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THE /,-NORM OF C -1, WHERE C IS THE CESARO OPERATOR

G.J. O. JAMESON

(Communicated by S. Varosanec)

Abstract. For the Cesaro operator C, it is known that ||C —I||, = 1. Here we prove that
lCc—1I|ls < 3% and ||CT —1I||4 = 3. Bounds for intermediate values of p are derived from
the Riesz-Thorin interpolation theorem. An estimate for lower bounds is obtained.

1. Introduction and basic results

For a matrix operator A, we denote by ||A]|, the norm of A as an operator on the
(real) sequence space £,,. Let C be the Cesaro operator, so that for a sequence x = (x,),
we have Cx =y, where

1
ynzz(x1+x2—|—...+xn). (D)
For the transpose C” , we have CTx =y, where

ooxk

X 2

Yn =
k=n

Hardy’s inequality [4, p. 239-241] states that ||C||, = p*, where p* is the con-
jugate index defined by }—) + 1% = 1. By duality, this implies that ||CT||, = p (this is
known as Copson’s inequality).

For p =2, a stronger statement applies: ||C— || = 1, where I is the identity
matrix. This was proved in [3], using the fact that (C —1)(CT —1I) is the diagonal
matrix with entries 1 — 1, together with the Hilbert space property [|AAT ||, = ||A3.
However, it can also be easily established by a slightly amended version of the direct
method of [4]. This proof does not appear to be well known, and we will generalise it
below, so we sketch it here.

Proof. We have x, = ny, — (n—1)y,_1, hence y, —x, = (n—1)(y,—1 — yn). For
any a, b, it is elementary that b> —a? > 2a(b — a) . (Here the proof for general p uses
bP —aP > paP~ (b —a), valid only for positive a, b.) S0 2y, (yu—1 —yu) <Y _| — 2,
hence

2y (yn —xn) < (n— 1)()’%—1 —y,%),
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equivalently
2,0 — V2 = ny: — (n—1)y2_,.
Adding these inequalities for 1 <n < N, we obtain

N
ZExnyn— > V2= Nyj = 0.
n=1

n=1

so that
N

N
Zy;% <2 anym
n=1

n=1

hence YN, (yu —x,)> < IN_, x2. (At this point, the proof in [4] applies Holder’s in-
equality.) O

Our objective here is to consider ||C — 1|, and ||CT —1]|, for other values of p.
First, some simple facts. By Hardy’s inequality and its dual, p* —1 < ||C—1I|, < p*+1
and p—1 < ||CT —I||, < p+1forall p>1. Also, if e, is the nth unit vector, then
for p > 1, both ||Ce,l, and ||CTe,|, tend to 0 as n — o, so ||C—1|, and ||CT —1]|,
are not less than 1.

PROPOSITION 1. We have ||C—1||. = ||CT —1||; =2

Proof. Consider CT —1 first. The element (CT —I)e,, is given by column n:

1 11
(€T e, = (—7...,—,——1,0,0,..),
n

n n

in which 1 occurs n— 1 times. So ||(CT —I)e,||; =2(1 — 1), hence ||CT —1||; =2
The statement for C — I follows by duality, or directly by taking x tobe ey +---+
en—1 —ep: then z, =2(1 — %) O

Of course, it follows that lim,, ... [|C — 1|, =1lim,,_;+ [|CT — 1|, =2.
Bounds for intermediate values of p can now be derived from the Riesz-Thorin
interpolation theorem. In the version we want (not the most general one), this states:

THEOREM RT. Suppose that 1 < g <r < o and
1 1-6 0

)

p q r
where 0 < 8 < 1. Suppose that A maps £, into £, and {, into {,. Then A maps (,
into £,, and
)
A1l < JATL- el G)
A proof can be seen in [2, chap. 1]. Note that the case r = o= simplifies to: if
p>q=1,then
1Al < Al 7 AL, 4)
An obvious consequence of the theorem is: if ||Al|, = ||A||, for all p > po, then ||A|,

increases with p for p > po.
For C —1I and CT — I, we can deduce at once the following facts.
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PROPOSITION 2. For p =2, ||C—1||, increases with p and is not greater than

2172/ For 1< p<2, |CT — 1|, decreases with p and is not greater than 21-2/r" =
22/r-1,

We can derive bounds that are weaker, but easier to apply, as follows: by convexity
of 2%, we have 2* < 1+4x for 0 <x < 1. Hence ||C—I||, < % for p>2 and ||CT —
I||, < 2 for 1 <p<2.

