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Abstract. Let x1,x2, . . . ,xn be nonnegative real numbers. The Jensen function of {xi}n
i=1 is

defined as Js(x) = (∑n
i=1 xs

i )
1/s , also known as the Lp -norm. It is well-known that Js(x) is

decreasing on s ∈ (0,+∞) . Moreover, Beckenbach [Amer. Math. Monthly, 53 (1946), 501–
505] proved further that Js(x) is a convex function on s ∈ (0,+∞) . The goal of this note is
two-fold. We first revisit the skillful treatment of the proof of Beckenbach, and then we simplify
the proof slightly. Additionally, we give a new proof of the convexity of Js(x) by using the
Hölder inequality, our proof is more succinct and short. On the other hand, we investigate a
Jensen-type inequality that arised from Fourier analysis by Stein and Weiss. As a byproduct, the
Hardy-Littlewood-Póya inequality is also included.

1. Introduction

In the field of analysis, inequalities play an important role in many areas, such as
the complex analysis and Fourier analysis, we refer to [6] and [13] for more details.
A well-known inequality concerning the convex function usually attributes to Jensen,
which is frequently used in functional analysis and discrete geometry. Let x1,x2, . . . ,xn

be nonnegative real numbers. We associate a function to {xi}n
i=1 , called the Jensen

function, which defined as

Js(x) :=

(
n

∑
i=1

xs
i

)1/s

. (1)

The Jensen function has been studied in various aspects, and it could be used to derive
some significant inequalities; see [4] and [6, pp. 28–30] for more details. It was proved
by Pringsheim [12] and independently by Jensen [7, p. 192] (also see, e.g., [3]) that:

THEOREM 1. The function Js(x) is decreasing on s ∈ (0,+∞) .

Mathematics subject classification (2010): 26D15.
Keywords and phrases: Jensen’s inequality, Beckenbach, Hardy-Littlewood-Pólya, convexity.
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Theorem 1 has been rediscovered several times in the literature; see, e.g., [6, 3].
Although the proof in [3] is short and elegant, we here give an outline of another versa-
tile proof for completeness. It is sufficient to show that f (s) = (as +bs)1/s is decreasing
on s ∈ (0,+∞) . By a direct computation, we could get

f ′(s) = f (s) · s(as loga+bs logb)− (as +bs) log(as +bs)
s2(as +bs)

.

We are going to prove f ′(s) � 0, which is equivalent to show that

α logα + β logβ � (α + β ) log(α + β ), (2)

where α = as and β = bs are positive numbers. Since g(t) = log(1/t) is a convex
function on t ∈ (0,+∞) , by the Jensen inequality of convex function, that is,

g(δ t1 +(1− δ )t2) � δg(t1)+ (1− δ )g(t2).

The desired inequality (2) immediately follows by setting δ = α/(α + β ) , t1 = 1/α
and t2 = 1/β in the above inequality.

Theorem 1 says equivalently that Js(x) � Jr(x) for s � r > 0. We remark that
this inequality is also valid for r � s < 0 and s < 0 < r by a self-improved proof;
see [14] for more details. Additionally, the Jensen function and Jensen-type inequality
have been extensively studied over the years; see, e.g., [1, 2, 5, 10, 11]. In particular,
Beckenbach [3] further proved a more interesting result, which states that Js(x) is a
convex function on the exponent s > 0. For convenience, we rewrite this result as the
following theorem.

THEOREM 2. (see [3]) The function Js(x) is convex on s ∈ (0,+∞) .

In this note, we are mainly concentrated on the convexity of Js(x) . The note is
organized as follows. In Section 2, we give a half-page revisting of Beckenbach’s proof
of Theorem 2 and then we present a slightly simplification. Moreover, we present a
quite different method to prove the convexity of Jensen’s function Js(x) . Our treatment
is only based on the Hölder inequality. In Section 3, we study a Jensen-type function
for two sequences, which was first introduced by E. M. Stein and G. Weiss in Fourier
Analysis. Finally, we conclude with the Hardy-Littlewood-Póya inequality as a corol-
lary.

2. Revisiting and new proof

In this section, we will revisit Beckenbach’s reduction in proving Theorem 2. Our
presentation here is just slightly different from that in [3]. Beckenbach’s proof could be
roughly decomposed as the following four steps:

(i) log
(
Js(x)

)s
is a convex function on s ∈ (−∞,+∞) for every x1, . . . ,xn � 0.

(ii) If f (s) and g(s) are positive non-increasing convex functions for b < s < c , then
the function φ(s) = f (s)g(s) is convex on the interval (b,c) .
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(iii) logJs(a) is a convex function for s ∈ (0,+∞) .

