the only case
really missing in Theorems 2 and 4 is that where Cf Df > 0, r = λ and μ f is the zero
measure, that is, the case in which

Gr(t,u) =
Cf

h(u)r +
Df

g(t)r , (t,u) ∈ Dρ
X ×Dσ

Y ,

and Cf Df > 0. So far, the strict positive definiteness of this model remains elusive.

We now look at some simple examples in order to illustrate the results.

EXAMPLE 1. If f belongs to Sα , then Theorem 1 in [7] reveals that the same is
true of the function F given by

F(x) = x−λ f

(
1
x

)
, x > 0.

So, Theorems 2, 3 and 4 hold for the model

Gr(t,u) =
1

g(t)λ h(u)r−λ f

(
h(u)
g(t)

)
, (t,u) ∈ Dρ

X ×Dσ
Y ; r � λ ,

as well. However, in the statement of Theorems 4 and 5, we need to replace “ f is
nonconstant” with “ f is not of the form Cx−λ for some C � 0”.
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EXAMPLE 2. If f belongs to Sλ and α > 1, Theorem 15 in [7] asserts that
x ∈ (0,∞) �→ f (x1/α ) belongs to S1 . Thus, Theorems 2, 3 and 4 hold for the model

Gr(t,u) =
1

h(u)r f

(
g(t)1/α

h(u)1/α

)
, (t,u) ∈ Dρ

X ×Dσ
Y ; r � 1.

By Example 1, they also hold for the model

Gr(t,u) =
1

g(t)h(u)r−1 f

(
h(u)1/α

g(t)1/α

)
, (t,u) ∈ Dρ

X ×Dσ
Y ; r � 1.

However, in the statement of Theorems 4 and Theorem 5, we need to replace “ f is
nonconstant” with “ f is not of the form Cx−1/α for some C � 0”.

4. Models based on generalized complete Bernstein functions

In this section we will establish versions of the previous theorems for the class
CBλ of all functions f : (0,∞) → R that can be represented in the form

f (x) = a f +b f x
λ +

∫
(0,∞)

(
1− s

x+ s

)λ
dμ f (s), x > 0,

where a f ,b f � 0 and μ f is a positive measure on (0,∞) for which
∫

(0,∞)

1

(1+ s)λ dμ f (s) < ∞.

The functions in C Bλ will be called generalized complete Bernstein functions of order
λ > 0 once CB1 coincides with the class of complete Bernstein functions studied in
[15]. But one should notice that for λ > 1, the functions in CBλ are not necessarily
Bernstein functions so the name may be not appropriated for some readers. Clearly, a
function f belongs to CBλ if and only if x ∈ (0,∞) �→ x−λ f (x) belongs to Sλ . In
particular, the following modified results are direct consequences of Theorems 2, 3 and
4.

THEOREM 6. Let (X ,ρ) and (Y,σ) be quasi-metric spaces. Assume f belongs
to CBλ , g is a positive valued function in CND(X ,ρ) and h is a positive valued
function in CND(Y,σ) . If r � λ , then the following assertions hold for the function
Gr given by

Gr(t,u) =
1

g(t)λ h(u)r−λ f

(
g(t)
h(u)

)
, (t,u) ∈ Dρ

X ×Dσ
Y .

(i) Gr belongs to PD(X ×Y,ρ ,σ) .

(ii) If Gr belongs to SPD(X ×Y,ρ ,σ) , then g(t) > g(0) , for t ∈ Dρ
X \ {0} , and

h(u) > h(0) , for u ∈ Dσ
Y \ {0} .
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If (X ,ρ) is nontrivial, the following additional assertion holds:

(iii) If Gr belongs to SPD(X ×Y,ρ ,σ) , then either a f > 0 or μ f is not the zero
measure.

THEOREM 7. The following assertions hold under the setting of Theorem 6, if
(X ,ρ) and (Y,σ) are metric spaces:

(i) If a f > 0 , and r > λ , then Gr belongs to SPD(X ×Y,ρ ,σ) if and only if g(t) >
g(0) , for t ∈ Dρ

X \ {0} , and h(u) > h(0) , for u ∈ Dσ
Y \ {0} .