However, the Riesz-Thorin theorem does not give the exact value when applied to
C and CT themselves, and we would not expect it to do so for C —1I and cr—1.

The following conjecture seems plausible:

Conjecture (C): ||C—1||, =p*—1=1/(p—1) for 1 < p <2, equivalently
|CT —1||,=p—1 for p>2.

This conjecture is discussed briefly in [1, p. 48]. After pointing out that the state-
ment ||[C—1|[, =1 for p > 2 is easily disproved by considering the p*-norm of the
rows, Bennett states that “similar examples” disprove conjecture (C). I cannot see that
this is the case in any simple way, and it seems possible that this may have been an
over-hasty remark. Regrettably, Bennett died in 2016, so is not available to elucidate.

2. The case p =4

We now establish estimates for both operators for the case p = 4, by developing
the method used for ||C—1]|,.

THEOREM 1. We have ||C —1||; < 3'/4.

Proof. Choose x € 4 and let y, be defined by (1). Then y, —x, = (n—1)(y,—1 —

y,). By convexity of the function x*, we have b* —a* > 4a®(b —a) for any a and b,

positive or negative. So y* | —y# > 4y3(y,_1 —,), hence

4 — %) < (1= 1) (a1 = V)5
equivalently

Aypn =3y = nyy — (n— 1)y
Adding for 1 <n < N, we obtain

N N
43 yixn—3 Y ¥n = Nyy > 0. )
n=1 n=1

Hence YV, y3(4x, — 3y,) > 0. Write y, = x, +2,. Then ¥N_, F(x,,2,) = 0, where
F(x,2) = (x+2)° (x — 32) = x* — 6x°2% — 8x® — 37%.
To deal with the term 8xz°, we use the inequality —2xz < o+ %22, with ¢ to be

chosen. This gives —8xz> < 4z%(cx? + 122), so

F(x,z) <x*+ (4c — 6)x%* — (3 - é) 2.
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Choose ¢ = 3 to deduce that F(x,z) <x*—1z* hence ¥zt <3¥) \x}. O

Of course, the same estimate applies to [[CT —1||4/3. Compare the bound /2
given by Proposition 2.

By the Riesz-Thorin theorem, we can deduce the following bounds on [2,4] and
[4,00):

COROLLARY 1.1. For 2 < p <4, we have ||C—1||, < 312-Vr For p >4, we
have ||C —1I||, < 3'/P21=4/p,

Proof. For 2 < p < 4, we have 1 = %—i—% with 0:2—%, so (3) gives the

stated bound. For p > 4, the stated bound follows at once from (4). [
The corresponding bounds for [|CT — ||, are 3!/7~1/2 for $ < p <2 and

1—-1/pH4/p—3 4
31-1/ppp=3 for 1 < p < 4.

We have no reason to suppose that 3'/# is the exact value of |[C—I||4. We will
present a lower bound for it later.

We now turn to CT . As remarked earlier, it is clear that ||CT —I||4 > 3. We now
show that this is the exact value, in accordance with conjecture (C). The method has
both similarities and differences to the case of C —1.

THEOREM 2. We have ||CT —1||4 = 3.

Proof. Choose x € ¢4 and let y, be defined by (2), so that x, = n(y, — y,+1). Now
b* —a* <4b*(b—a) forany a, b, so yi — yi_ | <4y;(yn — Yn+1), hence

dyixn = n(yy —Ypi1)s

equivalently
Vi AVt vy — (n— 1)y

Adding, we obtain

N N
>y <4 vi+ Ny
n=1 n=1

By Holder’s inequality applied to (2), Ny?v 11— 0as N—eo, 50
2 yi <4 2 yixw
n=1 n=1

Now write y, = x, +z,. Then X5 F(xn,2,) = 0, where

F(x,z) =4x(x+2)° — (x+2)* =3x* + 8%z + 6x2% — 2.