(iv) If p(s) is positive and log p(s) is convex, then also p(s) is convex.

The treatment of Beckenbach is technical and skillful. Next, we review the above
steps briefly. First of all, we provide another way to prove the first step (i). We define
h(s) = log

(
Js(x)

)s
, a direct computation leads to

h′′(s) =

(
∑n

i=1 xs
i (logxi)2

)
(∑n

i=1 xs
i )− (∑n

i=1 xs
i logxi)2

(∑n
i=1 xt

i)
2 .

By Cauchy-Schwartz’s inequality, we could get h′′(s) � 0, which means that h(s) is
a convex function. Among the four steps above, the proof of (ii) is straightforward, it
can be found in [3], as well as the proof of (iv) that is also easy to verify. We omit the
details and leave it to interested readers.

Among the above steps in Beckenbach’s proof, the key part is the third step:
logJs(x) is a convex function on s ∈ (0,+∞) , which together with (iv) yields the re-
quired result. However, the proof of (iii) is tricky and mystified, it based on the previous
steps (i) and (ii). For more details, we refer to [3].

In what follows, we will overcome the difficulty and provide a completely different
method to prove the convexity of Js(x) , we start from another point of view instead of
proving (iii). More precisely, we give a new short proof of the convexity of Js(x) by
using Hölder’s inequality only. Our proof is quite different from that in [3]. To proceed,
we next introduce the following lemma, known as the Hölder inequality [6, p. 17].

LEMMA 3. (Hölder’s inequality) Let ai,bi (i = 1,2, . . . ,n) be nonnegative real
numbers and r,s > 1 such that 1/r+1/s = 1 . Then

n

∑
i=1

aibi �
(

n

∑
i=1

ar
i

)1/r( n

∑
i=1

bs
i

)1/s

.

We are now ready for a completely new proof of Theorem 2. We shall prove a
slightly more general result. First of all, we define a weighted version [14] of Jensen’s
function as

Js(x,w) :=

(
n

∑
i=1

wix
s
i

)1/s

,

where xi and wi are nonnegative such that wi � 1 for 1 � i � n .
Next, we show that Js(x,w) is convex on s ∈ (0,+∞) .

New proof. Since Js(x) is continuous on s > 0, it suffices to show that

J p+q
2

(x,w) � 1
2
Jp(x,w)+

1
2
Jq(x,w)
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for all real numbers p,q > 0. Without loss of generality, we may assume by scaling
that max1�i�n{xi} = 1. By AM-GM inequality, we get Jp(x,w)+ Jq(x,w) =

(
n

∑
i=1

wix
p
i

)1/p

+

(
n

∑
i=1

wix
q
i

)1/q

� 2

(
n

∑
i=1

wix
p
i

)1/2p( n

∑
i=1

wix
q
i

)1/2q

.

It suffices to show that

(
n

∑
i=1

wix
p
i

)1/p( n

∑
i=1

wix
q
i

)1/q

�
(

n

∑
i=1

wix
(p+q)/2
i

)4/(p+q)

. (3)

Since xi � 1,2pq/(p+q) � (p+q)/2 and 4/(p+q) � 1/p+1/q , we have

x(p+q)/2
i � x2pq/(p+q)

i , 1 � i � n.

Moreover, bearing in mind max1�i�n{xi} = 1 and wi � 1, we can get

(
n

∑
i=1

wix
(p+q)/2
i

)4/(p+q)

�
(

n

∑
i=1

wix
2pq/(p+q)
i

)4/(p+q)

�
(

n

∑
i=1

wix
2pq/(p+q)
i

)1/p+1/q

.

(4)
Now we set

ai = wq/(p+q)
i xpq/(p+q)

i , bi = wp/(p+q)
i xpq/(p+q)

i , r = 1+ p/q, s = 1+q/p.

Then 1/r+1/s = 1. By the Hölder inequality, we obtain

(
n

∑
i=1

wix
2pq/(p+q)
i

)1/p+1/q

=

(
n

∑
i=1

aibi

)1/p+1/q

�
(( n

∑
i=1

ar
i

)1/r( n

∑
i=1

bs
i

)1/s
)1/p+1/q

�
(

n

∑
i=1

wix
p
i

)1/p( n

∑
i=1

wix
q
i

)1/q

. (5)

Combining (4) and (5), the desired inequality (3) immediately follows. �

3. A Jensen-type function from Fourier analysis

In this section, we present a Jensen-type inequality, which was first introduced by
E. M. Stein and G. Weiss to obtain the inclusion relation of the space L(p,q1)⊂ L(p,q2)
for q1 � q2 . For conciseness, we here won’t explain the background of Fourier analysis;
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see [13] for more details. Let a1 > a2 > · · · > an and bn > bn−1 > · · · > b1 be positive
real numbers and denote b0 = 0. We define

St(a,b) :=

(
n

∑
i=1

at
i

(
bt

i −bt
i−1

))1/t

,

where t ∈ (0,+∞) . To some extend, the function St(a,b) shares some similar proper-
ties to Jensen’s function Js(x) . For instance, it is implicitly shown in [13, pp. 193–194]
that:

THEOREM 4. (see [13]) The fuction St(a,b) is decreasing on t ∈ (0,+∞) .