(ii) If (X ,ρ) is nontrivial, a f = 0 , and r � λ , then Gr belongs to SPD(X ×Y,ρ ,σ)
if and only if f is not of the form f (x) = Cxλ , for some C > 0 , g(t) > g(0) , for
t ∈ Dρ

X \ {0} , and h(u) > h(0) , for u ∈ Dσ
Y \ {0} .

A version of Theorem 2 employing generating functions from CBλ can be ob-
tained by direct calculation.

THEOREM 8. Let (X ,ρ) and (Y,σ) be quasi-metric spaces. Assume f belongs
to CBλ , g is a positive valued function in CND(X ,ρ) and h is a positive valued
function in CND(Y,σ) . If r � λ , then the following assertions hold for the function
Hr given by

Hr(t,u) =
1

g(t)r f

(
g(t)
h(u)

)
, (t,u) ∈ Dρ

X ×Dσ
Y .

(i) Hr belongs to PD(X ×Y,ρ ,σ) .

(ii) If Hr belongs to SPD(X ×Y,ρ ,σ) , then g(t) > g(0) , for t ∈ Dρ
X \ {0} , and

h(u) > h(0) , for u ∈ Dσ
Y \ {0} .

If (Y,σ) is nontrivial, the following additional assertion holds:

(iii) In the case in which (Y,ρ) is nontrivial, if Hr belongs to SPD(X×Y,ρ ,σ) , then
either b f > 0 or μ f is not the zero measure.

Proof. It suffices to observe that

Hr(t,u) =
a f

g(t)r +
b f

g(t)r−λ h(u)λ +
1

g(t)r−λ

∫
(0,∞)

1

[g(t)+ sh(u)]λ
dμ f (s),

and to reproduce the arguments in the proof of Theorem 2 under the current setting. �
As for Theorems 3 and 4, the following counterpart holds.

THEOREM 9. If (X ,ρ) and (Y,σ) are metric spaces, the following two additional
assertions also hold under the setting of Theorem 8:

(i) If b f > 0 and r > λ , then Hr belongs to SPD(X ×Y,ρ ,σ) if and only if g(t) >
g(0) , for t ∈ Dρ

X \ {0} , and h(u) > h(0) , for u ∈ Dσ
Y \ {0} .
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(ii) If (Y,σ) is nontrivial, b f = 0 and r � λ , then Hr belongs to SPD(X ×Y,ρ ,σ)
if and only if f is nonconstant, g(t) > g(0) , for t ∈ Dρ

X \ {0} , and h(u) > h(0) ,
for u ∈ Dσ

Y \ {0} .

Theorem 9-(i) covers the case b f > 0 and r = λ as long as μ f is not the zero
measure. As far as we know, Theorem 8 is the first result of Gneiting type that employs
a main generating function coming from the class of Bernstein functions. And contrary
to some expectations, the resulting function remained positive definite on X ×Y .

5. Additional constructions

Here, we will derive some consequences of the previous results based on stability
properties of the class CB1 of complete Bernstein functions. We observe that in many
circumstances these functions are preferred in the complex variable setting. In that case,
they are labeled under different names such as operator monotone functions, Löwner
functions, Pick functions, Nevanlinna functions, etc. A list of concrete examples of
functions in CB1 can be found in [15, Chapter 16] while additional examples in both
S1 and C B1 can be obtained via the mixing properties established in Corollary 7.9 in
[15].

Theorem 7.3 in [15] states that within the set of functions that do not vanish in
(0,∞) , a function f belongs to C B1 if and only if 1/ f belongs to S1 . In view of
this, it is promptly seen that Theorems 2, 3, and 4 hold for the model

Gr(t,u) =
1

h(u)r

[
f

(
g(t)
h(u)

)]−1

, (t,u) ∈ Dρ
X ×Dσ

Y ; r � 1,

whenever f ∈CB1 and f does not vanish in (0,∞) . Likewise, Theorems 8 and 9 hold
for the model

Hr(t,u) =
1

g(t)r

[
f

(
g(t)
h(u)