Again estimate the term 8x3z using 2xz < X+ %zz, with ¢ to be chosen. This gives

4
F(x,2) < (3+4c)x* + (64—;) X2 -2t
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This time the choice of ¢ will require a little more work. We have shown that

2 (3+4c) Zx +2 <6+ )x%,%

n=1 n=1

Write ¥, x} _X2 and Y, 7+ = 72 (so that ||x|4 = X'/?). By the Cauchy-Schwarz
inequality, ¥, x272 < XZ, s0

4
7 < (3+4e)X*+ (6 + E) XZ,

hence

[Z— (3+ %) Xr < gle)X?,

c
where

2
2 12 4
gle) = <3+;> +3+Hde= 12440+ —+ .

We show that ¢ can be chosen so that g(c)'/2+3 +2 =9: it then follows that Z < 9X,

so that ||z|jl4 < 3||x|[4. The required equality is g(c ) (6 — 2)2, which simplifies to
¢ —6c+9 =0, satisfied by ¢ = 3. (We could have shortened the proof by simply
taking ¢ = 3 in the first place, but it is arguably preferable to show how this choice is
derived.) [

The Riesz-Thorin theorem delivers the following estimate for intermediate values.

COROLLARY 2.1. For 2 < p <4, we have ||CT —1|, < 32747 For g—‘ <p<2,
we have ||C—1|, < 3%/P72.

To derive a simpler, but weaker bound, note that the convex function 327 lies
below its linear interpolation 5 — 2x for 1 < x < 2. Hence 32-4/p <5-— % for 2< p <

4. Meanwhile, it is not hard to show that 32~%/? is strictly greater than the conjectured
value p—1 for 2 < p < 4.

One would hope to be able to extend Theorems 1 and 2 to other values. However,
our methods do not adapt readily even to the case p = 6.

3. Lower bounds

We return to the question of lower bounds for ||C —1||, for p > 2.

PROPOSITION 3. For p > 2,

=1 _ 1\ /P
— o .
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Proof. Fixnandletx=e;+---+e,—e€y41—---—ex,. Let y=Cx and z=y—x.
For 1 <r<n,wehave y,, = (n—r)/(n+r),hence z,4, =2n/(n+r). Hence

By integral estimation,

noo] 2
y > [
(n+r)P " Jug1 1P

r=1

:pilﬁmivl‘QJPJ’

SO

DR >(2n)’”< 1 1 )
Sibalr T op=1 \(+1Dp=t (2n)r!

:pi1<éT§:4‘Q’

which tends to (27"!—1)/(p—1)asn—e. O

In particular, [|C—1I||s > (3)1/4.

Note that the estimate in (6) reproduces the correct value 1 for p =2. One can
derive the somewhat simpler lower bound 2(1 — };) /(p—1)"/7 which can be compared

with the upper bound 2(1 — %) noted after Proposition 2.

In the light of these results, there would appear to be no obvious candidate to
conjecture for the exact value of ||C —1||, for p > 2.

4. The continuous case

In the continuous case, C is the operator defined by (Cf)(x) = 1 [ f(¢) dt, with

dual (CTf)(x) = [~ @ dr. Hardy’s inequality still applies. So do all our estima-
tions, with routine adjustments to the proofs. For example, in Theorem 1, (5) becomes
3 fé( (CH*< 4f(f( (Cf)*f, and the proof concludes as before.

For p =2 in the continuous case, it was shown in [5] that C —1 is actually isomet-
ric: ||(C—1)f||2 = ||f|l> for all £, and similarly for C* —I. Of course, this is not true
in the discrete case. Indeed, (CT —1I)e; =0. For C, the problem is more interesting. In
finite dimensions, one simply has (C —1I)e = 0, where ¢ = (1,1,...,1). However, in
infinite dimensions, the author has been able to show that ||(C —1I)x|» > (1/+/2)]x]|2
for all x in ¢;; this constant is attained by x = (1,—1,0,0,...).
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