The original proof of Stein and Weiss is by induction on n , which is dexterous
and proficient. In this section, we provide an alternative proof of Theorem 4. To state
our proof clearly, let us start with the following lemma, which is essentially a direct
consequence of majorization theory (see [15, p. 342]). We provide an elementary proof
for completeness.

LEMMA 5. Let a1,a2,b1,b2 be nonnegative numbers such that max{a1,a2} �
max{b1,b2} and a1 +a2 � b1 +b2 . Then ap

1 +ap
2 � bp

1 +bp
2 for any p � 1 .

Proof. We may assume that a1 = max{a1,a2} and b1 = max{b1,b2} . Let

b1 = a1 + δ , b1 +b2 = a1 +a2 + γ,

for some δ � 0 and γ � 0. If a2 < b2 , the required result immediately follows. If
b2 � a2 � a1 � b1 , it suffices to show that

ap
1 +ap

2 � (a1 +a2−b2)p +bp
2 � (a1 +a2 + γ −b2)p +bp

2 = bp
1 +bp

2 ,

which follows by the convexity and the monotonicity of h(x) := xp for p � 1. �

We now in the position to show the monotonicity of St(a,b) , and will prove
Sp(a,b) � Sq(a,b) for every p � q > 0. By a standard variable substitution xi = aq

i
and yi = bq

i , it suffices to show that Sp/q(x,y) � S1(x,y) , which is is equivalent to
prove Sp(x,y) � S1(x,y) for all p � 1, i.e.,

(
n

∑
i=1

xi(yi− yi−1)

)p

�
n

∑
i=1

xp
i (y

p
i − yp

i−1). (6)

For each k = 2,3, . . . ,n , we set

a1 =
k

∑
i=1

xi(yi− yi−1), a2 = xkyk−1, b1 =
k−1

∑
i=1

xi(yi − yi−1), b2 = xkyk.



548 Y. HUANG, Y. LI AND J. PEČARIĆ

Clearly, we have a1 � b1 and a1 +a2 = b1 +b2 . Lemma 5 yields(
k

∑
i=1

xi(yi − yi−1)

)p

+(xkyk−1)p �
(

k−1

∑
i=1

xi(yi − yi−1)

)p

+(xkyk)p.

Theorefore, summing over all k yields

n

∑
k=2

(( k

∑
i=1

xi(yi − yi−1)
)p

+(xkyk−1)p

)
�

n

∑
k=2

((k−1

∑
i=1

xi(yi − yi−1)
)p

+(xkyk)p

)
.

Upon computation, we can see that

n−1

∑
k=2

( k

∑
i=1

xi(yi− yi−1)
)p

=
n

∑
k=3

(k−1

∑
i=1

xi(yi − yi−1)
)p

.

Then, we have( n

∑
i=1

xi(yi− yi−1)
)p

+
n

∑
k=2

(xkyk−1)p �
(
x1(y1− y0)

)p +
n

∑
k=2

(xkyk)p.

So the disired inequality (6) now follows.
Let bk = k , (6) reduces to Hardy-Littlewood-Póya’s inequality [6, p. 100]; for

more recent studies, the reader is referred to [8, 9] and references therein.

COROLLARY 6. Let a1 > a2 > · · · > an be positive numbers and q > 1 . Then

n

∑
i=1

(
iq − (i−1)q)aq

i �
(

n

∑
i=1

ai

)q

.

Comparing to Theorem 2, it is natrual to ask that whether St(a,b) is a convex
function on t ∈ (0,+∞) , which is an interesting problem and may deserve further in-
vestigation. At the end of the paper, we write this question as the following conjecture.

CONJECTURE 7. Let a1 > a2 > · · · > an and bn > bn−1 > · · · > b1 be positive
real numbers and denote b0 = 0 . For every t ∈ (0,+∞) , we define

St(a,b) :=

(
n

∑
i=1

at
i

(
bt

i −bt
i−1

))1/t

.

Then St(a,b) is convex on t ∈ (0,+∞) .
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