)]−1

, (t,u) ∈ Dρ
X ×Dσ

Y ; r � 1,

whenever f ∈ S1 and f does not vanish in (0,∞) .
Once the function x ∈ (0,∞) �→ x−1 belongs to S1 , Corollary 7.9 in [15] shows

that a function f belongs to S1 (respect. CB1 ) if and only if x ∈ (0,∞) �→ 1/ f (x−1)
belongs to S1 (respect. CB1 ). This fact poses no difficulty at all in seeing that
Theorems 2, 3, and 4 hold for the model

Gr(t,u) =
1

h(u)r

[
f

(
h(u)
g(t)

)]−1

, (t,u) ∈ Dρ
X ×Dσ

Y ; r � 1,

whenever f ∈S1 and f does not vanish in (0,∞) . On the other hand, Theorems 8 and
9 hold for the model

Hr(t,u) =
1

g(t)r

[
f

(
h(u)
g(t)

)]−1

, (t,u) ∈ Dρ
X ×Dσ

Y ; r � 1,

whenever f ∈ CB1 and f does not vanish in (0,∞) .
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Taking into account that f belongs to C B1 if and only if x ∈ (0,∞) �→ x f (x−1)
does (see Proposition 7.1 in [15]), one can see that Theorem 8 holds for the model

Hr(t,u) =
1

g(t)r−1h(u)
f

(
h(u)
g(t)

)
, (t,u) ∈ Dρ

X ×Dσ
Y ; r � 1,

whenever f ∈ CB1 . Theorem 9 can be implemented only if f is not of the form
f (x) = cx for some c > 0.

Similarly, since a function f belongs to f ∈ S1 if and only if x ∈ (0,∞) �→
x−1[ f (x)]−1 does, Theorems 2, 3, and 4 hold for the model

Gr(t,u) =
1

g(t)h(u)r−1

[
f

(
g(t)
h(u)

)]−1

, (t,u) ∈ Dρ
X ×Dσ

Y ; r � 1,

whenever f ∈ S1 and f does not vanish in (0,∞) . Theorem 4 can be implemented in
this case only if f is not of the form f (x) = c/x for some c > 0.

If c > 0 and f belongs to S1 , then f/(c+ f ) belongs to S1 as shown in [15, p.
96]. Thus, Theorems 2, 3, and 4 hold for the model

Gr(t,u) =
1

h(u)r

f (g(t)/h(u))
c+ f (g(t)/h(u))

, (t,u) ∈ Dρ
X ×Dσ

Y ; r � 1,

whenever f ∈ CB1 .
We close the paper by providing an example involving the class T B of Thorin-

Bernstein functions. A function f : (0,∞) → (0,∞) is called a Thorin-Bernstein func-
tion if it has a representation in the form

f (x) = a+bx+
∫
(0,∞)

ln
(
1+

x
s

)
dμ(s),

where a,b � 0 and μ is positive measure on (0,∞) satisfying

−
∫

(0,1)
lnsdμ(s)+

∫
[1,∞)

1
s
dμ(s) < ∞.

A few examples of Thorin Bernstein functions can be extracted from Section 5 in [3].
It is known that if f belongs to T B , then f belongs to CB1 while its derivative f ′
belongs to S1 . In particular, if f belongs to T B , then f can be used to define a
valid model Gr in Theorems 2, 3, and 4 while f ′ can be used to define a valid model
in Theorems 8 and 9, all of them holding for r � 1.

6. Conclusion

In this paper we have provided large classes of functions that can be used to solve
adapted versions to quasi-metric spaces of the so-called Gneiting’s method to construct
space-time covariance functions. In the case the spaces are metric, we also provided
necessary and sufficient conditions in order that the positive definite functions produced
by the methods be strictly positive definite, a desirable property in specific applications.
One of the classes of functions employed includes a special subclass of the class of
bounded completely monotone functions originally employed by Gneiting. Some of
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the classes used in this paper are easy-to-find in the sense that they are very commonly
found in the literature. Although the results in the paper are mainly theoretical, the
search for applications of these results is one of our scopes for the future.
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